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Abstract—Face detection is an upstream task of facial image
analysis. In many real-world scenarios, we need to detect small,
occluded or dense faces that are hard to detect, but hard face
detection is a challenging task in particular considering the
balance between accuracy and inference speed for real-world
applications. This paper proposes an Hourglass Face Detector
(HFD) for hard face by developing a deep one-stage fully-
convolutional hourglass network, which achieves an excellent
balance between accuracy and inference speed. To this end,
the HFD firstly shrinks a feature map by a series of stridden
convolutional layers rather than pooling layers, so that useful
subtle information is preserved better. Secondly, it exploits
context information by merging fine-grained shallow feature
maps with deep ones full of semantic information, making a
better fusion of detailed information and semantic information
to achieve a better detection of small faces. Moreover, the HFD
exploits prior and multiscale information from the training data
to enhance its scale-invariance and adaptability of anchor scales.
Compared with the SSH and S°FD methods, the HFD can achieve
a better performance in average precision on detecting hard faces
as well as a quicker inference. Experiments on the WIDER FACE
and FDDB datasets demonstrate the superior performance of our
proposed method.

I. INTRODUCTION

Face detection is fundamental to face recognition [3] [12]
[14] [19] [22], face alignment [6] [29] [38] and face clustering
[20] [28]. The pioneering work on face detection like Viola-
Jones [25] and Deformable Part Model [4] use hand-crafted
features and classifiers to detect faces. Recently, by embracing
the ideas that led to the remarkable success of CNN-based
object detectors, such as Faster-RCNN [18], SSD [11], FPN
[9] and YOLO [15] [16] [17], face detection has also achieved
impressive further improvement.

However, detecting small, blurred or occluded faces is still
a challenging task. The above-mentioned powerful anchor-
based general object detection frameworks are now explored
to detect hard faces in uncontrolled environment, e.g. on the
WIDER FACE benchmark [31] and FDDB benchmark [8].
SSH [13] develops scale-invariant networks based on SSD [11]
to detect faces from various layers in a single network. S3FD
[35] proposes a new anchor matching strategy to improve the
recall rates of small faces. FAN [26] embeds attention mech-
anisms into the anchor setting in order to gathering context
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Fig. 1: Detection examples of faces. HFD gets a better result
on detecting crowded faces.

information which is beneficial to occluded faces detection.
PyramidBox [23] also exploits context information for hard
faces. Among these methods, SSH and S®FD are relatively
simple and efficient while others are more complicated and
time consuming.

In order to achieve a better balance between efficiency
and accuracy, based on SSH and S3FD, we identify several



aspects of them for potential improvement. Firstly, the pooling-
shrinkage strategy may overlook subtle but crucial human-
facial information, making it less robust (see Fig. 1 for a
small face missed by SSH when it is close to another bigger
face). Secondly, as indicated by FPN [9], both bottom-up and
top-down structures could benefit object detection, while the
backbone of SSH and S3FD is bottom-up only. Thirdly, SSH’s
large feature map and S®FD’s too many detection layers lead
to inefficiency of the inference.

Therefore, to address these issues, we develop an hourglass
network-based face detector in this paper, termed hourglass
face detector (HFD),mainly focusing on the balance of hard
face detection accuracy and efficiency. The HFD firstly shrinks
a feature map by a series of stridden convolutional layers
instead of pooling layers, thus preserves more useful subtle
information to make it possible to detect hard faces on a
deeper feature map. Then two upsampling layers are used to
increase the resolution of feature maps. The scales of feature
maps change from large to small and then small to large like
an hourglass. The HFD introduces the YOLOvV3 [17] darknet
backbone to face detection, which is similar to but proved
to be more effective than that of FPN. Secondly, to exploit
both detailed and semantic information beneficial to small face
detection, we propose a simple and effective feature-fusion
context module to merge fine-grained shallow feature maps
with deep ones full of semantic information. Moreover, to
adapt to different scales of input, the HFD is trained with
random scales and tested pyramidically.

The main contributions of this paper are three-fold:

« Designing a simple and effective context module merging
the fine-grained shallow features with deep ones, learn-
ing more discriminative features beneficial to hard face
detection.

o Exploiting prior and multi-scale information from the
training data to enhance the model’s scale-invariance and
adaptability of anchor shapes.

« Developing a new hourglass network based face detector
for hard face detection, achieving good performance on
accuracy and efficiency on the WIDER FACE [31] and
FDDB [8] datasets.

