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Abstract—The effectiveness of fingerprint-based authentication
systems on good quality fingerprints is established long back.
However, the performance of standard fingerprint matching
systems on noisy and poor quality fingerprints is far from
satisfactory. Towards this, we propose a data uncertainty-based
framework which enables the state-of-the-art fingerprint pre-
processing models to quantify noise present in the input image
and identify fingerprint regions with background noise and poor
ridge clarity. Quantification of noise helps the model two folds:
firstly, it makes the objective function adaptive to the noise in
a particular input fingerprint and consequently, helps to achieve
robust performance on noisy and distorted fingerprint regions.
Secondly, it provides a noise variance map which indicates noisy
pixels in the input fingerprint image. The predicted noise variance
map enables the end-users to understand erroneous predictions
due to noise present in the input image. Extensive experimental
evaluation on 13 publicly available fingerprint databases, across
different architectural choices and two fingerprint processing
tasks demonstrate effectiveness of the proposed framework.

Index Terms—Uncertainty Estimation, Fingerprint Enhance-
ment, Fingerprint Segmentation, Biometrics.

I. INTRODUCTION

Highly accurate performance of fingerprint-based authen-
tication systems on good quality fingerprints makes them
widely used for access control, border security and various
other applications. However, background noise originating
due to sensors and poor ridge clarity due to factors such
as uncontrolled interaction of subjects with the fingerprint
sensor, aging, skin disease or injury pose challenges for the
state-of-the-art matching systems. A fingerprint preprocessing
pipeline is designed to facilitate robustness against noise in
the fingerprint image. A fingerprint preprocessing pipeline has
two significant modules: region of interest (roi) segmentation
module and enhancement module.

While the roi segmentation module is targeted to identify
the foreground fingerprint region, enhancement module is
dedicated to generate a fingerprint image with clear ridge
structure. Thus, fingerprint pre-processing limits the area for
fingerprint matching, reduces the possibility of spurious minu-
tiae detection while also reducing the computation time for
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Fig. 1. Visualization of model and data uncertainty obtained while
segmenting fingerprint roi. First and third rows depict the input fingerprint,
segmented ground truth and the corresponding segmented images obtained
using MU-RUnet [24] and proposed DU-RUnet. MU-RUnet is obtained after
introducing Monte Carlo Dropout to capture model uncertainty, while DU-
RUnet is designed to capture data uncertainty. Predicted uncertainty is
shown in the second and fourth row. The visualization of uncertainty values
demonstrates the fact that the predicted model uncertainty only indicates high
uncertainty under misclassified pixels, that too not well calibrated (blue and
red color denote low and high uncertainty values respectively). On the other
hand, predicted data uncertainty clearly discriminates noise and background
pixels from the foreground which improves the robustness of the model
towards noise.

fingerprint matching. However, some fingerprint images are
inherently very noisy and highly likely to cause erroneous
predictions by any state-of-the-art fingerprint preprocessing
system. For such fingerprints, it is highly useful to obtain some
auxillary information from the system which can quantify
noise in input fingerprint.

Bayesian deep networks offer a practical way to identify
noisy pixels in the input image through modelling the data un-
certainty arising due to sensor noise or occlusions. We demon-
strate that modelling data uncertainty through a Bayesian
framework helps the state-of-the-art fingerprint preprocessing

ar
X

iv
:2

10
7.

01
24

8v
1 

 [
cs

.C
V

] 
 2

 J
ul

 2
02

1



models to learn noise-invariant features and improves their
performance. Additionally, the predicted per-pixel data un-
certainty serves as a tool for understanding of the human
operators (see Figure 1).

II. RELATED WORK

A. Fingerprint ROI Segmentation

1) Classical image processing based methods: Hu et
al. [22] and Thai et al. [43] propose filtering based segmenta-
tion. Thai and Gottsclich [42] and Fahmy and Thabet [11] ex-
plore the potential of morphological operations for fingerprint
roi segmentation. While Teixeira and Leite [41] and Raimundo
et al. [9] exploit the fingerprint ridge orientation information
to segment foreground from background.

