2102.09780v1 [cs.LG] 19 Feb 2021

arxXiv

A Deep Graph Wavelet Convolutional Neural
Network for Semi-supervised Node Classification

Jingyi Wang*, Zhidong Deng’
Institute for Artificial Intelligence at Tsinghua University (THUAI)
State Key Laboratory of Intelligent Technology and Systems
Beijing National Research Center for Information Science and Technology (BNRist)
Center for Intelligent Connected Vehicles and Transportation
Department of Computer Science, Tsinghua University, Beijing 100084, China
*wang-jy20@mails.tsinghua.edu.cn
Tmichael@mail.tsinghua.edu.cn

Abstract—Graph convolutional neural network provides good
solutions for node classification and other tasks with non-
Euclidean data. There are several graph convolutional models
that attempt to develop deep networks but do not cause serious
over-smoothing at the same time. Considering that the wavelet
transform generally has a stronger ability to extract useful
information than the Fourier transform, we propose a new
deep graph wavelet convolutional network (DeepGWC) for semi-
supervised node classification tasks. Based on the optimized
static filtering matrix parameters of vanilla graph wavelet neural
networks and the combination of Fourier bases and wavelet ones,
DeepGWC is constructed together with the reuse of residual
connection and identity mappings in network architectures.
Extensive experiments on three benchmark datasets including
Cora, Citeseer, and Pubmed are conducted. The experimental
results demonstrate that our DeepGWC outperforms existing
graph deep models with the help of additional wavelet bases
and achieves new state-of-the-art performances eventually.

Index Terms—graph convolutional neural network, wavelet
transform, filtering matrix, network architecture

I. INTRODUCTION

Convolutional neural networks (CNNs) achieve outstanding
performance in a wide range of tasks that are based on
Euclidean data such as computer vision [1|] and recommender
systems [2] [3]]. However, graph-structured non-Euclidean data
is also very common in real life. Many research areas like
literature citation networks and knowledge graphs have the
graph data structure. In this case, graph convolutional networks
(GCNs) often have an outstanding exhibition, which are suc-
cessfully applied in social analysis [5] [6], citation network [/7]
[8] [9], transport forecasting [[10] [L1], and other promising
fields. For example, in a literature citation network, articles
are usually represented as nodes and citation relationships as
edges among nodes. When addressing the challenge of semi-
supervised node classifications on such non-Euclidean graph
data, classical GCNs first extract and aggregate features of
articles using the graph Fourier transform and the convolution
theorem, and then classify unlabeled articles according to
output features of graph convolutions.

GCN and graph wavelet neural network (GWNN) [12] have
their own characteristics. In fact, GCN-based methods that

employ the Fourier transform as their theoretical basis gen-
erally have high computational costs caused by eigendecom-
position and frequent multiplications between dense matrices.
ChebyNet attempts to reduce the computational burden via
polynomial approximation but the locality of convolution is
still not guaranteed. GWNN tries to address the limitations of
GCN by using graph wavelet transform as the theoretical basis
instead of graph Fourier transform. Graph wavelet transform
has good sparsity in both spatial domain and spectral domain.
Besides, wavelets in GWNN are highly localized in the vertex
domain. Such localized property makes a great contribution to
the performance of GWNN [12]. However, GWNN generally
uses independent diagonal filtering matrices for every graph
convolution layer. As a result, the memory occupied by the
network would increase heavily when stacking more layers in
GWNN. To avoid exceeding memory, the number of layers in
GWNN models on a large dataset is quite limited. Therefore,
GWNN fails to extract deep and high-level features of nodes.

The lately published GCN models suffer from so-called
over-smoothing when more layers are stacked. In other words,
after repeatedly applying Laplacian smoothing, the features of
nodes within each connected component of the graph would
converge to the same values [7]. There are several models
that expand shallow graph convolution methods in order to
get better results. For example, APPNP [13] and GDC [14]
relieve the over-smoothing problem by using the Personalized
PageRank matrix. Moreover, GCNII [[15] makes use of residual
skills and thus surpasses the performance of the previous trials,
although only the graph Fourier transform is still utilized as
its bases.

In this paper, we propose a new deep graph wavelet con-
volutional network called DeepGWC that improves the deep
GCNII model. First, the diagonal filtering matrix in graph
wavelet convolution of vanilla GWNN models is modified. We
no longer set separate learnable convolution kernels that are
initialized randomly for each convolution layer. By contrast,
we specify the filtering matrices of all layers with selected
static elements, i.e., the filtering matrix is not updated during
training. As a result, the memory required by the model
is greatly reduced. Second, we make use of graph wavelet

transform and attach the optimized wavelet bases to previous
graph Fourier bases of GCNs to enhance the feature extraction
capability. Considering the high efficiency and high sparsity
of graph wavelet transform [[12f], the import of wavelet bases
does not bring too much computational complexity. Following
GCNII, we leverage residual connection and identity mappings
to deepen the above graph wavelet convolutional network with
the optimized filtering matrix. Extensive experiments on semi-
supervised node classification are finished. On datasets Cora,
Citeseer, and Pubmed, our experimental results demonstrate
that the new DeepGWC model improves GCNII. DeepGWC
is able to extract useful features and effectively relieve the
over-smoothing problem at the same time. This allows the
proposed method to outperform the baselines with 2, 4, 8, 16,
32, and 64 layers and achieve new state-of-the-art results.
The contributions of our work are summarized as follows.

