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Abstract—Despite the recent success of reconciling spike-based
coding with the error backpropagation algorithm, spiking neural
networks are still mostly applied to tasks stemming from sensory
processing, operating on traditional data structures like visual
or auditory data. A rich data representation that finds wide
application in industry and research is the so-called knowledge
graph – a graph-based structure where entities are depicted as
nodes and relations between them as edges. Complex systems like
molecules, social networks and industrial factory systems can be
described using the common language of knowledge graphs, al-
lowing the usage of graph embedding algorithms to make context-
aware predictions in these information-packed environments. We
propose a spike-based algorithm where nodes in a graph are
represented by single spike times of neuron populations and
relations as spike time differences between populations. Learning
such spike-based embeddings only requires knowledge about
spike times and spike time differences, compatible with recently
proposed frameworks for training spiking neural networks. The
presented model is easily mapped to current neuromorphic
hardware systems and thereby moves inference on knowledge
graphs into a domain where these architectures thrive, unlocking
a promising industrial application area for this technology.

I. INTRODUCTION

Recently, spiking neural networks (SNNs) have started
to bridge the gap to their widely used cousins, artificial
neural networks, and achieved competitive performances on
benchmark tasks like pattern recognition [1]–[6], probabilistic
inference [7]–[9] and sequence prediction tasks [10], [11].
One crucial ingredient for this success was the consolidation
of the error backpropagation algorithm with SNNs, which
had remained an unsolved problem for a long time due to
the discontinuous nature of spike generation [2], [12]–[14].
However, so far SNNs have mostly been applied to tasks akin
to sensory processing like image or audio recognition [15].
Such input data is inherently well-structured, e.g., the pixels
in an image have fixed positions, and applicability is often
limited to a narrow set of tasks that utilize this structure and
do not scale well beyond the initial data domain.

A data structure that allows reasoning over abstract con-
cepts and seamless integration of data from different domains
are knowledge graphs (KGs) [16]–[18]. KGs are a widely
used, rich data structure that enables a symbolic description
of abstract concepts and how they relate to each other. In
general, a KG consists of nodes representing entities and
edges representing relations between these entities. For in-
stance, in an industrial automation system, the nodes could
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Fig. 1. (A) Simplified example of a graph describing parts of an industrial
automation system, with nodes representing entities and edges relations.
Relation types are shown in different colors. (B) The graph can be summarized
as a set of known triple statements. Inference on graph data is concerned with
evaluating whether unknown statements are plausible given the structure of
the observed graph.

represent physical objects like a sensor or a programmable
logic controller (PLC), but also more abstract entities like
an IP address, data types or an application running on the
industrial system (Fig. 1A). How these entities relate to each
other is modeled with edges of different types between nodes.
This way, the graph can be summarized using semantically
meaningful statements, so-called triples, that take the simple
and human-readable form {subject, predicate, object} [19], or
in graph format, {node, typed edge, node} (Fig. 1B).

Although multi-relational graphs are highly expressive, their
symbolic nature prevents the direct usage of classical statistical
methods for further processing and evaluation. Lately, graph
embedding algorithms have been introduced to solve this
problem by mapping nodes and edges to a vector space while
conserving certain graph properties [20]–[22]. For example,
one might want to conserve a node’s proximity, such that
connected nodes or nodes with vastly overlapping neighbor-
hoods are mapped to vectors that are close to each other.
These vector representations can then be used in traditional
machine learning approaches to make predictions about unseen
statements, realizing abstract reasoning over a set of subjects,
predicates and objects.

Spike-based versions of classical graph algorithms like
finding shortest paths, minimum spanning trees and maximum
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flows have already been proposed in recent work [23]–[29].
We extend this work to graph embeddings for multi-relational
graphs, where instead of working directly with the graph
structure, it is encoded in the temporal domain of spikes:
entities and relations are represented as spikes of neuron
populations and spike time differences between populations,
respectively. Through this mapping from graph to spike-based
coding, SNNs can be trained on graph data to evaluate novel
triples not seen during training, i.e., perform inference on
the semantic space spanned by the training graph. For our
studies, we use non-leaky integrate-and-fire neurons (nLIF),
allowing us to calculate spike times and spike time gradi-
ents analytically [1] while guaranteeing compatibility with
current neuromorphic hardware architectures [30], [31] that
often realize some variant of the LIF neuron model. The
presented results are especially interesting for the applicability
of neuromorphic hardware in industrial use-cases [32], where
graph embedding algorithms find many applications, e.g., in
form of recommendation systems [33], digital twins [34],
semantic feature selectors [35] or anomaly detectors [36].