2) Learning based methods: Ferreira et al. [14] and Yang
et al. [51] propose pixel-level clustering to discriminate fore-
ground from background. While Liu et al. [32], Serafim
et al. [38] and Stojanović et al. [40] propose patch level
classification of foreground and background accompanied by
postprocessing.

None of the learning based architectures described above
are end-to-end. Recently, Joshi et al. [24], [25], show that
RUnet [49] is an effective baseline for fingerprint roi seg-
mentation. Furthermore, the authors incorporate Monte Carlo
dropout to estimate model uncertainty and show that it helps
to improve the performance of RUnet along with imparting
model interpretability.

B. Fingerprint Enhancement

1) Classical image processing based methods: Hong et
al. [21], Turroni et al. [45], Gottschlich and Schönlieb [19],
Gottschlich [18] and Wang et al. [48] propose filtering in
spatial domain. Chikkerur et al. [6] and Ghafoor et al. [17]
exploit information in Fourier domain. Sharma and Dey [39]
propose a quality adaptive filtering in Fourier domain.

2) Learning based methods: Schuch et al. [36] propose
a deconvolutional auto-encoder (DeConvNet) to reconstruct
poor quality fingerprints. Qian et al. [35] propose DenseUnet
while Wong and Lai [50] and Li et al. [31] propose multi-
tasking auto-encoder explicitly utilizing orientation field in-
formation. Joshi et al. [23] propose a generative adversarial
network (FP-E-GAN) for fingerprint enhancement. A detailed
survey on fingerprint enhancement algorithms is conducted by
Schuch et al. [37].

Tiwari et al. [44], Vatsa et al. [46] and Puri et al. [34]
evaluate the performance of state-of-the-art fingerprint match-
ing system on the rural Indian population and conclude that
it is challenging. Motivated by these works, we evaluate the
enhancement performance of proposed work on challenging
rural Indian fingerprints database.

C. Uncertainty Estimation

Predicting uncertainty makes learning based models trust
worthy and useful from the perspective of safety [3]. A wide
range of approaches are proposed to estimate uncertainty
using the Bayesian formulation of neural networks such as

Monte-Carlo Dropout [16], Deep Ensembles [30], Maximum
softmax probability [20] and Stochastic Variational Bayesian
Inference [33]. These uncertainty prediction techniques are
successfully applied to detect out-of-distribution samples and
misclassifications. Predictive uncertainty also finds its appli-
cations in active learning [26].

To summarize, uncertainty estimation serves as an effective
tool that enables model understanding and robustness. It
has been successfully utilized in various image processing
applications [8], [27]–[29]. The usefulness of estimating model
uncertainty in fingerprint roi segmentation is recently explored
[24]. However, in principle, uncertainty can be either due to
model weights (model uncertainty) or due to noise in the input
(data uncertainty). Modelling data uncertainty is therefore
especially useful to identify noisy regions and achieve robust
performance on distorted and poor quality fingerprints.

D. Research Contributions

To the best of our knowledge, this research is the first
work in fingerprints domain to predict data uncertainty and
demonstrate its usefulness in preprocessing of fingerprints.
To study its generalization ability, experiments are conducted
on 13 publicly available fingerprint databases. The effect of
modelling data uncertainty is studied on two tasks: fingerprint
roi segmentation and enhancement, and three different network
architectures. Furthermore, both qualitative and quantitative
analysis of predicted data uncertainty is conducted to evaluate
its effectiveness. Additionally, we also compare the model
performance, inference time and predicted uncertainty after
modelling data uncertainty versus the Monte Carlo dropout
based model uncertainty. Visualizations of neural activations
(using Seg-Grad-Cam [47]) and predicted uncertainty are
illustrated to provide insights on the proposed work.

III. UNCERTAINTY IN FINGERPRINT PREPROCESSING

The success of deep models in fingerprint preprocessing
mandates their use to obtain state-of-the-art performance.
However, the standard fingerprint prepocessing models make
predictions like a black-box and do not indicate when the
model is highly likely to make an erroneous prediction.
Uncertainty estimation provides a mechanism to understand
what the model does not know and thus enables the end-
users to separately handle more difficult cases or unreliable
predictions. Baseline deterministic fingerprint preprocessing
deep models are converted into Bayesian deep models to infer
uncertainty from them.