1) We optimize the diagonal filtering matrices in graph
wavelet convolution of vanilla GWNNs by specifying
them with selected static elements that are not updated
during training instead of learnable parameters. In this
way, the memory requirement caused by increasing
parameters when stacking more graph wavelet convo-
lutional layers is solved.

2) We attach wavelet bases to the previous graph Fourier
bases of classical GCNs as new bases of our DeepGWC
model to improve the capability of extracting features
of GCNII. With the reuse of residual connections and
identity mappings of GCNII, DeepGWC becomes a deep
graph wavelet convolutional network with the optimized
filtering matrix.

3) We perform experiments on three benchmark datasets,
i.e. Cora, Citeseer, and Pubmed. Our DeepGWC model
achieves state-of-the-art results in the semi-supervised
node classification task.

II. RELATED WORK
A. Graph Convolutional Neural Network

CNN achieves great performance on computer vision [1]],
natural language processing [16], and other fields [17] [[18]]
[19] [20]. Its success motivates researchers to define convolu-
tion operators on graphs. In this way, CNN can be generalized
to graphs like social networks and citation networks. Related
methods are classified into spatial methods and spectral ones.

Spatial methods perform extraction of spatial features for
topological graphs based on similar ideas as weighted sum-
mation in CNN. Using different sampling methods for neigh-
borhood nodes, such methods calculate the weighted sum of
features of sampled nodes and then update node features. For
example, MoNet [21] computes weighted neighborhood node
features instead of using average values. GraphSAGE [22]]
presents an inductive framework that leverages node feature
information to efficiently give rise to node embeddings for
previously unseen data. GraphsGAN [23]] generates fake sam-
ples to improve performance on graph-based semi-supervised
learning.

Spectral methods carry out the convolution on graphs with
the help of spectral theory. They perform convolution opera-
tions on topological graphs in accordance with the theory of
spectral graph. In fact, the concept of graph Fourier transform
is derived from graph signal processing. According to graph
Fourier transform, graph convolution is defined. With the
rapid development of deep learning methods, GCN in spectral
methods also appear. Spectral CNN [24] first implements CNN
on graphs using graph Fourier transform. GCN [25] motivates
the choice of convolutional architecture via a localized first-
order approximation of spectral graph convolutions.

B. Graph Wavelet Neural Networks

Wavelet transform develops the idea of localization of short-
time Fourier transform (STFT) and overcomes the weakness
that the window size does not change with frequency at
the same time. The wavelet transform is a signal encoding
algorithm that is sparser than Fourier transform and has a very
strong capability of information expression.

D.K. Hammond proposes a method for constructing wavelet
transforms of functions defined on the vertices of an arbitrary
finite weighted graph [26]. GraphWave [27]] learns a multidi-
mensional structural embedding for each node based on the
diffusion of a spectral graph wavelet centered at the node. It
provides mathematical guarantees on the optimality of learned
structural embeddings. Furthermore, GWNN [12]] addresses
the shortcomings of previous spectral graph CNN methods
with graph Fourier transform. It takes graph wavelets as a set
of bases instead of eigenvectors of graph Laplacian. GWNN
redefines graph convolution based on graph wavelets, achiev-
ing high efficiency and high sparsity. Besides, GWNN also
detaches the feature transformation from graph convolution
and thus yields better results.

C. Deep Graph Convolution Models

It has been proved that features of nodes in a graph would
converge to the same values when repeatedly applying graph
convolution operations on graphs [7]]. In order to relieve such
an over-smoothing problem and further enhance the feature
extraction capability, several modified models for citation
networks have been proposed. For example, JKNet [28]] makes
use of the jump connection and the adaptive aggregation
mechanism to adapt to local neighborhood properties and
tasks. IncepGCN takes advantage of the inception network
and could be optimized by Dropedge [29]]. In particular,
GCNII [15] is viewed as an effective deep graph convolutional
network, which is analyzed that a K-layer GCNII model
can express a polynomial spectral filtering of order K with
arbitrary coefficients. Though various efforts have been made
to improve the performance of deep graph convolution models,
it is still shallow models that usually obtain the best result.

III. METHODS

Considering that graph wavelets have a very strong ability
to express information, this paper proposes a new deep graph
wavelet convolutional network (DeepGWC) to improve the

deep graph convolution models [15]. Our DeepGWC model
not only achieves the new state-of-the-art performance, but
also could be converted into vanilla GCN, GWNN, and
other shallow models by simply adjusting hyperparameters for
different application scenarios.

A. Preliminary

Let G = (V,E) be a simple and connected undirected
graph, where V represents the set of nodes with |[V| = n
and E denotes the set of edges among nodes in V with
|E| = m. Assume A to express the adjacency matrix of G.
D indicates the diagonal degree matrix with D;; = > . A, ;.
LetL=1, — D ZAD 2 stand for the normalized Laplacian
matrix, where I,, is the identity matrix with dimensions n X n.
Obviously, L is a symmetric positive semidefinite matrix with
eigendecomposition L = UAU?, where U € R™*" denotes
the complete set of orthonormal eigenvectors and A is a
diagonal matrix of real, non-negative eigenvalues.

