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Abstract—Recently, out-of-distribution (OOD) detection has
received considerable attention, because confident labels assigned
to OOD examples represent a vulnerability similar to adversarial
input perturbation. We are interested in models that combine
the benefits of being robust to adversarial input and being able
to detect OOD examples. Furthermore, we require that both
in-distribution classification and OOD detection be robust to
adversarial input perturbation. Several related studies apply an
ad-hoc combination of several design choices to achieve similar
goals. One can use several functions over the logit or soft-max
layer for defining training objectives, OOD detection methods
and adversarial attacks. Here, we present a design-space that
covers such design choices, as well as a principled way of
evaluating the networks. This includes a strong attack scenario
where both in-distribution and OOD examples are adversarially
perturbed to mislead OOD detection. We draw several interesting
conclusions based on our empirical analysis of this design space.
Most importantly, we argue that the key factor is not the OOD
training or detection method in itself, but rather the application
of matching detection and training methods.

I. INTRODUCTION

Although computer vision models have achieved remarkable
performance on various recognition tasks in recent years, they

are susceptible to adversarial input [1]–[3], where invisibly
small but well designed input perturbations mislead state-

of-the-art models. The sensitivity of the current models to
adversarial input indicates that these models are not aligned

well with human perception. Among the many defenses

against input perturbation, adversarial training has been found
to be the most effective [4], [5]. In a nutshell, adversarial

training means that the model is trained over the adversarially
perturbed version of the training data to improve the robustness

of the model.

Recently, robust out-of-distribution (OOD) detection also
received considerable attention [6]–[8]. Adversarially trained

models are relatively robust to adversarial input but they
might assign high confidence to OOD samples. In a real-world

application, this also represents a serious vulnerability [8].

Besides, OOD input is also open to adversarial perturbation,
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making OOD detection even harder. Recently, adversarial
training on both in-distribution and OOD samples was shown

to be able to increase the robustness of OOD detection [7],
[8]. However, the proposed algorithms are somewhat ad-hoc,

as the underlying design-space for robust training, detection,
and attack methods has not been explicitly formalized and

explored.

Here, we present a systematic design-space that covers most

of the popular design choices for the various components. This
includes the possible adversarial training objectives, robust

OOD detection methods and adversarial attacks on both in-
distributions and OOD samples. This allows us to propose

ideal combinations of training and detection methods, and to
explore the robustness to the various adversarial attacks.

We draw several interesting conclusions based on our empir-

ical results. Most importantly, we argue that the key factor is
not the OOD training or detection method in itself, but rather

the application of matching detection and training methods.
This observation is important especially when both the in-

distribution and OOD samples are adversarially perturbed.

This strong attack scenario has not been explored in related
work yet. Also, it is interesting to note that among the

detection methods that we evaluate here, the widely used
Maximum Softmax Probability [9] baseline performed the

poorest.

Our contributions can be summarized as follows:

• We identify the main components that can be used to

systematically build training objectives, OOD detectors
and attack methods that cover most algorithms from

related work
• We experimentally analyze this design-space and we

make a number of novel observations regarding the best

combinations of these components
• We propose an evaluation methodology for measuring

the robustness of the models under the strongest possible

attack, where we measure the robust accuracy over the in-

distribution samples attacked based on the loss function,
and the robust OOD detection performance after attacking

both in-distribution and OOD samples based on the score
function used by the OOD detector



II. RELATED WORK

Outlier, or OOD detection has long been a topic of inter-

est [9]–[12]. Here, we focus on works where robustness to
adversarial perturbation is a goal as well. Augustin et al. [7]

and Sehwag et al. [8] consider the problem of combining
robust classification and robust OOD detection, like we do.

Sehwag et al. investigated the robustness of multiple OOD
detection methods and found that existing OOD detectors

are not robust. They proposed the adversarial training of
a classifier, in which the OOD samples are considered an

extra class. Augustin et al. used a different detection method
for OOD samples. They require that the classifier outputs a

uniform class distribution on perturbed OOD samples. Our

contribution relative to these works is showing that training
and detection have to be based on the same criteria in order

to get the best performance, as well as proposing a principled
evaluation method.