Uncertainty in a fingerprint preprocessing model can be
primarily divided into two types: model uncertainty and data
uncertainty. On the other hand, data uncertainty captures the
noise in the input fingerprint image due to factors such as
dust and grease on the surface of fingerprint sensor, false
traces arising during fingerprint acquisition, blurred ridges
and unclear boundaries due to dry or wet fingertips. Data
uncertainty cannot be reduced even if the model is trained
on more training data. The usefulness of model uncertainty
is recently studied by Joshi et al. [24]. In this research,
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Fig. 2. Flowchart showcasing inference of data uncertainty. The output layer comprises of two branches. For understanding, the case of fingerprint
segmentation is shown where one branch predicts the segmentation mask whereas the other branch predicts the per-pixel data uncertainty.

we explain how to infer data uncertainty from a fingerprint
preprocessing model and its benefits.

IV. ESTIMATING DATA UNCERTAINTY

Data uncertainty is formalized as a probability distribution
over model output. Given the input fingerprint image, data
uncertainty estimation using Bayesian deep learning requires
placing a prior distribution over output of model and calcu-
lating the variance of noise in model output. Predicted data
uncertainty being input dependent, is learnt as a function of
input image [15]. To obtain both the preprocessed image and
its associated uncertainty, network architecture of the baseline
fingerprint preprocessing model is modified. Furthermore,
since the background pixels are likely to be more noisy than
foreground pixel, therefore per-pixel uncertainty is predicted.

As shown in Figure 2, last layer of the baseline architecture
is modified by splitting it into two. One branch predicts the
model output (preprocessed image) whereas the other branch
predicts the data uncertainty (noise variance). The mapping
between input and preprocessed image is learnt in a supervised
manner. However, no labels for uncertainty are used and
the uncertainty values are learnt in an unsupervised manner.
Furthermore, The loss function of the baseline architecture is
also modified (as described in subsections IV-A and IV-B)
to enable the modified architecture to learn to predict data
uncertainty.

Fingerprint preprocessing models can be either based on
regression or classification. In case of regression, the change
in output can be directly calculated. However, in case of
classification, in order to capture the true change in output,
change in the values of logit is monitored rather than the
change in output probabilities (output of softmax). Next, we
describe the loss function to learn data uncertainty from both
regression and classification based models.

A. Regression Based Models

For a pixel i of an input fingerprint image x, assuming the
model output f(xi) is corrupted with Gaussian zero mean ran-
dom noise, estimating data uncertainty aims to learn the input

dependent noise variance, σ(xi). To learn data uncertainty,
the original loss function 1

n

∑n
i=1 ‖yi − f(xi)‖2 is modified

as follows:

1

n

n∑
i=1

1

2σ(xi)2
‖yi − f(xi)‖2 +

1

2
log σ(xi)

2 (1)

where n denotes the total number of pixels in training images.
Intuitively, modifying the baseline architecture to predict data
uncertainty and training with loss presented in equation 1
enables it to adjust the residual error occuring on the noisy
pixels by 1

σ(xi)
factor. Consequently, the model predicts high

data uncertainty on noisy pixels. Furthermore, to ensure that
the model does not predict high uncertainties for all pixels,
the term log σ(xi)

2 is introduced. As a result, the modified
loss function acts a noise-aware loss.

B. Classification Based Models

To estimate data uncertainty from a classification model, the
model is marginalized over the estimated data uncertainty in
regression of logit space. For a pixel i of an input fingerprint
image x, let f(xi) denotes the logit value before passing
through softmax. Assuming f(xi) is corrupted with Gaussian
random noise with zero mean and variance σ(xi), the network
is optimized using Monte Carlo integration over cross-entropy
loss for softmax probabilities of the sampled logits. As a result,
the regular cross-entropy loss is modified as:

x̂i,t = f(xi) + σ(xi) εt, εt ∼ N (0, I)

1

n

n∑
i=1

log
1

T

T∑
t=1

exp(x̂i,t,ĉ − log
∑
ĉ

exp(x̂i,t,ĉ))
(2)

where x̂i,t denotes the corrupted logit value for input xi at
iteration t. ĉ, n and T denote the class label, total number of
pixels in training images and number of Monte Carlo samples
respectively. Similar to the case of regression, equation 2 can
be interpreted as learning a noise-aware loss.