We use G = (V,E) to indicate the cyclic graph of G,
i.e.,, the graph with a cycle attached to each node in G.
Correspondingly, the adjacency matrix of Gis A=A+1,

and the cliiagonzlll degree matrix is D = D+ I,,. Let L =

I, -D AD 2 expresses the normalized Laplacian matrix
of the cyclic graph G.

B. GCN

1) Graph Fourier Transform: Graph Fourier transform
takes the eigenvectors of the normalized Laplacian matrix, i.e.,
U as a set of bases. X = U"'x performs graph Fourier transform
on a signal x € R™ of graph G.

2) Graph Convolution Operation: Based on graph Fourier
transform, the graph convolution operation with a filter
g~(A) =diag() is defined as

g+(L) *x = Ug,(A)UTx (1)

where v € R”™ represents the vector of spectral filtering
coefficients. ChebyNet [30] restricts the convolution kernel g
to a polynomial expansion, i.e.,

K
go = O)
k=0

where K is a hyperparameter to control the size of node
neighborhoods. # € REX+1 stands for a vector of polynomial
coefficients. Furthermore, with L = UAU”, the graph convo-
lution operation in Eq. (I) can be approximated by,

K K
Ugs(MUTx ~ U(D_0,A")UTx = () 6:L")x. (3)
k=0 k=0

convolution layer. We have
H'™! = ¢(PH'W') (4)

where o expresses the activation function and W! e RP*¢
is the parameter matrix for feature transformation. The graph

convolution layer in Eq. (@) transforms the input feature matrix
of H' € R™ P into the output feature matrix of H'*! € R"*4,

C. Graph Wavelet Convolutional Network

1) Graph Wavelet Transform: Similar to graph Fourier
transform, the graph wavelet transform need a proper set of
bases to project graph signal from vertex domain into the
spectral domain. Here we indicate the wavelet bases as s,
where s is a scaling parameter. ¢s can be defined by

¥s = UG,U" (5)

where G is a scaling matrix that has similar effects to g.,(A)
in graph Fourier transform. In this case, G4 can be evaluated
by G5 = diag(g(sA)), where g is an exponential function. We
can get 1! by replacing s with —s. By using graph wavelets
as bases, X = wsx conducts graph Fourier transform on a
signal x € R™ of graph G.

2) Graph Wavelet Convolution Operation: Substituting
Fourier transform in graph convolution operation with wavelet
transform, we can find the structure of the [-th graph wavelet
convolution layer below:

H'™ = o(¢,Fy; "H'W) (6)

where F indicates the diagonal matrix for graph convolution
kernel [12]. In Eq. (@), o, W', H', and H'"! have the same
definitions as those in Eq. (@).

For vanilla GWNN, F is a diagonal filtering matrix learned
in the spectral domain and independent for every layer. In
experiments done in [12], a two-layer graph wavelet neural
network is just designed for three datasets. In this case, the
memory consumption is not too large for such a shallow
GWNN. However, when trying to increase the number of
layers to 8 or 16, the memory usage would rise rapidly.
Actually, the out-of-memory problem is particularly prone to
appear in the experiments on the Pubmed dataset. In order
to solve such difficulties, we simplify the use of diagonal
filtering matrix F. Instead of exploiting independent filtering
matrices for every layer, F with the same static parameters is
employed. By optimizing the elements of diagonal elements
of F as a set of static parameters, the wavelet basis can also
be obtained statically like the Fourier basis. In this way, we
add no parameters to be trained.

D. Network Architecture against Over-Smoothing

1) Residual Connection: The initial residual connection
constructs a link to the initial feature representation H° [[15].
We make sure that the final representation still contains a
portion of the initial feature no matter how many layers we
stack [15].

2) Identity Mapping: Like the identity mapping in ResNet
[4], we append an identity matrix to the weight matrix W'
in the case of p = ¢. Thus a direct pathway is established
between the input and the output of a convolutional layer
through importing identity mapping [15].

E. Our DeepGWC Model

In this paper, we build a deep graph wavelet convolutional
network (DeepGWC). On the basis of the above-mentioned,
we define the [-th layer of DeepGWC as

H*! = o(H'W))

where o is the activation function, H' is the results of
graph convolution on H, and WY is the optimized feature
transformation matrix. H' and W' in Eq. are described
as follows:

H' = (1 - a)P'H + oH, (8)
W =W 4+ (1-B)I 9)

where « represents the ratio of the initial residual term H°, B

is the ratio of the original feature transformation matrix W'
= .

of the I-th layer, and 0 < o, 5 < 1. P in Eq. (8) is given by

B = (0 Fy) + (1—7)(D *AD %) (10)

where v stands for the ratio of the graph wavelet term and
0 <~ < 1. As described in subsection F is optimized
with static elements, i.e., the modified F is the product of a
static constant f and the identity matrix. In fact, v and f could
be combined and the first item of Eq. could be written as

YW Fg) = vf (v). (11)

However, to emphasize that we combine the Fourier bases
and the wavelet bases, we still treat v and f as two separate
parameters later, i.e., we perform experiments according to Eq.
(T0). In this way, we could keep consistency with the form of
vanilla wavelet bases in Eq. (6) to emphasize our modification
about the filtering matrix F.