II. RELATED WORK
A. General Object Detectors Based on CNNs

Deep learning has made tremendous achievements in many
computer vision tasks including object detection. A great many
of object detectors based on Convolutional Neural Networks
(CNNss) have been designed and achieved great improvements
in both accuracy and speed. These CNN-based methods can be
devided into one-stage methods and two-stage methods. For a
single-stage detector, the detection head only makes prediction
for one time, and the classification and regression results
are directly obtained by doing convolution on the feature
maps. For example, YOLO [15] [16] [17] divides the image
into a series of grids, and directly predicts the category and
bounding box of the object in each grid. RetinaNet [10] uses

a light-weight single-stage detection head. The classification
and regression branches use four cascaded convolutional layers
for feature extraction, and then predicts the categories and
offsets based on the anchors at each point to obtain the final
detection results. The detection head structure of FCOS [39] is
similar to that of RetinaNet. The only difference is that FCOS
has no anchors and adopts a new rule for selecting positive
and negative samples. The detection head of the bottom-
up detection algorithms represented by CornerNet [40] and
CenterNet [41] output the heatmap and embeddings of some
representative points, and then combine several points into a
bounding box.

The detection head of a multi-stage detector is more com-
plicated. The detection head of the classic anchor-based two-
stage detector represented by Faster R-CNN [18] and Mask
R-CNN [42] includes a region proposal generation step and
a proposal refinement step. In the first stage, the detection
head performs binary classification and regression on all
anchors, and selects out anchors that are more likely to contain
objects and refines their positions. In the second stage, the
detection head outputs classification and regression results
of the candidate box selected in the first stage to obtain
the category and final position of the object. Recently, many
methods adding a refinement stage based on detection results
predicted by a single-stage anchor-free detection framework
have been proposed. For example, RepPoints [43] uses 9
points to describe a bounding box, and its detection head
uses deformable convolution to refine the positions of 9 points
twice. The detection heads of BorderDet [44] and VarifocalNet
[45] both add some additional processing steps after the FCOS
detection head, and make a further feature extraction based
on the coarse detection results of FCOS, then make use of
the enhanced features for refine prediction. Compared with
single-stage detection methods, two-stage detection methods
achieve better detection accuracy, but the processing time will
also increase. Now more attention has been paid to designing
object detectors which can achieve a better speed-accuracy
balance.In practical applications, it is necessary to select a
suitable detector according to the specific scene.

B. Face Detectors Based on CNNs

The early CNN-based face detectors usually adopt a coarse-
to-fine strategy [33] and form a CNN in a cascade way. In
recent years, general object detection has achieved significant
progress.These new frameworks including one-stage and two-
stage have inspired many face detection methods.

FaceBoxes [34] proposes a CPU real-time face detector
based on SSD. SSH [13] and S3FD [35] are scale-invariant
face detectors. SSH uses feature maps of shallow layers
to detect small faces while S3FD introduces some specific
strategies to improve the recall rate of small faces. FAN [26]
embeds attention mechanisms into the anchor setting and it is
based on RetinaNet [10]. PyramidBox [23] proposes a novel
context-assisted single shot face detector to handle hard face
detection. DFS [24] introduces a more effective feature fusion
pyramid and a more efficient segmentation branch for hard



face detection. All these methods mentioned above are single
stage face detectors.

In contrast, CMS-RCNN [37], Face R-FCN [27] and FDNet
[32] are two-stage face detectors based on Faster-RCNN [18]
and R-FCN [1]. CMS-RCNN [37] improves the performance
of hard face detection by making use of context information.
Face R-FCN [27] replaces global average pooling by position-
sensitive average pooling to re-weight the different regions of
the face. FDNet [32] designs a light-head Faster RCNN and
introduces some specific training and testing strategies into
face detection.

Generally speaking, two stage face detectors achieve higher
detection accuracy but are not as efficient and fast as single-
stage ones. How to achieve a relatively better balance between
speed and accuracy still remains an open problem.

III. METHODS

In this section,we first illustrate the hourglass backbone of
HFD which contains both bottom-up and top-down pathways.
It is superior to SSH and S®FD whose backbones are only
bottom-up. Then, a simple and effective context module is
added before the third detection layer, for better detecting hard
faces.