A number of studies make the assumption that adversarially

perturbed in-distribution samples and OOD samples (such as
noise, for example) should be treated in a similar fashion.

In effect, these approaches wish to characterize clean in-
distribution samples. Hein et al. [6] attempt to reduce OOD

confidence via using an adversarial training objective only for
the OOD samples and show that this improves the detection

of adversarial in-distribution samples as well. Stutz et al. [13]

propose to train the model to predict a uniform distribution for
adversarial input and the correct class for clean input and show

that this approach improves the detection of OOD samples
as well. Lee et al. [14] assume that a pre-trained classifier

is given. They wish to detect non-clean examples based on
the softmax distribution of this classifier. Here, we assume

that adversarially perturbed in-distribution samples must be
assigned the correct label of their clean version. This is a

significantly harder requirement.

One can also think of our work as an improvement of
adversarial training [5] with a more realistic, stronger threat

model. Indeed, although not in the focus of the present
study, our extended adversarial training approach does improve

adversarial accuracy relative to the work of Madry at al. [5].

Maini et al. [15] also extend adversarial training, but instead
of using perturbed OOD samples, they apply a set of different

perturbations over the in-distribution samples. Stutz et al. [13]
showed, however, that the approach of Maini et al. does not

make models robust to attacked OOD samples. Combining
these two different ways of extending adversarial training

could be a direction for future work.

III. COMBINING OUR TWO OBJECTIVES

We have two objectives that we want to achieve simulta-

neously: robust classification and robust OOD detection. This

raises a number of design issues. First of all, one has to design
the model is such a way so as to support both classification

and OOD detection at the same time. This can be done in
many different ways. For example, in feed forward neural

networks, we need to decide whether to base OOD detection
on the logit layer or on the softmax layer, or whether to extend

the classifier with an extra class representing OOD samples
or not. Second, we need to define a combined loss function

that represents both objectives. This function will likely be
different for OOD samples and normal samples.

In this section, we first present a framework in which these

decisions can be represented. We then analyze related work
and show how the main different design choices fit into this

framework. This analysis will reveal that in related work the
design decisions are often ad hoc in the sense that the OOD

detection method and the training process are inconsistent,
resulting in a suboptimal performance overall. When using

our framework, the appropriate pairing of the training and
detection method is evident.

A. Training Objectives

Let us first introduce some basic notations. We are inter-

ested in the supervised classification task where each training
example x ∈ R

d is drawn from an underlying theoretical

distribution Din (that is, x ∼ Din). Set C contains the possible
labels, and exactly one label y ∈ C is assigned to each training

example in the training dataset. Let K = |C| denote the number
of classes. Since the label is assumed to be a deterministic

function of the example, we will also abuse the notation and

write (x, y) ∼ Din to indicate the label.

We are also given a set of unlabeled examples drawn from

a distribution Dout over R
d such that Dout and Din are

sufficiently different. From the point of view of the present

study, a rigorous mathematical specification of the difference
is not necessary. Instead, the key property of Dout that we rely

on is that the probability of an example x̂ ∼ Dout having a
correct label within C is vanishingly small.

Let the function fθ : Rd → R
K denote the output of a feed

forward neural network classifier with parameters θ without
the softmax normalization layer. In other words, fθ returns

the so-called logit layer.

Robust classification can be formalized as a robust optimiza-

tion problem [5]. Here, we are given a set of possible input
perturbations, for example, ∆ = {δ : ||δ||∞ ≤ ǫ}. We want

to minimize the loss of our classifier, assuming that the input
can be perturbed using any perturbation from ∆, that is, we

wish to solve the minimization problem minθ ρin(θ), where

ρin(θ) = E(x,y)∼Din
[max
δ∈∆

L(ey, fθ(x+ δ))]. (1)

Here, L(ey, fθ(x+δ)) is a loss function of example (x, y) and
model parameters θ, and ey is a one-hot encoded vector of the

label y. From now on, we will assume that the loss function
is the categorical cross-entropy function

L(y, f(x)) = −
K∑

i=1

yi log σ(f(x))i (2)

although any differentiable loss function could be used. Here,

function σ represents the softmax function, that is, σ(y)i =
eyi/

∑K

j=1 e
yj .