There are the three key hyperparameters, i.e., o, 5, and
~v in our DeepGWC model. Through adjusting such three
parameters, the DeepGWC could be reduced to the following
basic models like:

e Witha=0,8=1and v=0, Eq. can be simplified
to Eq. @) and our DeepGWC model is equivalent to the
vanilla GCN model [25].

e Witha=0,8=1and v =1, Eq. (7) can be simplified
to Eq. (6) and our DeepGWC model is then reduced to
the GWNN model [[12].

e With a # 0, f = 0 and v = 0, the weight matrix w!
is ignored and our DeepGWC model then functions like
the APPNP model [13].

e With a £ 0, 8 # 0 and v = 0, the weight matrix W'
is ignored and our DeepGWC model then resembles the
GCNII model [15]].

IV. EXPERIMENTS

We compare the proposed DeepGWC model with compet-
itive baselines, i.e., the existing state-of-the-art graph neural
network models on the semi-supervised node classification
task.

A. Datasets and Baselines

1) Datasets: We use three commonly-used citation network
datasets, i.e., Cora, Citeseer, and Pubmed [31]]. The statistics
of datasets are summarized in Table E} For every dataset, 20
labeled nodes per class are adopted for training in the overall
assessment.

TABLE 1
THE STATISTICS OF THREE CITATION NETWORK BENCHMARKS

Dataset #Nodes #Edges #Classes Features Label Rate
Cora 2,708 5,429 7 1,433 5.2%

CiteSeer 3,327 4,732 6 3,703 3.6%

Pubmed 19,717 44,338 3 500 0.3%

2) Baselines: Considering that the vanilla GCN [25] is one
of the basic model graph convolutional methods, we exploit
it as an important baseline. Meanwhile, spectral CNN [24],
ChebyNet [30], GAT [32], APPNP [13]], and GWNN [12] are
also utilized for performance comparison. In the experiment
on the number of stacked layers, we are more interested in
comparison with JKNet [28]], IncepGCN [29], and GCNII [|15]]
because these three models are often employed to set up deeper
graph convolutional networks. In the experiments on the label
rate, we focus on M3S [33] and some different training
strategies [7] that improve the generalization capability of
GCNs on graphs with few labeled nodes.

B. Implementation Details

There are two hyperparameters in the calculation of graph
wavelets in general. s denotes the scaling parameter and ¢
stands for the threshold of 1) and ;. Elements that are less
than ¢ are ignored and reset to zero in 1 and ;. Following
the parameter settings of [12], we select the values of s and
t. For Cora, we set s = 1.0, t = le — 4, and the calculated
density of wavelet bases is 2.81%. For Citeseer, we set s =
0.7, t = le — 5, and the density value is 1.52%. For Pubmed,
we set s = 0.5, ¢ = le—7, and the density value is 5.03%. We
also provide the density values of wavelet bases. The wavelet
bases with low density would not give rise to the calculation
burden too much.

Note that we employ a linear connection layer before the
graph convolution layers of DeepGWC that projects the orig-
inal feature dimension on the hidden embedding dimension
H°. Similarly, there is also a linear connection layer after
the graph convolution layers that maps the hidden embedding
dimension to the output layer Y, which has the same number
of neurons as classes delivered in the dataset. Then we perform
the logarithm-softmax operation below:

eYii
Z;; = 10g(w)
where Z denotes the actual output of the whole DeepGWC
model. In the experiments, the negative log likelihood (NLL)
loss function is exploited. Moreover, the proportion of nodes
classified correctly is used as the metric to evaluate the

12)

accuracy of models. We adopt the Adam optimizer to train our
DeepGWC. Following [15], we set 5; = log(1 + n/l) ~ n/l
where 7 is a hyperparameter and ! means the [-th layer of
DeepGWC. Dropout is adopted to avoid the overfitting issue.

C. Overall Assessment

On Cora, Citeseer, and Pubmed, we follow the parameter
settings of the vanilla GCN [25] to ensure impartial per-
formance comparison. For every dataset, 20 labeled nodes
per class are adopted for training. In order to optimize the
parameters of the DeepGWC model, 500 samples are used
for validation and 1,000 ones for testing so as to get final
results. We report the experimental results of the proposed

TABLE I
THE PERFORMANCE COMPARISON OF DEEPGWC WITH EXISTING GRAPH
NEURAL NETWORK METHODS

Methods Cora CiteSeer Pubmed
Spectral CNN [24] 73.3% 58.9% 73.9%
ChebyNet [30] 81.2% 69.8% 74.4%
GCN [25] 81.5% 70.3% 79.0%
GAT [32] 83.1% 70.8% 78.5%
APPNP [13] 83.3% 71.8% 80.1%
JKNet [28] 81.1% 69.8% 78.1%
IncepGCN [29] 81.7% 70.2% 77.9%
GWNN [12] 82.8% 71.7% 79.1%
GCNII [15] 85.5% 73.4% 80.3%
DeepGWC 86.4% 75.0% 81.6%

model yielded on three datasets including Cora, CiteSeer, and
Pubmed as shown in Table We quote the experimental
results of Spectral CNN [24], ChebyNet [30], GCN [25], and
GWNN [12]] that are already reported in [12]]. The results of
GAT [32], APPNP [13]], JKNet [28]], and IncepGCN [29] are
provided according to [15]]. For Cora, CiteSeer, and Pubmed,
the depths of JKNet [28]] are 4, 16, and 32, respectively, while
the depths of IncepGCN [29] are 64, 4, and 4, respectively.
By contrast, our DeepGWC model has depths of 64, 64, and
32, respectively. The others are all shallow models.