In the following, we first explain our spike-based graph
embedding model (SpikE), derive the required learning rule
and evaluate the learned embeddings on a realistic industrial
benchmark data set.

II. SPIKE-BASED GRAPH EMBEDDINGS

A. From graphs to spikes

Our model takes inspiration from TransE [37], a shallow
graph embedding algorithm where nodes are represented as
vectors and relations as vector translations. In principle, we
found that these vector representations can be mapped to spike
times and translations into spike time differences, offering a
natural transition from the graph domain to SNNs.

We propose that the embedding of a node s is given
by single spike times of a neuron population of size N ,
ttts ∈ [t0, tmax]

N ∈ RN (Fig. 2A). That is, every neuron
of the population emits exactly one spike during the time
interval [t0, tmax], and the resulting spike pattern represents
the embedding of an entity in the KG. Relations are encoded
by a N -dimensional vector of spike time differences rrrp ∈ RN .
To decode whether two populations s and o encode entities
that are connected by relation p, we evaluate the spike time
differences of both populations element-wise, ttts − ttto, and
compare it to the entries of the relation vector rrrp (Fig. 2A).
Depending on how far these diverge from each other, the
statement {s, p, o} is either deemed plausible or implausible.
For instance, in Fig. 2B (top), the spike pattern of the two
populations encoding subject and object entity are consistent
with the representation of the relation, i.e., ttts − ttto ≈ rrrp, and
hence the triple {s, p, o} is deemed plausible. In Fig. 2B
(bottom), we choose a triple {s, q, b} that is assessed as
implausible by our model, since the measured spike time
differences do not match those required for relation q, i.e.,
ttts − tttb 6= rrrq (although they might match other relations).

This coding scheme maps the rich semantic space of graphs
into the spike domain, where the spike patterns of two pop-

A

0

5

10

B
pop. 1
pop. 2
relation

t0 tmaxtime

0

5

10ne
ur

on
 id

n
eu

ro
n

 p
o

p
u

la
ti

o
n

s

relation

calculate spike time differences

decode patterns

=
?

=
?

=
?

-

-

-

Δ𝑡2

Δ𝑡1

Δ𝑡0

Fig. 2. (A) Spike-based coding scheme to embed graphs into SNNs. Nodes
are represented by neuron populations (red, blue), where the embedding is
given by the individual spike time of each neuron. By comparing spike time
differences between populations (triangles), one can evaluate whether certain
relations (gray boxes) are valid between the two entities encoded by the
populations. (B) Example of spike patterns and spike time differences for a
plausible triple (top) and an implausible one (bottom), i.e., where the pattern
does not match the relation, pop. 1 − pop. 2 6= relation. In both cases, we
used the same subject (red), but different relations and objects (gray and blue).

ulations encode how the represented entities relate to each
other, but not only for one single relation, but the whole set of
relations spanning the semantic space. To achieve this, learned
relations encompass a range of patterns from mere coincidence
detection to complex spike time patterns. In fact, coding of
relations as spike coincidence detection does naturally occur
as a special case in our model when training SNNs on real
data, see for example Fig. 3C. Such spike embeddings can
either be used directly to predict or evaluate novel triples,
or as input to other SNNs that can then utilize the semantic
structure encoded in the embeddings for subsequent tasks.