The second objective is robustly detecting OOD samples
from Dout. This needs a different loss function that is defined

for the OOD training examples. Let us define a score function

s(fθ(x)), such that we expect a low score for OOD samples

and a high score for in-distribution input. The score function
is defined over the logit layer output, that is, we have s :



R
K → R. Based on this score, we can define the OOD training

objective to be minθ ρout(θ), where

ρout(θ) = Ex∼Dout
[max
δ∈∆

s(fθ(x+ δ))] (3)

When training the model on in-distribution and OOD

samples simultaneously, the two optimization problems are
combined as

min
θ

ρin(θ) + λρout(θ) (4)

where λ is a weight parameter that controls the weight of

in-distribution and OOD training examples.

B. Score Functions for OOD Detection

Now, let us turn to the OOD detection method. In our

framework, it is a natural choice to use the score function
for detection as well (not only training). This can be done via

a suitable threshold that is supposed to separate OOD inputs
from in-distribution inputs. Since the score function was part

of the training objective, we can reasonably expect that the

OOD examples will have a relatively low score. A suitable
threshold exists if the in-distribution examples are expected to

have a high score.
Our key observation is that for the existence of a suitable

threshold, a necessary condition is that the score function

has to be closely related to the loss function used to train

over OOD samples. We now look at examples of training and
detection methods from related work, and show whether or not

these are suitably matched, in the light of this observation.

C. Training Objectives in Related Work

In this section, we discuss two common approaches to train

models for OOD detection. In the first approach, the goal is to
make the model output a uniform distribution when an OOD

input is presented [7], [10]. This is implemented using the
cross-entropy loss function with the uniform distribution as

the true distribution:

ρuniout (θ) = Ex∼Dout
[max
δ∈∆

L(1/K, fθ(x+ δ))] (5)

In [6], instead of the distance from the uniform distribution,

the maximum softmax probability was minimized for OOD
samples. In this case, the optimum is the same, namely the

maximal probability is minimized by the uniform distribution.
We can fit this approach into our framework if we chose the

score function suni(x) = L(1/K, x). This would suggest, as
discussed in Section III-B, that the model trained this way

should use suni also for the detection of OOD examples.
Interestingly enough, that practice is not always followed in

related work. For example, in both [7] and [10], the detection
is implemented using smsp (see Section III-D), although

Hendrycks et al. mention in the Appendix that suni might
be more promising [10].

The second common representation is interpreting OOD
samples as an extra background class [8], [16]. In this ap-

proach, the objective is simply given by

ρlseout(θ) = Ex∼Dout
[max
δ∈∆

L(eK+1, fθ(x+ δ))] (6)

We propose a version of this approach, where we do not train
extra parameters for the background class. Instead, we simply

append a constant to the logit layer of the model. As a result
of training, the original classes from 1 to K can adapt to this

constant so that this constant is maximal when the input is

OOD. This way, the number of parameters will be the same as
in the case of using ρuniout in (5), allowing for a fair comparison

between the two approaches. In our experiments, we set this
constant to zero, that is, fθ(x)K+1 = 0.

Now, let us examine how this approach fits into our frame-
work. We have, using equation (2),

L(eK+1, fθ(x)) = log

K+1∑

j=1

efθ(x)j . (7)

This indicates that in this framework we can chose slse(x) =
log

∑K+1
j=1 exj . This formula, called the LogSumExp (LSE)

function, is known to be a smooth approximation of the

maximum, and it was also proposed in [11] as the classifier
energy function. Since fθ(x)K+1 is a constant, this function

is a monotonous function of the LSE of the in-distribution
classes (that is, the classes up to K). This indicates that in

fact the decisive factor is whether the in-distribution classes

have a small logit value, as opposed to the extra background
class (the (K + 1)th class) having the maximal value.