For the DeepGWC, we utilize the Adam Optimizer with
a learning rate of 0.001. The detailed hyperparameters of
DeepGWC of Table [l are given as follows. Let f stand for
the element of the filtering matrix F, which is searched over
(0.4, 0.8, 1.2, 1.6). Suppose that L represents the number of
graph wavelet convolution layers in DeepGWC, d represents
the dimension of hidden layers. We get the results of Table
with the parameters of:

o For Cora, we set L = 64, d = 64, a = 0.3, n = 0.8,

=04, f=04.
« For Citeseer, we set L = 64, d = 256, a = 0.1, n = 0.8,
v=04, f=0.4.

o For Pubmed, we set L =32, d =512, « = 0.1, n =04,
v=0.4, f =0.6.

As for the parameters above, larger datasets require higher

hidden feature dimension d to express information as com-

pletely as possible. We follow the setting of o« and n of GCNII

[15] basically for the three datasets. The proportion of wavelet

bases in the combined bases is reflected in the value of v - f,
which is 0.16 for Cora and Citeseer, and 0.24 for Pubmed. The
proportion of wavelet bases for Pubmed is higher than that for
Cora and Citeseer because there are more nodes in Pubmed
than Cora and Citeseer obviously. The locality of wavelet bases
is important in the case of a large number of nodes.

Analyzing Table the DeepGWC improves GCNII [[15]]
and achieves the best results among all the shallow and
deep graph models on the three benchmark datasets. The
average accuracies on the three datasets of DeepGWC is higher
than that of the other models by at least 1.3%. We believe
that the adaptability of our DeepGWC plays an important
role in obtaining the best results for semi-supervised node
classification problems. DeepGWC outperforms GCNII on
every dataset, which indicates the excellence of wavelet bases.
In addition, for DeepGWC with 8 graph wavelet convolution
layers, we utilize the t-SNE algorithm [35] to visualize the
learned embeddings during training on the Cora dataset. As
shown in Fig[l] different colors represent different classes of
articles. The difference between features of different classes
become more obvious as the training proceeds.

D. Deeper Network

We further investigate the influence of network depths on
model performance. Table [[II| shows the classification accuracy
vs. the network depth. For every dataset, the best accuracy
with a fixed number of layers is marked in bold. For specific
datasets and methods, the cell with a grey background in each
row gives the best result in that row, i.e., the best number
of layers. We report the classification results of GCN [25]],
JKNet [28], IncepGCN [29], GWNN [12], GCNII [15], and
our DeepGWC model with 2, 4, 8, 16, 32, and 64 layers, where
Dropedge [29]] is further equipped with GCN [25], JKNet [28]],
and IncepGCN [29], respectively.

It is easy to see from Table [[II| that our DeepGWC model
improves GCNII [15] and yields the best results with all num-
bers of layers. The accuracy of the DeepGWC model becomes
better roughly as the number of layers increases. GCN [25]
and dropped GCN [29]] do have good results with 2 layers,
but their performance gets worse rapidly when stacking much
more layers. Meanwhile, JKNet [28]] and IncepGCN [29] reach
their best results with higher layers, but the accuracy is still
not guaranteed when the number of layers exceeds 32 layers.
GWNN [12] suffers more from the over-smoothing problem
than the vanilla GCN [25]]. Besides, there exists a serious
memory issue on Pubmed when using GWNN [12] with more
than 4 layers. Among the baselines, the performance of GCNII
[15] is exceptionally good because of its success in reliving the
over-smoothing problem. The proposed DeepGWC improves
GCNII with wavelet bases further.

We accomplish the comparison of DeepGWC with all the
converted models GCN [25], GWNN [12], and GCNII [15]
models as described in Subsection [[II-E| and accordingly
complete the ablation study. Fig[2] shows the classification
accuracy vs. the number of layers of our DeepGWC model
and the three relevant baselines which motivate our study. It

epoch 0

epoch 10 epoch 20
Fig. 1. The visualization of learned features of the Cora dataset during training DeepGWC.
0.9 0.9 0.9
;:*_;_—_t:_-'_—_‘t_—_:_ ==k

0.8 0.8 0.8 1;_-;3;;_—_1:;.—.*:;:1:;_—.*
> > — e e ohmm R TI >
g0.7 g0.7 - g0.7
i]]
E E -
S 0.6 S 0.6 GCN 2 0.6
o z —— GWNN s
= =
% 0.5 .§ 0.5 —se= GCNII % 0.5
= 0.4 = 0.4 —k - DeepGWC S 0.4
% GCN Z % GCN
Z0.3{ —— GWNN =03 =031 —— GWNN

02{ ~- GCNII 0.2 02{ —° GeNi

—4 =~ DeepGWC —& = DeepGWC
0.1 0.1 0.1
1 2 3 4 5 6 1 2 4 5 6 1 2 3 4 5 6

the number of layers in logarithm scale

(a) Cora

the number of layers in logarithm scale

(b) Citeseer

the number of layers in logarithm scale

(c) Pubmed

Fig. 2. Performance comparisons of DeepGWC with GCN, GWNN, and GCNII as ablation study.

is readily observed from Fig. 2] that the performance of both
GCN [25] and GWNN [12] draws rapidly with the increase of
the number of layers, while both GCNII [15]] and DeepGWC
steadily get better performance when stacking more layers. As
a result of the addition of graph wavelet bases, our DeepGWC
model achieves better performance than GCNII [15] in the
semi-supervised node classification task.