Formally, the ranking of triples can be written as

ϑs,p,o =
∑
‖d (ttts, ttto)− rrrp‖ , (1)

where d : RN × RN → RN is a difference function and the
sum is over vector components. In the remaining document,
we call ϑs,p,o the score of triple {s, p, o}, where plausible
triples have a score close to 0 and implausible ones � 0. For
SpikE, we define the difference function to be

dA (ttts, ttto) = ttts − ttto , (2)

where both the order and distance of spike times are used
to encode relations. This can be further modified to only
incorporate spike time differences,

dS (ttts, ttto) = ‖ttts − ttto‖ , (3)

such that there is no distinction between subject and object
populations. We call this version of the model SpikE-S, which
enables a more compact network realization since the same
neuron population can be used to represent an entity as subject
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Fig. 3. (A) Illustration of the proposed network architecture. Fixed spikes (black) and plastic weights (blue) encode the spike times of the embedding
populations (gold), which statically project to dendritic compartments of output neurons (gray)1. To score triples, the adequate populations are activated using,
e.g., a disinhibition mechanism (orange)2. (B) Fixed stimulus spikes (black) and examples of learned spike time embeddings for SpikE-S (gold) and SpikE
(red). (C) Learned relation embeddings in the output neurons. In case of SpikE-S, only positive spike time differences are learned. In both cases, complex
spike difference patterns are learned to encode relations as well as simpler ones that mostly rely on coincidence detection (middle), i.e., rrrp ≈ 0. (D) Temporal
evaluation of triples {s, p, o}, for varying degrees of plausibility of the object: (green) seen during training, (orange) not seen during training, but plausible
and (red) least plausible (see also Fig. 6A for a similar experiment). Different to TransE that lacks a concept of time, SpikE prefers embeddings where most
neurons spike early, allowing faster evaluation of scores. Lines mark the mean score and shaded areas the 15th and 85th percentile for 10 random seeds.

and object. In contrast, SpikE has the benefit of being closer to
the original TransE algorithm by utilizing spike time ordering,
but might be harder to realize in neuromorphic hardware
(see Fig. 3A for details). For the sake of completeness, we
investigate both versions of the spike-based embedding model.

B. Network implementation

A suitable neuron model that suffices the requirements of
the presented coding scheme, i.e., single-spike coding and
being analytically treatable, is the nLIF neuron model. For
similar reasons, it has recently been used in hierarchical
networks utilizing first-spike latency codes [1]. For the neuron
populations encoding entities, we use the nLIF model with an
exponential synaptic kernel

u̇s,i(t) =
1

τs

∑
j

Ws,ij θ (t− tj) exp
(
− t− tj

τs

)
, (4)

where us,i is the membrane potential of the ith neuron of
population s, τs the synaptic time constant and θ(·) the
Heaviside function. A spike is emitted when the membrane
potential crosses a threshold value uth. Ws,ij are synaptic
weights from a pre-synaptic neuron population, with every
neuron j emitting a single spike at fixed time tj (Fig. 3A,
bottom). This way, the coding in both stimulus and embedding
layers are consistent with each other and the embedding spike
times can be adjusted by changing synaptic weights Ws,ij .
Eq. (4) can be solved analytically

us,i(t) =
∑
tj≤t

Ws,ij

[
1− exp

(
− t− tj

τs

)]
, (5)

which is later used to derive a learning rule for the embedding
populations.

For relations, we use output neurons with a similar structure
as proposed in [38]. Each output neuron consists of a ’dendritic
tree’, where branch k evaluates the kth component of the
spike pattern difference, i.e., ‖d (ttts, ttto) − rrrp‖k, and the tree
structure subsequently sums over all contributions, giving
ϑs,p,o (Fig. 3A, top). This way, the components of rrrp become
available to all entity populations, despite being locally stored.

Different from ordinary feedforward or recurrent SNNs, the
input is not given by a signal that first has to be translated into
spike times and is then fed into the first layer (or specific input
neurons) of the network. Instead, inputs to the network are ob-
served triples {s, p, o}, i.e., statements that have been observed
to be true. Since all possible entities are represented as neuron
populations, the input simply gates which populations become
active (Fig. 3A, orange), resembling a memory recall. During
training, such recalled memories are then updated to better
predict observed triples. Through this memory mechanism,
an entity s can learn about global structures in the graph.
For instance, since the representation of a relation p contains
information about other entities that co-occur with it in triples,
{m, p, n}, s can learn about the embeddings of m and n (and
vice versa) – even if s never appears with n and m in triples
together.