Again, this would suggest that the model trained this
way should use slse (with an appropriate threshold) for the

detection of OOD examples. Again, in related work this is not
always the case. For example, Sehwag et al. [8] use the criteria

whether the background class is maximal or not. Also, they
do not use slse to attack OOD samples for testing robust OOD

detection either, another natural choice that we will discuss in
the following sections.

As a last note, the two approaches above (ρuniout and ρlseout)
are far from being equivalent. The objective represented by

ρlseout represents a larger degree of freedom, because the score
function is applied before softmax normalization and because

the uniform distribution is not enforced.

D. Score Function Summary

We list four score functions. The first two use the softmax

normalized output and the remaining two use the logit values
directly. A common baseline method is the maximum softmax

probability (MSP) proposed in [9]:

smsp(fθ(x)) = ‖σ(fθ(x))‖∞. (8)

The score function suni was proposed in [10]. These two score

functions are based on the softmax output. Another possible

score function is

sml(fθ(x)) = ‖fθ(x))‖∞, (9)

that is, the maximum logit. Although sml has not yet been

used in related work, we include this variant in our evaluation
because of its similarity to smsp. The smooth version of this

score function is slse, proposed in [11].

In the following, we will show experimentally that it is

always advisable to use the score function for detecting OOD
samples that is most similar to the training objective ρout.



IV. EXPERIMENTAL SETUP

We are interested in the effect of the possible combinations

of the various training objectives and score functions that we
described previously, as well as the effect of other hyper-

parameters such as the choice of Dout and network capacity. In

order to understand this, we performed a systematic empirical
study, in which we combined training objectives and score

functions, and used various hyper-parameters and databases
for in-distribution and OOD samples. The two databases we

used to represent in-distribution samples were MNIST [17]
and CIFAR-10 [18].

We first describe those settings that were common to
the MNIST and CIFAR-10 experiments in Sections IV-A

and IV-B. We then lay out the settings specific to the MNIST
and CIFAR-10 experiments in Sections IV-C and IV-D, re-

spectively.
We shall apply the PGD algorithm [19] in many different

contexts. Let us introduce the notation PGDa
b , where the

superscript a denotes the number of iterations and subscript

b denotes the number of restarts. We omit the subscript when
there is only one run.

A. Training

For preprocessing, we divided all the input values by 255,

thus scaling the data into the range [0, 1]d.
In each setting, we used adversarial training [5] for both in-

distribution and OOD samples. The adversary during training
was PGD (with database specific parameters defined later) that

used the loss function in ρin for in-distribution samples, and
the score function in ρout for OOD samples, respectively. We

held out 1000 in-distribution samples as a validation set. We
then selected the best model that was found during training

according to the robust accuracy over the validation set, that

is, the accuracy over the adversarially perturbed validation
samples, as suggested in [20]. The validation samples were

attacked using the same adversary as used for training in the
case of CIFAR-10. For MNIST, we used a stronger adversary

(PGD100
5 ) because the training adversary (to be described

below) was not able to reliably identify a unique maximum

validation accuracy.
Throughout our evaluation, the training was performed

with a batch size of 100, that consisted of 50 in-distribution
examples and 50 OOD examples. For the baseline case when

no OOD samples were used, the batch size was 50.
Let us now describe the training objectives that we evalu-

ated. The generic formula for the training objective is given in
equation (4). This formula contains parameter λ that controls

the relative weight of the in-distribution and OOD objective.
We evaluated three possible values of λ: 0.1, 0.5, and 1.0.

λ = 0.1 means that the OOD samples will have the same
contribution as any other in-distribution class (recall that each

dataset defines 10 classes), essentially treating the OOD sam-
ples as a 11th class. Sehwag et al. [8] applied this weighting

strategy. λ = 1.0 means the distributions Din and Dout have
equal importance. Hein et al. used this setting [6].