A. Network architecture

Fig. 2 shows the sketched general architecture of the pro-
posed HFD. It is a Res-based fully convolutional network
which localizes faces on three detection layers. Feature maps
for detection are extracted by continuous conv-bn-leaky ReLU
(CBL) modules, residual blocks and upsampling layers, which
form the bottom-up and top-down structures looking like an
hourglass. The bottom-up path contains a series of feature
maps of five different scales with a scale step of 1/2. After the
last layer of each stage, we use a CBL layer with kernel size of
3 and stride of 2 instead of a pooling layer to reduce the size
of the feature maps by half, which can preserve more detailed
information that is conducive to small face detection [21]. We
denote the last feature map of each stage from shallow to deep
as {C1,C4,C3,Cy4,Cs}. Cs is the deepest feature map whose
size is reduced to 1/32 of the input size while the number
of channels increases to 1024, which will be input into the
first detection layer as E; after being processed by five CBL
layers.

The following two detection layers are formed in a similar
way, and a top-down pathway is proposed to combine the fea-
ture maps of different scales, in order to take full advantages
of the detailed context information in the shallow layers along
with the deep robust features full of semantic information for
better detection. We merge F; and Cy4 by our proposed FFC
module to get a more representative feature for the second
detection layer. For the last detection layer which is mainly
responsible for small face detection, more discriminative fea-
ture which contains both detailed and semantic information is
needed. Therefore, we fuse two low-level feature maps Co and
C3 by the FFC module firstly to get feature map F; which
is full of detailed context information. Then we merge F}

with F5 which contains robust semantic information. After
a series of CBL layers, we finally obtain F3 which contains
both detailed and semantic information as the input of the last
detection layer. This hourglass architecture is more powerful
than that of SSH and S®FD for detecting small faces, while
the latter two methods only adopt pooling-extracted features
which are not sufficiently facial representative.

The details of our proposed feature-fusion context module
(FFC, section III-B) will be introduced in the next section.
In addition, to further enhance the detection performance, two
other components are added into this general architecture: 1) a
spacial pyramid pooling structure borrowed from SPP-Net [5],
to help distinguish faces from non-faces; and 2) a multi-scale
training as suggested by YOLO and a multi-scale testing with
a pyramid, to enhance scale-invariance of the proposed HFD.

B. Feature Fusion Context (FFC) Module

A shallow layer contains more detailed context information
but is not discriminative, while a deep layer is classifiable
and full of semantic information but lacks context information.
Merging deep layers with shallow ones is beneficial for detect-
ing small objects, as FPN and YOLOv3 already demonstrate.
However, questions remain about how to merge effectively
and efficiently, particularly as different feature maps from the
network always differ in scales and channels.

To overcome this problem, we propose a simple feature-
fusion context (FFC) module (Fig. 3). The FFC module can
effectively fuse two feature maps of different scales and
numbers. The high-level feature maps to be fused are always
smaller in scale; we assume that their scale are 1/a of the scale
of low-level feature maps. We use a 1 x 1 convolution layer
to transform the channels of deep features to be consistent
with the channels of shallow ones, and then we upsample
the transformed deep features by factor of a to make the
resolution of two fused feature maps to be consistent. After
that, we concatenate these two feature maps by channel and
use another 1 x 1 convolution layer to balance the weights of
the two feature maps.

Our FFC module differs from the YOLOv3 backbone in two
ways: 1) shallower layers with better fine-grained information
are used, and richer features from three different scales are
combined; and 2) in each FFC module, a 1 x 1 convolutional
layer is applied to balance the weights from the shallow map
and the deep one. Our proposed feature fusion context module
obtains a 1.4% AP improvement than immediately merging the
medium one with the deep one, this proves its effectiveness.

IV. EXPERIMENTS
A. Datasets

The WIDER FACE dataset contains 32,203 images with
393,703 annotated faces with a high degree of variability in
scale pose and occlusion. 40%, 10% and 50% of the data are
randomly selected as training, validation and test sets. The
validation and test sets are divided into “easy”, “medium”
and “hard” subsets. We train all models on the training set

of the WIDER FACE dataset and evaluate on the WIDER
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Fig. 2: Network architecture of the proposed hourglass face detector (HFD).
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Fig. 3: The proposed feature-fusion context module.

FACE validation set. We mainly focus on “hard” subset which
contains all validation images including faces hard to detect.
For evaluation, the standard average precision (AP) is used.