1To ease notation, the upper index denotes relation types and the lower
index vector components here.

2For SpikE, the order in which the spike time differences are calculated
is crucial. This can be achieved by either using a more involved gating
mechanism (Suppl. C), or by representing each entity via subject and object
populations that are synchronized during training (Suppl. D).
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C. Learning rules

To learn spike-based embeddings for entities and relations,
we use a soft margin loss

ls,p,o = log [1 + exp (ϑs,p,o · ηs,p,o)] , (6a)

L(ϑϑϑ,ηηη) =
∑
s,p,o

ls,p,o , (6b)

where ηs,p,o ∈ {1,−1} is a modulating teaching signal that
establishes whether an observed triple {s, p, o} is regarded
as plausible (ηs,p,o = 1) or implausible (ηs,p,o = −1). This
is required to avoid collapse to zero-embeddings that simply
score all possible triples with 0. In the graph embedding
literature, implausible (negative) examples are generated by
corrupting plausible (positive) triples, i.e., given a training
triple {s, p, o}, either s or o are randomly replaced – a
procedure called ’negative sampling’ [22], [37].

The learning rules are derived by minimizing the loss via
gradient descent. In addition, as described in [1], we add a
regularization term to the weight learning rule that counters
silent neurons (Suppl. B). The gradient for entities can be
separated into a loss-dependent error and a neuron-model-
specific term

∂ls,p,o
∂Ws,ik

=
∂ls,p,o
∂ts,i

∂ts,i
∂Ws,ik

, (7)

while the gradient for relations only consists of the error
∂ls,p,o
∂rrrp

. The error terms are given by (Suppl. A)

∂ls,p,o
∂ttts

= εs,p,o · sign (dA (ttts, ttto)− rrrp) , (8a)

εs,p,o = ηs,p,o · σ (ϑs,p,o · ηs,p,o) , (8b)
∂ls,p,o
∂ttto

=
∂ls,p,o
∂rrrp

= −∂ls,p,o
∂ttts

, (8c)

for SpikE and

∂ls,p,o
∂ttts

= εs,p,o · sign (ttts − ttto) sign (dS (ttts, ttto)− rrrp) , (9a)

∂ls,p,o
∂ttto

= −∂ls,p,o
∂ttts

, (9b)

∂ls,p,o
∂rrrp

= −εs,p,o · sign (dS (ttts, ttto)− rrrp) , (9c)

for SpikE-S, where σ(·) is the logistic function.
The neuron-specific term can be evaluated using Eq. (5),

resulting in (Suppl. A)

∂ts,i
∂Ws,ik

=
τsθ (ts,i − tk)

(
e(tk−ts,i)/τs − 1

)∑
tj≤ts,i Ws,ij − uth

. (10)

For relations, all quantities in the update rule are accessible
in the output neuron. Apart from an output error, this is also
true for the update rules of nLIF spike times. Specifically, the
learning rules only depend on spike times – or rather spike
time differences – pre-synaptic weights and neuron-specific
constants, compatible with recently proposed learning rules
for SNNs [1], [4], [6]. Alternative losses like the (pairwise)
hinge loss [37] can be used as well to derive learning rules.

knowledge
graph

engineering
data

application
activity

network
events

Fig. 4. Industrial automation demonstrator (left) used as a data source. Both
static engineering data as well as dynamic application activity and network
events (middle) are integrated in a KG (right).

III. EXPERIMENTS

A. Data

The proposed model is evaluated on an industrial automa-
tion demonstrator (Fig. 4), designed to capture the complexity
of modern industrial automation systems that combine op-
erational technology (OT) components with an information
technology (IT) infrastructure. This convergence of OT and IT
technology promises massive improvements in the efficiency
and flexibility of industrial manufacturing systems, but comes
with challenges like ensuring system integrity and information
security [39]. The OT side of our demonstrator has a SIMATIC
S7-1500 PLC at its core, connected via an Industrial Ethernet
network to multiple subsystems, such as a conveyor belt,
industrial cameras or multiple input-output modules connected
to sensors. The PLC exposes the internal state of some of these
subsystems and sensors through a data interface provided by
an OPC UA [40] server. This is leveraged on the IT side of
the demonstrator, which includes a series of edge computing
systems hosting a number of applications, each of which
regularly reads or writes data variables on the OPC UA server
corresponding to specific parts of the OT system.