Apart from parameter λ, we also varied the OOD objective
ρout. In particular, we experimented with two possible OOD

objectives presented in equations (5) and (6). In total, the three
values of λ and the two possible OOD objectives result in

6 = 3·2 trainings for every combination of dataset and network
architecture (to be described below).

B. Evaluation

We are interested in robust accuracy and robust OOD
detection. Robust accuracy was measured as the accuracy

against an untargeted PGD adversary [5]. In the attack, PGD
maximized the loss used in ρin. The performance of the non-

robust OOD detection was measured using the area under
curve (AUC) metric, as usual in related work (for exam-

ple, [6], [7]). AUC is equal to the probability that a randomly

chosen in-distribution sample x ∼ Din gets a larger score
than a randomly chosen OOD sample x̂ ∼ Dout. That is,

AUC = P (s(fθ(x̂)) ≤ s(fθ(x))). If the AUC is close to one
then there exists a threshold that separates the OOD samples

well. If the AUC is close to 1/2 then separation is not possible.

Since AUC is sensitive to imbalanced classes, it was calcu-
lated using an equal number of samples from Din and Dout.

More precisely, we used 1000 samples from both distributions

for each evaluation.

The robust version of OOD detection was evaluated by
measuring the AUC after attacking only the OOD samples,

or both the in-distribution and OOD samples. We note that in
related work the hardest case, when both kinds of samples are

attacked, has not yet been considered. In this robust version,
the in-distribution samples are attacked using PGD minimizing

the score of a given score function. In the case of the OOD

samples, the same score function was maximized by PGD.

During the evaluation of robust OOD detection, we com-
bined the 4 functions described in Section III-D, using them

for both the attack and the detection method. These represent
4 · 4 = 16 possible attack-detection combinations.

C. MNIST-Specific Settings

a) Architecture: We trained the same convolutional net-
work that was used in [5]. It has two convolutional layers and

two dense layers with 32 and 64 filters, respectively. This is
followed by a 2x2 max-pooling layer and a fully connected

layer of 1024 neurons. ReLu activation was used.

b) Training: We used Adam [21] as our optimizer with a

learning rate of 10−4. We ran it for 100 epochs. The adversary
during adversarial training was PGD40 with a step size of

α = 10−2 and ǫ = 0.3. Recall, that ǫ defines the set of possible

input perturbations: ∆ = {δ : ||δ||∞ ≤ ǫ}.

We used two OOD datasets for training. The first one is
the synthetic noise distribution introduced in [6], we will

refer to it as DSN
out . In a nutshell, half of the inputs are

generated uniformly at random and the other half is generated

by permuting the pixels of images from the training set.
A Gaussian smoothing filter is applied for all the images,

followed by a global rescaling into [0, 1]d. The idea here is to

preserve as much as possible from the global statistics of the
original images while destroying the more complex features.

The second OOD dataset was the KMNIST dataset [22].

c) Evaluation: For the evaluation of OOD detection, we

used the test sets of the two OOD datasets used for training and
two additional datasets to test how OOD detection generalizes

to unseen distributions. The first was the Fashion-MNIST [23]
test set and the second was uniform noise within [0, 1]d, we



TABLE I
DENSENET [24] ARCHITECTURES USED FOR CIFAR-10 EXPERIMENTS.

Model Parameters

Wide-DenseNet-BC (L=16, k=60) 1.1M
Wide-DenseNet-BC (L=28, k=60) 2.5M
Wide-DenseNet-BC (L=40, k=60) 4.3M
Wide-DenseNet-BC (L=52, k=60) 6.4M

TABLE II
ROBUST VALIDATION ACCURACY, CLEAN TEST ACCURACY, AND ROBUST

TEST ACCURACY FOR MNIST EXPERIMENTS

objective(ρout ) Dout λ rob.val.acc. acc. rob.acc.

None 0.932 0.9895 0.9241
lse SN 0.1 0.935 0.9893 0.9277
lse K-MNIST 0.1 0.928 0.9897 0.9141
uni SN 1.0 0.93 0.9904 0.9144
uni K-MNIST 0.1 0.928 0.9887 0.9184

will refer to it as DU
out. PGD100

50 was used for all the attacks

(as in in [5]) with a step size of α = 10−2 and ǫ = 0.3, except
for Fashion-MNIST where we used ǫ = 0.1.