V. DATABASES

To evaluate the effectiveness of of the proposed work, a
wide range of challenging fingerprint databases in the public
domain are used to conduct the experimental analysis. These
databases are briefly described below:

1) Fingerprint Verification Challenge (FVC) Databases:
Three different FVC series 2000, 2002 and 2004 con-
sisting of fingerprints acquired from different sensors,
having varying background noise are used for this work.
Each series has four databases and a well-defined train-
ing and testing set. Following the protocol, training and
testing is conducted on a total of 960 and 9600 images
respectively. The ground truth roi segmentation masks
are obtained from [42]1.

2) Rural Indian Fingerprint Database: It has fingerprint
samples collected from the rural Indian population ex-
tensively involved in manual work such as farmers,
carpenters, villagers etc. It has 1631 fingerprint images
acquired using an optical sensor.

VI. TRAINING AND TESTING

Recurrent Unet (RUnet) [49] is selected as the baseline
architecture for fingerprint segmentation. It is a classification
based model which is trained on cross-entropy loss. The
architecture of RUnet is modified as suggested in Section IV.
Modified architecture is named as DU-RUnet (Recurrent Unet
with Data Uncertainty). Training and testing are performed on
the respective training and testing subsets of FVC databases.
The loss function presented in equation 2 is used to train DU-
RUnet. Hyper-parameter T=5 is used for training DU-RUnet.

For fingerprint enhancement, two state-of-the-art fingerprint
enhancement models: DeConvNet [36] and FP-E-GAN [23]
are modified to model data uncertainty. The resulting archi-
tectures are named DU-DeConvNet and DU-GAN respectively.
Training is performed on synthetic dataset as suggested in [23]
while testing us conducted on the Rural Indian Fingerprint
Database [34]. Both of these baseline models have regression
based loss function. Thus, for training DU-DeConvNet and
DU-GAN, the training loss is modified as suggested in Section
IV-A. During testing of these modified architectures, to infer
the preprocessed fingerprint image and the data uncertainty
associated with it, only a single forward pass through the
proposed architecture is required.

VII. EVALUATION METRICS

A. Segmentation Performance
1) Dice and Jaccard Score: We employ two standard met-

rics: Dice [10] and Jaccard score [7] to assess the segmentation
performance obtained by the proposed segmentation model
compared to the ground truth roi segmentation masks.

Although DU-RUnet is an end-to-end model, however, to
have enough metrics for comparisons with state-of-the-art, we
also evaluate DU-RUnet on impression 3 and 4 of FVC 2002-
Db1a database over the patch based metrics described next.

1https://figshare.com/articles/dataset/Benchmark for Fingerprint Segment
ation Performance Evaluation/1294209

2) Erroneously Classified Patches: Let patch1 represents
a 16×16 patch from predicted segmentation mask whereas
patch2 represents the corresponding ground truth patch man-
ually marked by fingerprint experts. The percentage of erro-
neously classified patches (Err) is described as:

Err =
number of patches(patch1 6= patch2)

number of patches(patch1)
(3)

3) Hit Coefficient and Mistake Coefficient: Hit coefficient
(HC) and Mistake Coefficient (MC) indicate the relative
foreground predicted correctly and incorrectly, respectively
compared to the ground truth.

HC =
Area(P ∩G)

Area(G)

MC =
Area(P −G)

Area(G)

(4)

where P and G represent the foreground fingerprint area in the
predicted segmentation mask and ground truth segmentation.

B. Enhancement Performance

1) Fingerprint Quality Assessment: To quantify the im-
provement in fingerprint quality after enhancement, we cal-
culate fingerprint image quality scores using Nfiq module of
NBIS [1]. Nfiq returns a score in the range [1,5] where 1 and
5 signify the best and the worst fingerprint quality.