The complex set of interactions between the different el-
ements of the demonstrator, e.g., data accesses and network
connections, can be naturally represented in a KG and modeled
using graph embedding algorithms. Such a model allows us
to evaluate the likelihood of observed system interactions and
can be used in anomaly detection tasks to expose unexpected
behaviors of the different system components, which may be
indicative of a loss of integrity or a cybersecurity incident.

Using such a demonstrator enables us to generate realistic
data and benchmarks in a flexible and controllable way [36].
For the following experiments, we use a recording from the
demonstrator system with some default network and appli-
cation activity, resulting in a KG with 3529 nodes, 11 node
types, 2 applications, 21 IP addresses, 39 relation types, 360
network events and 472 data access events. We randomly split
the graph with a ratio of 8/2 into mutually exclusive training
and test sets, resulting in 12399 training and 2463 test triples.
Details of all experiments can be found in Suppl. B. For more
information on the data generation process, see [36].
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B. Model evaluation

In Fig. 3B, C, we showcase some of the learned spike
embeddings for entities and relations. We found that due to the
temporal aspect of SNNs – and the fixed time interval imposed
by the stimulus layer – most embedding neurons spike early.
By evaluating scores over time in an event-based fashion,
implausible triples can be identified quickly (Fig. 3D), which is
beneficial when short reaction times are required, e.g., to raise
an alarm. This is not the case for TransE, where embeddings
are always symmetric around some baseline offset.

Next, we compare the performance of SpikE and TransE
(and their symmetric counterparts SpikE-S and TransE-S) on
some traditional graph embedding metrics. For performance
evaluation, we use the mean reciprocal rank (MRR) and
hit-based metrics (hits@k) that are often used in the graph
embedding literature. In both cases, a plausible triple {s, p, o}
is taken and all alternative completions {s, p, ?} (Fig. 5A1,
B1) or {?, p, o} (Fig. 5A2, B2) are scored and sorted. hits@k
measures how frequently the original triple {s, p, o} is under
the k best scored triples, e.g., hits@1 measures how often it
is the top ranked triple compared to all other alternatives. The
MRR averages the reciprocal of the ranks over the presented
data set, e.g., if a triple has the second best score (rank 2) it
contributes 1/2 to the MRR.

All models achieve comparable results on these metrics,
with a total MRR, i.e., both cases combined, of: 0.843+0.007

−0.007,
0.671+0.003

−0.003 (TransE); 0.872+0.006
−0.004, 0.661+0.004

−0.004 (TransE-S);
0.824+0.009

−0.006, 0.645+0.009
−0.007 (SpikE); 0.838+0.021

−0.020, 0.587+0.040
−0.050

(SpikE-S), for train and test split (uncertainties are given by
the 15th and 85th percentile). To ensure that the algorithms
are also capable of separating plausible from implausible
statements, we show the pure triple scores both for the test
data and negative examples generated from it (Fig. 5C).
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Fig. 6. (A) An application reading data from the industrial automation system.
There are various ways how data variables accessed during training (green)
are related to other data variables in the system. For instance, they might
(gold) share internal structures documented in the engineering data, (orange)
be accessible from the same PLC or (red) only share type-based similarities.
(B) Accesses to various data variables sorted from top to bottom according to
their assigned implausibility (SpikE score). Colors are as in A. Bars mark the
15th and 85th percentile for 10 different random seeds. In the background,
a second application is active that regularly reads the two data variables with
high uncertainty (orange), showing that the embedding of #app 1 also learns
about the behavior of #app 2.