The FDDB dataset is a dataset of face regions designed for
studying the problem of unconstrained face detection. It has
2,845 images with 5,171 annotated faces. Faces in FDDB are
represented by ellipses instead of rectangle boxes. We use our
model trained on the WIDER FACE dataset to directly test
on the FDDB dataset. On the FDDB dataset, we use the True
Positive Rate (TPR) at the false positives (FP) equals to 2000
to evaluate the performance of the methods.

B. Experimental Setup

Each input image is resized such that its longer side is 608.
Our networks are fine-tuned for 25K iterations starting from
a pre-trained ImageNet classification network. We use mini-
batch of 4 and batch-size of 64 and synchronized SGD is used

to train the model on 4GPUs. The learning rate is initially set
to 0.001 and drops by a factor of 10 after 18K iterations, and
in the early 4K iterations we use the burn-in strategy. We set
momentum to 0.9 and weight decay to 0.0005.

Anchors matching the ground truth best are assigned to
positive, with one ground truth one anchor. Anchors with
IoU>0.7 but not the best overlapped with any ground-truth
faces are ignored, and the remaining anchors are assigned to
negative. For anchor generation, we adapt anchor scales to the
distribution of face scales. Anchor aspect ratios are set to 1 as
faces are nearly square.

During inference, each detection layer outputs all the trans-
formed anchors with scores larger than 0.01 as detection, and
a non-maximum suppression (NMS) with a threshold of 0.4
is performed on the outputs of all detection layers.

C. Results on WIDER FACE

On the WIDER FACE validation set, we compare the
proposed HFD with some popular face detectors, including
HR [7], CMS-RCNN [37], Multitask Cascade CNN (MTCNN)
[33], Faceness [30], SSH [13], S3FD [35], PyramidBox [23]
and Zhu et al. [36].

As shown in Fig. 4, our proposed HFD (plotted with
dark red line) achieves good performance on the validation
set, i.e. 93.1% (Easy), 91.5% (Medium) and 86.9% (Hard).
Experimental results demonstrate that our HFD outperforms
many SOTA face detectors on the “hard” set, outperforming
SSH by about 2.4% and HR by more than 6% in terms of AP
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Fig. 4: Precision-recall curves and average precision (AP)
of the compared methods on the whole WIDER validation
dataset. HFD is plotted with dark red line.

while trained with smaller size than them. HFD also achieves
a comparable result with SSH and S3FD on the “easy” and
“medium” sets. HFD has a lower accuracy than PyramidBox
but is more efficient than the latter as shown in Table III.
Therefore, HFD not only shows excellent performance in hard
face detection, but also is deemed to having high efficiency and
application potential. More discussion about the performance
of the HFD on the WIDER FACE dataset will be shown in
the next section (section V).

095 | 7 ]
Vz //’

Q
2
[
o
2
2 075 PyramidBox (0.9936) B
3 ———— SFD (0.9843)
@ —— HR(0.9762)
= 0.7 | ICC-CNN (0.9710) |
= ——— HFD(Ours) (0.9671)
ScaleFace (0.9599)
MTCNN (0.9505)
0.65 |- LDCF+ (0.9377) h
Faceness (0.9099)
HeadHunter (0.8810)
0.6 |- CVIT (0.8720) 4
——— Yanetal. (0.8615)
ACF-multiscale (0.8607)
0.55 | DDFD (0.8484) i
0.5 L L 1
0 500 1000 1500 2000

False positive

Fig. 5: Receiver operating characteristic (ROC) curves with
discrete scores on the FDDB dataset. The number in the legend
is the true positive rate (TPR) at the false positives (FP) equals
to 2000. HFD is plotted with red line.

D. Results on FDDB

We use our model trained on the WIDER FACE dataset to
directly test on the FDDB dataset and compare our HFD with
other SOTA methods including S3FD [35], PyramidBox [23]
and Zhu et al. [36] as shown in Fig. 5. From Fig. 5 we can
observe that our HFD has achieved 96.71% TPR (FP=2000)
on the FDDB dataset. Because the faces in the FDDB dataset
are similar to those in the “easy” and “medium” subsets of
the WIDER FACE dataset, that is, the size of the faces is
relatively large, and there are relatively few faces in each
image. Therefore, we can come to the conclusion that our
method achieves comparable results with other SOTA methods
on simple face detection.

V. DISCUSSION
A. Ablation study

Results of our ablation study are listed in Table 1. The model
that all five modules or strategies are not used is set as the
baseline. We study effects of five strategies, one by one as
detailed below:

e “Prior” indicates the strategy to take the properties of
the training data to adapt anchor scales. It produces an
increase of 1.5% in AP from the baseline;



TABLE I: Ablation Study Results on WIDER FACE Validation

(a) HFD

(b) SSH

Fig. 6: Detection results of the HFD and the SSH in different scenarios.