E. Fewer Training Samples

We complete experiments on training with less labeled
nodes. MultiStage [33]] and M3S [33]] are two training methods
that enable GCNs to learn graph embeddings with few su-
pervised signals. Following the experiments of M3S [33]], we
use Label Propagation (LP) [34] and GCN [25]] as baselines.
For GCN [25], we adopt four training strategies, i.e., Co-
training, Self-training, Union, and Intersection additionally [/7]].
For Cora and Citeseer, we train our DeepGWC model and
the baselines with the label rates of 0.5%, 1%, 2%, 3%, and
4%. For Pubmed, we train the models with the label rates of
0.03%, 0.05%, and 0.1% because Pubmed has more nodes.
500 samples are employed for validation and 1,000 ones for
testing so as to get final results. We exploit the same number
of layers and hyperparameters as that in Table [l for GWNN
[12], GCNII [15], and DeepGWC. We only adjust the label
rates.

Table [[V] Table[V] and Table [VI]list the classification results
with fewer training samples. Our DeepGWC model obtains

the best performance on most of the experiments with lower
label rates. The accuracy of DeepGWC is 5.88% higher than
that of M3S [33]] on average, which focuses on improving the
generalization capability of GCNs on graphs with few labeled
nodes.

We compare DeepGWC with GCN [25], GWNN [12], and
GCNII [15] in the case of less training data more carefully. The
comparison results are shown in Fig. 3] It should be noted that
DeepGWC performs better when there is less training data. In
other words, the gap between DeepGWC and GCNII [[15] is
more obvious in the case of lower label rates. In experiments
on Cora and Citeseer with the label rates of 0.5% and 1%,
DeepGWC exceeds GCNII [[15] by 4.1% on average while the
gap is 0.73% for the label rates of 2%, 3%, and 4%. Besides,
comparing GCN [25]] and GWNN [12] that are both shallow
models, we find that it is also in the case of lower label rates
that GWNN [12] yields better results than that with normal
label rates. The comparison between DeepGWC and GCNII
[15]] and the comparison between GWNN [12] and GCN [25]
with fewer training nodes further prove the excellent capability
of feature extraction of graph wavelets. It suggests that graph
wavelets succeed in extracting useful information even with
less labeled nodes.

V. CONCLUSION

In this paper, we present a deep graph wavelet convolutional
network called DeepGWC. We modify the filtering matrix

0.9 0.9
> » 0.8 >
< =] =]
£ £ £
g bt 2
S]]
= = =
2 2 2
& g Zos
2 GCN 2 'z GCN
= —— GWNN = —+— GWNN = —+— GWNN
205 N 505 205
--<- GCNII --<- GCNII --<- GCNII
—* - DeepGWC —* - DeepGWC —4 - DeepGWC
4 4 4
0 0.5 1.0 2.0 3.0 4.0 0 0.5 1.0 3.0 4.0 0 0.03 0.05 0.10
the lable rate % the lable rate % the lable rate %
(a) Cora (b) Citeseer (c) Pubmed
Fig. 3. The classification accuracy with less training samples.
TABLE III TABLE IV