C. Context-aware decision making

We further apply SpikE to an anomaly detection task, where
an application reads different data variables from the industrial
system during training and test time (Fig. 6A). Data events are
sorted according to their SpikE score, with the least plausible
data access being on top (Fig. 6B). As expected, our model
utilizes contextual information available through the structure
of the KG to rank previously unseen data events, i.e., the less
related data variables are to the ones read during training, the
higher they end up in the ranking. For instance, SpikE clearly
discerns whether the application accesses variables that are
exposed (Fig. 6B, green, gold and orange) or not exposed
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(red) by the PLC.

IV. DISCUSSION

We present a model for spike-based graph embeddings,
where nodes and relations of a KG are mapped to spike
times and spike time differences in a SNN, respectively. This
allows a natural transition from symbolic elements in a graph
to the temporal domain of SNNs, going beyond traditional
data formats by enabling the encoding of complex structures
into spikes. Representations are learned using gradient descent
on an output cost function, which yields learning rules that
depend on spike times and neuron-specific variables.

In our model, input gates which populations become active
and consequently updated by plasticity. This memory mecha-
nism allows the propagation of knowledge through all neuron
populations – despite the input being isolated triple statements.
After training, the learned embeddings can be used to evaluate
or predict arbitrary triples that are covered by the semantic
space of the KG. Moreover, learned spike embeddings can be
used as input to other SNNs, providing a native conversion
of data into spike-based input – something that is currently
either done artificially by, e.g., mapping pixel values of images
to rates or latency codes [41], [42], or by restricting oneself
to event-based sensors that already provide data in a SNN-
compatible format [43], [44].

The nLIF neuron model used in this work is well suited
to represent embeddings, but comes with the drawback of a
missing leak term, i.e., the neurons are modeled as integra-
tors with infinite memory. This is critical for neuromorphic
implementations, where – most often – variations of the nLIF
model with leak are realized [30]. Gradient-based optimization
of current-based LIF neurons, i.e., nLIF with leak, that extend
the results of [1] have been demonstrated in [4], [6]. Since
our model basically exchanges the cost function and network
architecture used in [1], these results can be directly applied
to our model as well, making it applicable to energy-efficient
neuromorphic implementations similar to the ones presented
in [6]. In contrast, output neurons take a simple, but function-
specific form that is different from ordinary nLIF neurons.
Although realizable in neuromorphic devices, we believe that
alternative forms are possible. For instance, each output neuron
might be represented by a small forward network of spiking
neurons [45], or relations could be represented by learnable
delays [46]–[48] or even remain constant (see Suppl. E).

The presented results bridge the areas of graph analytics and
SNNs, opening a new direction in the ongoing endeavor of
identifying how SNNs can encode complex information [49].
In future work, this might be extended beyond the single-spike
coding scheme, enabling an efficient representation of static
graph data by fully utilizing the temporal domain of SNNs,
e.g., by encoding nodes as spike trains of individual neurons.
Finally, such models promise exciting and novel industrial
applications of event-based neuromorphic devices, e.g., as
energy-efficient and flexible processing and learning units for
online evaluation of industrial graph data. Even though we

only hint at the industrial applicability here, more involved
benchmarks are currently being investigated in [36], [38].
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gation for networks of spiking neurons.,” in ESANN, 2000.

[13] D. Huh and T. J. Sejnowski, “Gradient descent for spiking neural
networks,” in Advances in Neural Information Processing Systems 31,
2018.

[14] T. C. Wunderlich and C. Pehle, “Eventprop: Backpropagation for exact
gradients in spiking neural networks,” arXiv:2009.08378, 2020.

[15] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke, “The heidelberg
spiking data sets for the systematic evaluation of spiking neural
networks,” in IEEE Transactions on Neural Networks and Learning
Systems, IEEE, 2020.

[16] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in The semantic web,
Springer, 2007.

[17] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: A collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, 2008.

[18] A. Singhal, “Introducing the knowledge graph: Things, not strings,
may 2012,” URL http://googleblog. blogspot. ie/2012/05/introducing-
knowledgegraph-things-not. html, 2012.

6



[19] D. Brickley, R. V. Guha, and A. Layman, “Resource description
framework (rdf) schema specification,” Technical report, W3C., 1999.