“Hard” Set.
Modules and Strategies AP
Prior | SPP | #Anchor | Context | Pyramid

0.807
v 0.822
v v 0.825
v v v 0.825
v v v v 0.839
v v v v v 0.869

o “SPP” is the trick to adopt a spacial pyramid pooling for

feature extraction before the three detection modules. A
pooling field of [1x1, 5x5, 9x9, 13x13] is used to form
four feature maps, which are then concatenated to form
the SPP feature. It provides a slight increase of 0.3% in
AP;

“#Anchor” is the trick of trialing denser or coarser an-
chors. We find no difference between 2, 3 or 4 anchors per
detection layer. Perhaps with more anchors, it will match
better with the ground truth, but it may also increase the
negatives;



o “Context” corresponds to the context module proposed in
section III-B, which improves the AP scores by 1.4%;

e ‘“Pyramid” means that we test the WIDER val dataset
with multiscale input. This boosts AP by 3.0%.

B. Time complexity

TABLE II: Inference time and AP of HFD and SSH on
WIDER FACE Validation “Hard” Set.

Models | Max Size | Time (s) AP
896 172.4 0.839

HFD 1024 208.8 0.846
1216 285.2 0.853
1000 267.8 0.790
SSH 1200 374.2 0.806
1600 571.0 0.814

TABLE III: Inference Time Comparison on WIDER FACE
Validation “Hard” Set.

S3FD
253.9

Method
Time (s)

HFD
172.4

SSH
201.3

PyramidBox
369.2

Our proposed HFD is more efficient than SSH: inference
time of HFD and SSH on the WIDER FACE validation dataset
by using an NVIDIA 1080 Ti GPU is listed in Table II. For a
fair comparison, we evaluate both methods on PyTorch 0.4.1.
The time is accumulated for all 3,226 pictures of the WIDER
FACE validation dataset. HFD achieves the reported detection
performance (83.9% in AP) in 172s with the longest input side
of 896, while SSH achieves the best performance (81.4% in
AP) in 571s with that of 1600. That is, HFD outperforms SSH
on the WIDER FACE validation “hard” subset by 2.5% in AP
with the inference time reduced by about 70%.

To compare the inference speed with other methods, we test
the inference time of different methods. All experiments are
implemented on an NVIDIA 1080 Ti GPU with CUDA 9.0 and
cuDNN v7.0. The maximum sizes of test pictures are resized
to 896. The total time spent on inferring all 3,226 pictures of
the WIDER FACE validation dataset is used to compare the
speed. As indicated in Table III, our HFD has superiority in
inference speed compared with other algorithms.

C. Qualitative Comparison

Fig. 6 illustrates the detection results using the HFD and
SSH methods in different scenarios. In the first crowded
demonstration scenario, there are a lot of small dense faces.
We can find that HFD has a very obvious advantage in
detecting small faces in the back rows. In the second marching
scenario, profile and occlusion are the main obstacles to face
detection. Our HFD basically makes a correct detection for all
the faces while there are many false positives in the detection
result of the SSH. In the last conference scenario, the image
has a low quality and the faces are blurred. The HFD is not
interfered by the low image quality while the SSH makes some
wrong predicitions. In conclusion, compared with the SSH

method, our method has significant advantages in detecting
dense, small, profile, occluded and blurred faces, which proves
that our method has superiority on hard face detection.

VI. CONCLUSION

In this paper, we proposed a one-stage hourglass network-
based hard face detector HFD. The HFD’s excellent per-
formance is attributable to three main technical innovations
adopted in this work: the HFD uses stridden convolutional
layers rather than pooling layers in order to preserve useful
subtle information for hard faces; to supply more detailed and
semantic information for better detecting small faces, the HFD
merges fine-grained shallow and deep feature maps by the
FFC module; to enhance the scale-invariance and adaptability,
the HFD exploits both prior and multiscale information from
the training data. Compared with the SSH face detector, our
method improves the AP on WIDER FACE “hard” set by
about 2.4% and reduces the inference time by 70%. Com-
pared with other SOTA methods, HFD also achieves good
performance on the challenging WIDER FACE and FDDB
datasets. The advantages of HFD in inference speed and hard
face detection bring great potential for practical application.
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