2) Ridge Reconstruction Ability: In order to evaluate the
ridge reconstruction ability of the proposed DU-GAN, we
calculate Peak signal-to-noise ratio (PSNR) between the en-
hanced image generated by DU-GAN and the ground truth
binarized fingerprint image obtained using binarization module
of NBIS. However, since the ground truth binarization cannot
be reliably generated on the testing database, synthetic dis-
torted fingerprint images are generated for this experiment.
Good quality synthetic fingerprints are generated using [2]
at first, which are then degraded using various noise and
background variations.

3) Matching Performance: To demonstrate the improved
fingerprint matching performance, we report the average Equal
Error Rate (EER) and plot the Detection Error Tradeoff (DET)
curve. Fingerprint matching systems used are Bozorth [1] and
MCC [4], [5], [12], [13].

VIII. RESULTS AND DISCUSSIONS

A. Data Uncertainty Guides Noise-aware Segmentation

Table I reports the improved dice and jaccard scores ob-
tained by the proposed DU-RUnet as compared to baseline
RUnet. To fathom reasons for the same, Figure 3 showcases
sample visualizations obtained for RUnet and DU-RUnet using
Seg-Grad-Cam [47]. Results reveal that predicting data uncer-
tainty helps the model to identify noisy regions in fingerprint
images due to which higher activations are obtained around
foreground fingerprint pixels. As a result, improved segmen-
tation performance on noisy background pixels is obtained.



Fig. 3. Visualizations obtained using Seg-Grad-Cam (best viewed in colour). Higher activations around the foreground and boundaries are obtained by
DU-RUnet compared to the baseline RUnet. This explains the improved segmentation performance by RUnet on noisy background pixels after modelling data
uncertainty.

TABLE I
COMPARISON OF JACCARD SIMILARITY AND DICE SCORE OBTAINED BY

BASELINE RUNET AND PROPOSED DU-RUNET.

Database Jaccard Similarity (↑) Dice Score (↑)
RUnet DU-RUnet RUnet DU-RUnet

2000DB1 88.15 88.52 93.34 93.62
2000DB2 86.40 88.07 92.39 93.42
2000DB3 93.74 95.36 96.50 97.55
2000DB4 94.28 94.97 97.04 97.40
2002DB1 96.95 97.07 98.44 98.50
2002DB2 94.88 95.43 97.28 97.60
2002DB3 91.83 93.06 95.53 96.25
2002DB4 91.17 91.89 95.32 95.74
2004DB1 98.78 99.00 99.38 99.50
2004DB2 93.94 96.37 96.69 98.14
2004DB3 94.62 95.47 97.17 97.65
2004DB4 94.73 95.61 97.21 97.70

B. Comparison of Model and Data Uncertainty

To provide insights on what exactly data uncertainty cap-
tures and how it is different than model uncertainty [24], we
perform a detailed comparison of the proposed DU-RUnet
(RUnet with data uncertainty) with the recently proposed MU-
RUnet [24] (RUnet with model uncertainty).

Table II and Table III compare the segmentation perfor-
mance obtained by MU-RUnet and DU-RUnet. DU-RUnet
outperforms MU-RUnet on majority of the databases. These
results demonstrate the fact that data uncertainty turns to
be more useful than model uncertainty in facilitating correct
segmentation of noisy background pixels.

Next, to analyze the interpretability of predicted uncer-
tainties, we plot Figure 4. Sample cases demonstrate the
fact that indeed predicting either type of uncertainty helps
to improve the baseline segmentation performance. Both of
these uncertainties capture complementary information. Model
uncertainty captures model’s confidence in prediction due to
which higher uncertainty values are obtained for incorrectly
classified pixels. On the other hand, data uncertainty captures

TABLE II
COMPARISON OF JACCARD SIMILARITY AND DICE SCORE OBTAINED

AFTER INCORPORATING MODEL AND DATA UNCERTAINTY.