THE RESULTS OF NODE CLASSIFICATIONS WITH DIFFERENT DEPTHS

THE CLASSIFICATION RESULTS WITH LESS TRAINING SAMPLES ON CORA

#Layers Label Rate
Dataset Method 2 4 8 Tl m e Method 05% 1% 2% 3% 4%
GCN [25] 81.1% 80.4% 69.5% 64.9% 60.3% 28.7% LP [34] 57.6% 61.0% 63.5% 64.3% 65.7%
GCN(drop) [25] [29] |182.8% 82.0% 75.8% 75.7% 62.5% 49.5% GCN [25] 50.6% 58.4% 70.0% 75.7% 76.5%
JKNet [28]] - 80.2% 80.7% 80.2% 81.1% 71.5% Co-training [7]] 53.9% 57.0% 69.7% 74.8% 75.6%
Cora JKNet(drop) [28] [29] - 83.3% 82.6% 83.0% 82.5% 83.2% Self-training [7] 56.8% 60.4% 71.7% 76.8% 77.7%
[31) IncepGCN [29] - 77.6% 76.5% 81.7% 81.7% 80.0% Union [7] 55.3% 60.0% 71.7% 77.0% 77.5%
IncepGCN(drop) [29] - 82.9% 82.5% 83.1% 83.1% 83.5% Intersection [7]] 50.6% 60.4% 70.0% 74.6% 76.0%
GWNN [12] 82.8% 78.2% 50.5% 33.7% 33.4% 31.9% MultiStage [33|] 61.1% 63.7% 74.4% 76.1% 72.2%
GCNII [15] 82.2% 82.6% 84.2% 84.6% 85.4% 85.5% M3S [33] 61.5% 67.2% 75.6% 77.8% 78.0%
DeepGWC 84.4% 85.6% 85.5% 86.3% 86.2% 86.4% GWNN [12] 608% 70.7% 71.1% 779% 80.1%
GCNII [15] 62.3% 69.4% 77.6% 81.7% 84.2%
GCN [25] 70.8% 67.6% 30.2% 18.3% 25.0% 20.0%
GCN(drop) [23] [29] |72.3% 70.6% 61.4% 57.2% 41.6% 34.4% DeepGWC | 66.0% 73.0% 80.3% 82.0% 84.7%
JKNet [28]] - 68.7% 67.7% 69.8% 68.2% 63.4%
Citeseer JKNet(drop) [28] [29] - T72.6% 71.8% 72.6% 70.8% 72.2%
(31 IncepGCN [29] - 69.3% 68.4% 70.2% 68.0% 67.5% TABLE V
IncepGCN(drop) [29] - 127% 71.4% 72.5% 72.6% 71.0% THE CLASSIFICATION RESULTS WITH LESS TRAINING SAMPLES ON
GWNN [12] T71.7% 64.0% 45.6% 202% 21.2% 15.5% CITESEER
GCNII [15] 68.2% 68.9% 70.6% 72.9% 73.4% 73.4%
DeepGWC 72.6% 73.6% 73.3% 74.4% 75.0% 74.9 % Label Rate
Method 0.5% 1% 2% 3% 4%
GCN [25] 79.0% 76.5% 61.2% 40.9% 22.4% 35.3%
GCN(drop) [25] [29]] |79.6% 79.4% 78.1% 78.5% 17.0% 61.5% LP [34] 37.7% 41.6% 41.9% 44.4% 44.8%
JKNet [28]] - 78.0% 18.1% 72.6% 72.4% 74.5% GCN [25] 44.8% 54.7% 61.2% 67.0% 69.0%
Pubmed JKNet(drop) [28] [29] - 78.7% 78.7% 79.1% 79.2% 78.9% Co-training [7]] 42.0% 50.0% 58.3% 64.7% 65.3%
i3] IncepGCN [29] - T777% 77.9% 74.9% OOM OOM Self-training [7] 51.4% 57.1% 64.1% 67.8% 68.8%
IncepGCN(drop) [29] - 719.5% 78.6% 79.0% OOM OOM Union [7]] 48.5% 52.6% 61.8% 66.4% 66.7%
GWNN [12] 79.1% 76.4% OOM OOM OOM OOM Intersection [7]] 51.3% 61.1% 63.0% 69.5% 70.0%
GCNII [15] 78.2% 78.8% 79.3% 80.2% 79.8% 79.7% MultiStage [33]] 53.0% 57.8% 63.8% 68.0% 69.0%
DeepGWC 80.4% 81.0% 81.1% 81.0% 81.6% 80.7% M3S [33] 56.1% 62.1% 664% 703% 70.5%
GWNN [12] 53.3% 55.7% 65.7% 69.4% 71.3%
GCNII [15] 52.6% 58.7% 70.0% 722% 73.9%
DeepGWC \ 579% 62.5% 702% 73.2% 73.6%
of graph wavelet convolution to make it adaptable to deep
graph convolutional models. Applying the combination of ACKNOWLEDGMENT

Fourier bases and wavelet ones, the proposed DeepGWC
model with the reuse of residual connection and identity
achieves better performance than existing deep graph models.
Extensive experiments on semi-supervised node classifications
are conducted. On Cora, Citeseer, and Pubmed, the experimen-
tal results demonstrate that our DeepGWC model outperforms
the baselines with 2, 4, 8, 16, 32, and 64 layers and yields
new state-of-the-art results.

This work was supported in part by the National Key
R&D Program of China under Grant No.2017YFB1302200
and 2018YFB1600804, by TOYOTA TTAD 2020-08, by a
grant from the Institute Guo Qiang (2019GQG0002), Tsinghua
University, by Alibaba Group through Alibaba Innovative
Research Program, by Tencent Group, and by ZhelJiang Pro-
gram in Innovation, Entrepreneurship and Leadership Team

TABLE VI
THE CLASSIFICATION RESULTS WITH LESS TRAINING SAMPLES ON
PUBMED
Label Rate

Method 0.03% 0.05% 0.1%

LP [34] 583% 61.3% 63.8%

GCN [25] 51.1% 58.0% 67.5%

Co-training [7] 55.5% 61.6% 67.8%

Self-training [7] | 56.3% 63.6% 70.0%

Union [7] 572% 64.3% 70.0%

Intersection [7] 55.0% 58.2% 67.0%

MultiStage [33] | 57.4% 643% 70.2%

M3S [33] 592% 64.4% 70.6%

GWNN [12] 71.7% 70.4% 72.9%

GCNII [15] 71.8% 71.7% 73.4%

DeepGWC | 734% 741% 753%

(2018R01017).
REFERENCES

[1] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks”, in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269.

[2] R. M. Qiao Liu, Yifu Zeng and H. Zhang, “STAMP: short-term at-
tention/memory priority model for session-based recommendation”, in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2018, London, UK, August
19-23, 2018, ACM, 2018, pp. 1831-1839.

[3] Q. Liu, F. Yu, S. Wu, and L. Wang, “A convolutional click prediction
model.” in CIKM. ACM, 2015, pp. 1743-1746.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770-778.