D. CIFAR-10-Specific Settings

a) Architecture: We used several wide variants of

DenseNet [24], with the parameters listed in Table I. Thus,
in this case, we performed our evaluation not only on a single

network but on a range of networks with varying numbers of
parameters. This allows us to examine the effect of network

size.

b) Training: The optimizer we used was SGD with

momentum 0.9 and an initial learning rate of 10−1. We ran
this optimizer for 240 epochs. The learning rate was divided

by 10 at 50% and 75% of the training, as was done in [24]. In
addition, we applied weight decay with a coefficient of 10−4.

We also applied standard augmentation: mirroring and shifting

similarly to [5].

As adversary we used PGD10 with a step size of α =
2/255 and with ǫ = 8/255. Similarly to MNIST, we used two

OOD datasets for training. Again, the first one is the synthetic
noise distribution DSN

out introduced in [6]. The second OOD

dataset was the 80 Million Tiny Images dataset [25], we will
refer to it as DT

out. This dataset was used also in [10] and [7].

This is a good choice because the global statistics and the

low-level features of the images are similar to those of the
CIFAR-10 images, while the high-level features are different.

This means that OOD detection is forced to focus on high-level
features, which in turn increases its robustness to adversarial

OOD inputs. Note that the CIFAR-10 dataset is actually a
subset of the tiny images set, so we removed the CIFAR-10

classes like it was done in [10]. Afterwards, we separated a
test set of 1000 samples.

We note that the dataset in [6] performed very poorly here
in our preliminary experiments so our experiments were run

only for a single setting in this case, namely with the training
objective ρuniout and λ = 1.

c) Evaluation: For the evaluation of OOD detection, we
used the test sets of the two OOD datasets used for training and

two additional datasets to test how OOD detection generalizes
to unseen distributions. The first was a set of 10,000 samples

from the SVHN [26] test set. The second was uniform noise
within [0, 1]d. We will refer to it as DU

out. PGD20
10 was used
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Fig. 1. Clean test accuracy and robust test accuracy (PGD20

10
, ǫ = 8/255) on

the CIFAR-10 dataset.

for all the attacks (as in in [5]) with a step size of α = 2/255
and with ǫ = 8/255.

V. RESULTS

We present our experimental results, organizing the discus-
sion around our most important observations.

A. Robust Accuracy is not Reduced (MNIST) or Improved

(CIFAR-10) by the OOD Adversarial Objective

Let us first focus on the accuracy of the in-distribution
samples, with or without adversarial input perturbation. For

the MNIST dataset, the results are included in Table II. When
computing the robust accuracy, the samples were perturbed

by PGD100
50 , with ǫ = 0.3. The indicated λ values are the

optimal choices among the possible choices of λ for the given

objective according to the robust accuracy on the validation

set against a PGD100
5 adversary. The value “None” indicates

plain adversarial training without an OOD objective.

It is clear that adding the OOD objective does not reduce

robust accuracy. We also note that our reported value of 0.9241
is significantly higher than the one reported in [5]. This is

because of our better early stopping criterion based on a

stronger adversary used over the validation set.

Accuracy values for the CIFAR-10 dataset are shown in
Figure 1. The OOD datasets DSN

out and DT
out were described

in Section IV-D. We show the results with the best choice of
parameter λ according to the robust accuracy on the validation

set against a PGD10 adversary.