Database Jaccard Similarity (↑) Dice Score (↑)
MU-RUnet DU-RUnet MU-RUnet DU-RUnet

2000DB1 87.97 88.52 93.14 93.62
2000DB2 88.43 88.07 93.58 93.42
2000DB3 95.39 95.36 97.57 97.55
2000DB4 94.89 94.97 97.36 97.40
2002DB1 96.83 97.07 98.38 98.50
2002DB2 95.13 95.43 97.40 97.60
2002DB3 93.87 93.06 96.73 96.25
2002DB4 91.53 91.89 95.54 95.74
2004DB1 98.88 99.00 99.49 99.50
2004DB2 95.98 96.37 97.93 98.14
2004DB3 95.29 95.47 97.55 97.65
2004DB4 96.18 95.61 98.03 97.70

TABLE III
COMPARISON OF SEGMENTATION PERFORMANCE OBTAINED BY

DU-RUNET AND MU-RUNET.

Algorithm Err (↓) HC(↑) MC (↓)
MU-RUnet [24] 0.0173 0.9949 0.0313
DU-RUnet (Proposed) 0.0163 0.9936 0.0301

noise in the input fingerprint image due to which higher
uncertainties values are obtained around noisy and background
pixels as compared to the foreground. Furthermore, consistent
with the literature [15], we observe data uncertainty values to
be better calibrated than model uncertainties.

Lastly, Table IV compares the inference time for MU-RUnet

TABLE IV
COMPARISON OF INFERENCE TIME.

Architecture Time (sec.)
RUnet [49] 0.22

MU-RUnet [24] 1.03
DU-RUnet (Proposed) 0.22



Fig. 4. Visualization of model and data uncertainty. Sample cases demonstrating the fact that predicting either of the two kind of uncertainties improves
the segmentation performance as both of these capture different but useful information. Model uncertainty captures model’s confidence in prediction. As a
result, higher uncertainty around incorrect predictions is obtained compared to the correctly predicted pixels. Data uncertainty on the other hand, captures the
noise in in the fingerprint image. Consequently, higher data uncertainty is predicted around background and boundaries as compared to the foreground.

and DU-RUnet. System configuration on which inference time
is computed consists of a Tesla V100 GPU and a Xeon Silver
4215 CPU. Please note that the inference time of MU-RUnet
depends upon the number of samples used for the Monte
Carlo integration. In this study, MU-RUnet uses five samples
during testing. As reported in Table IV, inference time of DU-
RUnet is comparable to RUnet. However, due to Monte Carlo
Integration, inference time of MU-RUnet is approximately five
times of DU-RUnet.

C. Analysis of Data Uncertainty

1) Qualitative Analysis: Figure 4 presents sample input
images and the data uncertainty predicted by the proposed
DU-RUnet. High uncertainty is predicted for background as
compared to the foreground. Furthermore, boundary pixels
around the input fingerprint image in the top row are far more
noisy as compared to second and third row. Consequently, the
predicted uncertainty around the boundaries is higher for the
top row compared to the second and third row. These results
demonstrate the reliability of the predicted data uncertainty.

2) Quantitative Analysis: For quantitatively demonstrating
the efficacy of data uncertainty predicted by the proposed DU-
RUnet, Figure 5 illustrates the mean data uncertainty predicted
for: background (with respect to ground truth roi mask) versus
foreground pixels and correctly versus incorrectly classified
pixels. As expected, the mean uncertainty predicted for back-
ground is significantly higher compared to foreground. Like-
wise, the mean uncertainty predicted for incorrectly classified
pixels is way higher compared to correctly classified pixels.
These results verify the claim that DU-RUnet predicts high
data uncertainty around boundaries and noisy background
pixels.

D. Generalization Ability

All the experimental analysis presented so far is conducted
on fingerprint ROI segmentation. To establish the effectiveness
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Fig. 5. Comparison of predicted data uncertainty for (a) foreground
and background pixels (b) correctly and incorrectly classified pixels. Higher
mean uncertainty obtained for background and incorrectly classified pixels
demonstrates the efficacy of data uncertainty prediction. D1 to D12 represent
FVC2000 DB1 to FVC2004 DB4 respectively (in order).

of modelling data uncertainty in fingerprint preprocessing,
in general, we also demonstrate its impact in fingerprint
enhancement. In this direction, we take two state-of-the-art
fingerprint enhancement models DeConvNet [36] and FP-E-
GAN [23] and modify them to DU-DeConvNet and DU-GAN
to obtain data uncertainty from these baseline architectures.