[20] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of
relational machine learning for knowledge graphs,” Proceedings of the
IEEE, vol. 104, no. 1, 2015.

[21] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” IEEE Data Engineering Bulletin,
2017.

[22] D. Ruffinelli, S. Broscheit, and R. Gemulla, “You can teach an old dog
new tricks! on training knowledge graph embeddings,” in International
Conference on Learning Representations, 2019.

[23] K. E. Hamilton, N. Imam, and T. S. Humble, “Community detection
with spiking neural networks for neuromorphic hardware,” in Proceed-
ings of the Neuromorphic Computing Symposium, 2017.

[24] K. E. Hamilton and C. D. Schuman, “Towards adaptive spiking
label propagation,” in Proceedings of the International Conference on
Neuromorphic Systems, 2018.

[25] K. E. Hamilton, C. D. Schuman, S. R. Young, N. Imam, and T. S.
Humble, “Neural networks and graph algorithms with next-generation
processors,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), IEEE, 2018.

[26] C. D. Schuman, K. Hamilton, T. Mintz, M. M. Adnan, B. W. Ku,
S.-K. Lim, and G. S. Rose, “Shortest path and neighborhood subgraph
extraction on a spiking memristive neuromorphic implementation,” in
Proceedings of the 7th Annual Neuro-inspired Computational Elements
Workshop, 2019.

[27] A. Ali and J. Kwisthout, “A spiking neural algorithm for the network
flow problem,” arXiv:1911.13097, 2019.

[28] K. E. Hamilton, T. M. Mintz, and C. D. Schuman, “Spike-based
primitives for graph algorithms,” arXiv:1903.10574, 2019.

[29] B. Kay, P. Date, and C. Schuman, “Neuromorphic graph algorithms:
Extracting longest shortest paths and minimum spanning trees,” in
Proceedings of the Neuro-inspired Computational Elements Workshop,
2020.

[30] C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar,
N. Qiao, J. Schemmel, R. Wang, E. Chicca, J. Olson Hasler, et al.,
“Large-scale neuromorphic spiking array processors: A quest to mimic
the brain,” Frontiers in neuroscience, vol. 12, 2018.

[31] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
2019.

[32] M. Davies, “Benchmarks for progress in neuromorphic computing,”
Nature Machine Intelligence, vol. 1, no. 9, 2019.

[33] M. Hildebrandt, S. S. Sunder, S. Mogoreanu, I. Thon, V. Tresp, and T.
Runkler, “Configuration of industrial automation solutions using multi-
relational recommender systems,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, Springer,
2018.

[34] M. Ringsquandl, E. Kharlamov, D. Stepanova, S. Lamparter, R. Lep-
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Masquelier, R. Naud, E. O. Neftci, M. A. Petrovici, et al., “Visualizing
a joint future of neuroscience and neuromorphic engineering,” Neuron,
vol. 109, no. 4, 2021.

SUPPLEMENTARY INFORMATION

A. Spike-based model

a) Spike time gradients: The gradients for dS can be
calculated as follows

∂ls,p,o
∂ttts

=
∂ls,p,o
∂ϑs,p,o

∂ϑs,p,o
∂dS

∂dS
∂ttts

, (11)

with
∂ls,p,o
∂ϑs,p,o

= ηs,p,o · σ (ϑS,p,o · ηs,p,o) , (12a)

∂ϑs,p,o
∂dS

= sign (dS (ttts, ttto)− rrrp) , (12b)

∂dS
∂ttts

= sign (ttts − ttto) . (12c)

All other gradients can be obtained similarly.
b) Weight gradients: The spike times of nLIF neurons

can be calculated analytically by setting the membrane po-
tential equal to the spike threshold uth, i.e., us,i(t∗)

!
= uth:

t∗ = τs ln

( ∑
tj≤t∗ Ws,ij e

tj/τs∑
tj≤t∗ Ws,ij − uth︸ ︷︷ ︸

=T∗

)
. (13)

In addition, for a neuron to spike, three additional conditions
have to be met [1]:

• the neuron has not spiked yet,
• the input is strong enough to push the membrane potential

above threshold, i.e.,∑
tj≤t∗

Ws,ij > uth , (14)

• the spike occurs before the next causal pre-synaptic spike
tc, i.e., there is no other pre-synaptic spike influencing t∗,

t∗ < tc . (15)
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From this, we can calculate the gradient

∂t∗

∂Ws,ik
=

τs
T ∗ ·

∂T ∗

∂Ws,ik
(16a)

=
τsθ (t

∗ − tk)
T ∗

[
etk/τs∑

tj≤t∗ Ws,ij − uth

− T ∗∑
tj≤t∗ Ws,ij − uth

]
(16b)

=
τsθ (t

∗ − tk)∑
tj≤t∗ Ws,ij − uth

[
exp

(
tk − t∗

τs

)
− 1

]
,

(16c)

where we used that T ∗ = exp
(
t∗

τs

)
.

B. Simulation details

Data, code and further examples using the Countries data
set are available on https://github.com/dodo47/SpikE.

a) Regularization of weights: To ensure that all neurons
in the embedding populations spike, we use the same regular-
ization term Lδ as [1]

Lδ =

{∑
s,i δ · (uth − ws,i) if ws,i ≤ uth ,

0 otherwise ,
(17)

with ws,i =
∑
jWs,ij .

b) Software implementation: Simulations were done us-
ing Python 3.7.7 and PyTorch 1.6.0. For gradient updates,
we use the Adagrad optimizer with ε = 10−10. The loss is
averaged per mini-batch.

c) Experiments: We compute filtered metrics, i.e., where
other triples that are also known to be true are removed
from the ranking list. For SpikE(-S), stimulating spikes are
randomly initialized from a uniform distribution in the interval
[t0, tmax] and weights from a normal distribution N (0.2, 1.0).
Both for TransE(-S) and SpikE(-S), other embeddings are
randomly initialized from a normal distribution N (0.0, 1.0).
For SpikE-S, we reduce the learning rate after 36 epochs to
improve convergence. uth = 1 in all cases. For TransE we use
the same loss function as for SpikE. The remaining simulation
parameters are given in Table I.

TABLE I
SIMULATION PARAMETERS.

TransE(-S) SpikE SpikE-S
dimension 20 20 20

learning rate 0.1 1.0 1.0 | 0.1
batch size 50 50 50

neg. samples 2×2 2×2 2×2
L2 reg. 0.0001 0 0

stim. neurons - 40 40
τs - 0.5 0.5

[t0, tmax] - [−1, 1] [−3, 3]
δ - 0.01 0.01

For the results shown in Fig. 6, we use a mini-batch size
of 100, dimension of 12 and δ = 0.001. MRR, hits@k and
general scores for these parameters are shown in Suppl. E.

C. Gating with parrot neurons

Gating either as subject or object of an embedding popula-
tion can be realized using two populations of parrot neurons
that immediately transmit their input and are gated instead.
This further allows the evaluation of relations that target the
same subject and object population.

D. Synchronizing subject and object population

If an entity is represented by distinct subject s and object
o populations, these representations will differ after training
despite representing the same entity. By adding triples of the
form {s, #isIdenticalTo, o} and keeping rrrisIdenticalTo = 0,
further alignment can be enforced (Fig. 7).
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Fig. 7. (A) MRR during training for TransE (blue), TransE with separate
subject and object populations (gray) and TransE with separate populations
and additional triple statements that enforce alignment (violet). (B) Strong
alignment of subject and object populations can be observed when new triples
are added during training. (C) Apart from the hits@1 score, adding alignment-
preferring triples improves the performance.

E. Different simulation parameters and static relations
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Fig. 8. Same experiment as in Fig. 5, but for a mini-batch size of 100,
dimension of 12 and δ = 0.001 (blue, red). Training still works if only
node embeddings tttx are learned (yellow), i.e., relation embeddings rrrx are
kept constant, but not vice versa, see gray dashed lines in A marking the
best reached training MRR for that case. This highlights the importance of
learning the spike times of the neural populations encoding entities in SpikE.
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