Robust accuracy is significantly improved compared to plain

adversarial learning, while clear accuracy remains approxi-
mately the same. It is also interesting to note that increasing
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Fig. 3. OOD detection AUC over MNIST and CIFAR-10 under three different kinds of attack scenarios: no attack, only OOD samples are perturbed, and
both in-distribution and OOD samples are perturbed. These attacks are indicated on the vertical axis. Under each attack, the three different OOD training
objectives are indicated: None, ρuni

out
and ρlse

out
. Under each training objective, 4 different score functions are indicated that are used for attacking samples at

detection time. The horizontal axis indicates possible score functions used for detection. The CIFAR-10 plot also includes the smallest and largest network
architecture, indicated on the horizontal axis. During training, DSN

out
was used on MNIST, and D

T
out

on CIFAR-10.

the network size in general increases robust accuracy, a well-
known fact that has been pointed out in [5] as well. The best

choice is the uniform OOD objective with the Tiny Images
OOD dataset in this case.

Similar observations were reported in [7] for an l2 threat

model (here, we use the l∞ norm, as described before). How-
ever, our results highlight another important factor, namely the

choice of the objective function. Although both ρuniout and ρlseout

improve the robust performance compared to plain adversarial

training, ρuniout is a significantly better choice.

B. OOD Training Objective has Strongest Effect under

Strongest Attack

Let us now look at how the OOD training objectives affect

the ability of the models to detect OOD samples, under
different kinds of adversarial attacks applied at detection time.

Figure 2 illustrates the effect of the three kinds of adversarial
attacks: (1) no attack (clean inputs), (2) only the OOD inputs

are attacked and (3) both in-distribution and OOD inputs are

attacked.
The adversary was PGD20

10 using ǫ = 8/255. The indicated

AUC values are averages of AUC values computed over 13 test
OOD databases, given by the 10 classes of the SVHN dataset

(each treated as a separate OOD database) and the test sets of
the databases DT

out, D
SN
out and DU

out. For a given OOD dataset

we calculated the AUC value as a minimax value: for all the
4 possible score functions used for detection we computed the

minimum AUC value over the 4 possible score functions used
for the attack. We then took the maximum of these values,

which gives the minimax AUC.

What is clear is that for clean examples the training ob-
jectives have a relatively little effect, although not using an

OOD objective is consistently the worst option. The harder
the attack the larger the relative difference becomes between

the model that did not use any OOD objective during training
and those that did. Here, the decisive factor appears to be the

OOD database used during training: DT
out seems to be the best

choice.

The same conclusion is valid also in the case of the
MNIST dataset. This is evident from Figure 3, where the OOD

detection AUC values are illustrated in a finer resolution for

both MNIST and CIFAR-10. Here, compared to Figure 2, the
AUC values are not aggregated using the minimax technique

but instead all the 4 · 4 = 16 combinations of detection and
attacking score functions are included individually. The values

are still averages over our test OOD datasets. For CIFAR-10
we used the same 13 sets described above. For MNIST, we

used 22 datasets, given by 10 classes of Fasion-MNIST, 10
classes of K-MNIST, and the test sets of DSN

out and DU
out.
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Fig. 4. OOD detection AUC over MNIST and CIFAR-10 under combinations of OOD datasets used during training and detection. The databases used for
training are indicated on the vertical axis. The training objectives were ρuni

out
in both cases. Under each training OOD dataset, 4 different score functions

are indicated that are used for detection. The horizontal axis indicates OOD datasets used for evaluation. The CIFAR-10 plot also includes the smallest and
largest network architecture, indicated on the vertical axis.

For MNIST as well, clearly, the harder the attack the larger

the relative difference becomes between the models that did
or did not use any OOD objective during training.

Let us point out here, that our strongest attack is signif-

icantly stronger than the attacks normally studied in related
work, where in-distribution samples are not perturbed during

the OOD detection task. Also, as Figure 2 reveals, the AUC
barely improves when increasing the size of the network. It

is possible that improvements would appear only with much
larger networks.

C. Attacks on OOD Samples are most Effective when Attack-

ing and Detection Score Functions are the Same

Ideally, we want to use the strongest possible attack when
testing the robustness of any machine learning model. How-

ever, so far, it has not been clear how the strongest attack

should be designed for a given OOD detection mechanism. In
our framework based on score functions, it is rather natural to

assume that maximizing the score function used for detection
is the strongest attack.