Table V and Figure 6 (a) demonstrate the fact that the
fingerprint quality scores are improved for both the baseline
enhancement models after modifying them to predict data
uncertainty. Likewise, as indicated in Table VI and Figure
6 (b), images generated by DU-DeConvNet and DU-GAN
obtain better matching performance compared to the baseline
DeConvNet and FP-E-GAN.

Next, we show that the ridge reconstruction ability is indeed
improved after modelling data uncertainty. Figure 7 compares
the PSNR value obtained by DU-GAN (as it is better perform-
ing architecture than DU-DeConvNet) and its corresponding
baseline architecture, FP-E-GAN. Higher PSNR value with
respect to the ground truth binarized image is obtained for
DU-GAN which signifies that DU-GAN performs better than
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Fig. 6. Improved enhancement performance obtained on by the proposed
DU-DeConvNet and DU-GAN (after modelling data uncertainty) demon-
strated through (a) Improved Nfiq quality scores (lower is better) (b) DET
curve demonstrating reduced EER while performing matching using MCC
matcher.

TABLE V
AVERAGE NFIQ QUALITY SCORES OBTAINED ON RURAL INDIAN

FINGERPRINT DATABASE.

Enhancement Algorithm Avg. Nfiq Score (↓)
Raw Image 2.94

DeconvNet [36] 1.95
DU-DeConvNet 1.84
FP-E-GAN [23] 1.31

DU-GAN 1.26

baseline FP-E-GAN in reconstructing the distorted ridges.
Lastly, Figure 8 showcases the improvement in enhancement

performance after modifying the state-of-the-art fingerprint
enhancement models to predict data uncertainty. We observe
that DU-ConvNet and DU-GAN perform far better than cor-
responding baselines in predicting missing ridge information
and improving the overall ridge-valley clarity.

IX. CONCLUSION AND FUTURE WORK

This research is the first work in the fingerprints domain to
demonstrate the effectiveness of modelling data uncertainty
through a deep Bayesian network. Proposed methodology
is tested on fingerprint roi segmentation and enhancement.
Extensive experimentation over a wide range of databases
and network architectures showcases the generalization abil-
ity of the proposed work. Insights on the improved model
performance are provided through visualization of neural
activations. Furthermore, qualitative and quantitative analysis

TABLE VI
AVERAGE EER OBTAINED ON RURAL INDIAN FINGERPRINT DATABASE.

Enhancement
Algorithm

Matching
Algorithm

Avg. EER (↓)

Raw Image Bozorth 16.36
DeConvNet [36] Bozorth 10.93
DU-DeConvNet Bozorth 8.71
FP-E-GAN [23] Bozorth 7.30
DU-GAN Bozorth 7.13
Raw Image MCC 13.23
DeConvNet [36] MCC 10.86
FP-E-GAN [23] MCC 5.96
DU-DeConvNet MCC 5.36
DU-GAN MCC 5.13

Fig. 7. Sample test cases showcasing the improvement in ridge recon-
struction ability of FP-E-GAN after modelling data uncertainty, resulting in
proposed DU-GAN.

Fig. 8. Sample challenging cases showcasing improved performance by state-
of-the-art fingerprint enhancement algorithms after modelling data uncertainty.

of predicted data uncertainty is conducted which confirms
that the higher data uncertainty is predicted around noisy
and background pixels compared to clear foreground region.
A detailed comparison between model performance obtained
after incorporating model uncertainty and data uncertainty is
conducted. Results reveal that modelling both the type of
uncertainty is helpful as both the uncertainties capture different
but useful information. However, the time taken to infer data
uncertainty is much lower compared to the time required to
infer model uncertainty. In future, the usefulness of uncertainty
information in other stages of fingerprint matching pipeline
can be studied.
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Trinta, M. E. Maia, J. A. F. Macêdo, and A. V. L. Neto. A method
based on convolutional neural networks for fingerprint segmentation.
In 2019 International Joint Conference on Neural Networks (IJCNN),
pages 1–8, 2019.

[39] R. P. Sharma and S. Dey. Two-stage quality adaptive fingerprint image
enhancement using fuzzy c-means clustering based fingerprint quality
analysis. Image and Vision Computing, 83:1–16, 2019.
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