[5] C. Li and D. Goldwasser, “Encoding social information with graph
convolutional networks for political perspective detection in news media.”
in ACL. Association for Computational Linguistics, 2019, pp. 2594-2604.

[6] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf: Social
influence prediction with deep learning.” in KDD. ACM, 2018, pp. 2110—
2119.

[7]1 Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, ser. AAAI 18. AAAI Press, 2018,
pp. 3538-3545.

[8] F. Hu, Y. Zhu, S. Wu, L. Wang, and T. Tan, “Hierarchical graph convolu-
tional networks for semi-supervised node classification,” in Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence,
(IJCAI), 2019.

[9] B. Hui, P. Zhu, and Q. Hu, “Collaborative graph convolutional networks:
Unsupervised learning meets semi-supervised learning.” in AAAI. AAAI
Press, 2020, pp. 4215-4222.

[10] Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic
spatial-temporal graph convolutional neural networks for traffic forecast-
ing” in AAAI. AAAI Press, 2019, pp. 890-897.

[11] Y. Han, S. Wang, Y. Ren, C. Wang, P. Gao, and G. Chen, “Predicting
station-level short-term passenger flow in a citywide metro network using
spatiotemporal graph convolutional neural networks.” ISPRS Int. J. Geo
Inf., vol. 8, no. 6, p. 243, 2019.

[12] B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet neural
network.” in ICLR, 2019.

[13] J. Klicpera, A. Bojchevski, and S. Giinnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank.” in ICLR, 2019.

[14] J. Klicpera, S. WeiBlenberger, and S. Giinnemann, “Diffusion improves
graph learning.” in NeurIPS, 2019, pp. 13333-13 345.

[15] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep
graph convolutional networks,” in Proceedings of the 37th International
Conference on Machine Learning, ICML, Proceedings of Machine Learn-
ing Research, vol. 119. 2020, pp. 1725-1735.

[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in International Conference on
Learning Representations, ICLR 2015,San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[17] J. Wang, Q. Liu, Z. Liu, and S. Wu, “Towards accurate and interpretable
sequential prediction: A cnn & attention-based feature extractor.” in CIKM.
ACM, 2019, pp. 1703-1712.

[18] O. Abdel-Hamid, A. rahman Mohamed, H. Jiang, and G. Penn, “Apply-
ing convolutional neural networks concepts to hybrid nn-hmm model for
speech recognition.” in ICASSP. IEEE, 2012, pp. 4277—4280.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural informa-
tion processing systems, 2012, pp. 1097-1105.

[20] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “A latent semantic
model with convolutional-pooling structure for information retrieval,” in
Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, CIKM 2014, Shanghai, China,
November 3-7, 2014, pp. 101-110.

[21] FE. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns.” in CVPR. IEEE Computer Society, 2017, pp. 5425—
5434.

[22] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs.” in NIPS, 2017, pp. 1024-1034.

[23] M. Ding, J. Tang, and J. Zhang, “Semi-supervised learning on graphs
with generative adversarial nets.” in CIKM. ACM, 2018, pp. 913-922.
[24] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and

locally connected networks on graphs.” in ICLR, 2014.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks.” in ICLR, 2017.

[26] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Applied and Computational Harmonic
Analysis, no. 2, pp. 129 — 150, 2011.

[27] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural
node embeddings via diffusion wavelets.” in KDD. ACM, 2018, pp. 1320—
1329.

[28] K. Xu, C. Li, Y. Tian, T. Sonobe, K. ichi Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks.” in
ICML, ser. Proceedings of Machine Learning Research. PMLR, 2018, pp.
5449-5458.

[29] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep
graph convolutional networks on node classification.” in ICLR, 2020.
[30] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances in
Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,

Spain, 2016, pp. 3837-3845.

[31] P.Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” Al Magazine, vol. 29,
no. 3, pp. 93-106, 2008.

[32] P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[33] K. Sun, Z. Lin, and Z. Zhu, “Multi-stage self-supervised learning for
graph convolutional networks on graphs with few labeled nodes.” in AAAIL
AAAI Press, 2020, pp. 5892-5899.

[34] X.-M. Wu, Z. Li, A. M.-C. So, J. Wright, and S.-F. Chang, “Learning
with partially absorbing random walks.” in NIPS, 2012, pp. 3086-3094.

[35] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, pp. 2579-2605, 2008.

	I Introduction
	II Related Work
	II-A Graph Convolutional Neural Network
	II-B Graph Wavelet Neural Networks
	II-C Deep Graph Convolution Models

	III Methods
	III-A Preliminary
	III-B GCN
	III-B1 Graph Fourier Transform
	III-B2 Graph Convolution Operation

	III-C Graph Wavelet Convolutional Network
	III-C1 Graph Wavelet Transform
	III-C2 Graph Wavelet Convolution Operation

	III-D Network Architecture against Over-Smoothing
	III-D1 Residual Connection
	III-D2 Identity Mapping

	III-E Our DeepGWC Model

	IV Experiments
	IV-A Datasets and Baselines
	IV-A1 Datasets
	IV-A2 Baselines

	IV-B Implementation Details
	IV-C Overall Assessment
	IV-D Deeper Network
	IV-E Fewer Training Samples

	V Conclusion
	References