This conclusion is supported by the data in Figure 3. As we,

for all the detection methods, the minimal AUC value belongs
to the attack method that uses the same score functions, in all

the three attack scenarios, for all the training objectives, for
both MNIST and CIFAR-10.

D. OOD Detection and OOD Training Objective should Use

the same Score Function

In the framework based on score functions, we can examine
the relationship between the training objective and the detec-

tion method for OOD samples. A natural hypothesis is that

these two components should be based on the same score
function in order to enforce the best possible AUC value.

This conclusion can be verified in Figure 3. To see this,

recall that we are interested in the minimax AUC value, that
is, we want to maximize the minimal AUC value over the

possible pairs of score functions used for OOD training and
detection. In other words, we assume that the attacker knows

the detection method as well as the training method and so

she can pick the attack resulting in the minimal AUC. In the
table, for all pairs of training and detection score functions four

attacks are listed. The minimum of these is always maximal
when the training and detection score functions are the same.

E. The Learned Robust Models do not Generalize Well for

Unseen OOD Datasets

It is a central question whether robust OOD detection

generalizes beyond the OOD dataset that was used during the
adversarial training. We will argue that, when taking a closer

look, we can find a number of problems regarding this kind
of generalization, which opens up novel research questions.

Note that we work with training objectives, OOD datasets

and detection methods that are used in the state-of-the art
approaches, but under a stronger threat model.

Figure 4 focuses on the generalization of OOD detection.

The values shown in the table correspond to those of the most
successful attacks, that is, the table represents the worst case

scenario. The most successful attack, as described previously,

is the scenario when both in-distribution and OOD samples
are adversarially perturbed, based on the same score function

that is used for detection. The databases are examined at a fine
resolution, that is, we consider all the classes of the unseen

databases (see sections IV-C and IV-D) as a separate database.

We can see that the models do not generalize equally well

to each OOD dataset. On MNIST, the models seem to be less
effective in identifying some classes as OOD, for example,

Fashion-MNIST classes 5 (Sandal) and 7 (Sneaker). Similar
observations can be made regarding the CIFAR-10 models.

For example, SVHN classes 0 and 1 are identified as OOD
much easier than the other classes.

We can also see that, overall, the DT
out dataset offers the

best robust OOD performance over CIFAR-10. However, it is

remarkable that training with DT
out does not generalize well to

DSN
out (although it does generalize to the uniform distribution

DU
out) and the performance is not very impressive on the test

set of DT
out either. On the other hand, training with DSN

out is



radically different: in that case the model clearly overfits DSN
out

without any generalization to DT
out or DU

out. This suggests that

a mixture of multiple OOD datasets might be a better choice

for representing OOD samples during training.

VI. CONCLUSIONS

We defined a design space, where one can define training

objectives, detection methods and attack methods for the com-
bination of the robust OOD detection problem and the robust

classification problem with the help of a set of score functions.
Also, we introduced a strong threat model in which both in-

distribution and OOD samples are adversarially perturbed to

mislead OOD detection.

We performed a thorough empirical evaluation of this

framework. We found that adding an adversarial OOD objec-
tive to the training method does not hurt robust in-distribution

accuracy, in fact, a significant improvement can be seen in

some cases. This indicates that it is always safe to add such
an objective.

We also found that it is impossible to pick a score function

for robust OOD detection independently of how the model in
question was trained. Instead, we get the best results when

training and detection is based on the same score function.
In other words, while non-robust OOD detection is more

robust to the training procedure, in robust OOD detection
it is more important to align the detection method with the

training method, that is, to use the same score function in
both. Also, a similar statement can be formulated in terms of

the OOD detection method and the attack on this detection
method. The most successful attack is performed using the

same score function as the one used by the detection method.

We also pointed out that a deeper understanding of how
OOD detectors generalize to unseen distributions is an inter-

esting direction for future research.
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[17] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proc. of the
IEEE, 86(11):2278–2324, November 1998.

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009.

[19] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
machine learning at scale. In 5th Int. Conf. on Learning Representations,
ICLR, 2017.

[20] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially
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