
ar
X

iv
:2

40
2.

05
56

3v
1 

 [
m

at
h.

N
A

] 
 8

 F
eb

 2
02

4

Neural Multigrid Architectures

Vladimir Fanaskov

Center for Design, Manufacturing, and Materials

Skolkovo Institute of Science and Technology

Moscow, Russia

vladimir.fanaskov@skoltech.ru

Abstract—We propose a convenient matrix-free neural archi-
tecture for the multigrid method. The architecture is simple
enough to be implemented in less than fifty lines of code, yet it en-
compasses a large number of distinct multigrid solvers. We argue
that a fixed neural network without dense layers can not realize
an efficient iterative method. Because of that, standard training
protocols do not lead to competitive solvers. To overcome this
difficulty, we use parameter sharing and serialization of layers.
The resulting network can be trained on linear problems with
thousands of unknowns and retains its efficiency on problems
with millions of unknowns. From the point of view of numerical
linear algebra network’s training corresponds to finding optimal
smoothers for the geometric multigrid method. We demonstrate
our approach on a few second-order elliptic equations. For tested
linear systems, we obtain from two to five times smaller spectral
radius of the error propagation matrix compare to a basic linear
multigrid with Jacobi smoother.

I. INTRODUCTION

In this article, we describe how neural networks can be used

to solve a system of linear equations

Ax = b, x ∈ R
n, b ∈ R

n, A ∈ R
n×n, (1)

in a particular case when A results from the discretization of

PDE. Since A is typically large and sparse, iterative methods

are preferable to direct ones [1, Section 8]. It is known that

arbitrary linear iterative method has a form

x(m+1) = x(m) +N
(
b−Ax(m)

)
, det(N) 6= 0, (2)

where N is an approximate inverse of A, and m is iteration

number [2, Section 2.2.2]. To solve equation (1), we represent

N as linear neural network N (ω) and tune parameters ω to

improve convergence speed, i.e., to obtain as small spectral

radius of error propagation matrix I −NA as possible.

The architecture of N (ω) is chosen so that it corresponds

to a particular geometric multigrid solver. For the article to

be self-consistent, we provide a brief review of multigrid

techniques in Section II. The resulting network N (ω) consists

of convolutional layers and does not depend on a matrix of

a linear operator so that it can be conveniently implemented

and applied to a variety of linear problems. The architecture

can be found in Section III.

The loss function that we use for unsupervised training is

described in Section IV. It is the same function that was used

in [3] for a black-box optimization of multigrid solvers.

Next, in Section V we explain, that the training of N (ω) is

not straightforward because A−1 is non-local, and we typically

train on small problems. Namely, it is not enough to find ω
that results in the small value of loss function for a fixed

grid (the number of grid points controls the size of the matrix

A). In addition to that, one needs to present a mechanism

that enlarges the network when the grid is refined. If this

is not done, the performance of a solver based on realistic

neural networks becomes arbitrary bad for a sufficiently fine

grid. To overcome this, we use the serialization of layers.

Serialization performs well for some architectures, but it does

not completely resolve the problem.

Concrete architectures that we test and a baseline model can

be found in Section VI.

As test linear operators, we use five-point, nine-point, and

Mehrstellen discretizations of the Poisson equation in D =
2 as well as anisotropic problem and a problem with mixed

derivatives. The description of equations and learning results

can be found in Section VII. In short, we obtain about five

times smaller spectral radius of the error propagation matrix on

train set
(
n = (25 − 1)2

)
, and from two to four times smaller

spectral radius on test set
(
n = (211 − 1)2

)
.

We conclude with an overview of related works in Sec-

tion IX and a short summary of the paper in Section X.

All results can be reproduced (see Section VIII for details).

II. MULTIGRID METHOD

We start by giving a short introduction to the multigrid

method. Multigrid is a multilevel iterative method that solves

linear system (1) with large sparse matrix A. Two compo-

nents crucial to fast convergence are smoother, and restriction

operators [4, Section 1.5.1].

The smoother is a cheap linear iteration (2) that effectively

reduces error in a subspace W ⊂ R
n. The overall efficiency

and a subspace are controlled by the choice of matrix N , and

the last condition is (2) ensures consistency.

The role of the restriction operator P ∈ R
k×n, k < n is to

perform dimension reduction. Ideally W ⊥ range(P ), so after

smoothing e(n+1) ∈ range(P ). That means we can project

on range(P ), reduce the number of unknowns, and retain all

information about the solution.

Having restriction and smoothing operators, we can con-

http://arxiv.org/abs/2402.05563v1


struct a two-grid cycle:

x(n+1/3) = x(n) +N
(
b−Ax(n)

)
,

(
PAPT

)
e(n+1/3) = P

(
b−Ax(n+1/3)

)
,

x(n+2/3) = x(n+1/3) + PT e(n+1/3)

x(n+1) = x(n+2/3) +N
(
b−Ax(n+2/3)

)
.

(3)

The first line in (3) corresponds to smoothing, the second line

is a coarse-grid equation, the third line is an error correction,

and the last line is a smoothing again. Scheme (3) is preferred

compare to (1) because PAPT is a k× k matrix, that is, it is

smaller, meaning cheaper to invert.

A multigrid method is a two-grid cycle, applied recursively,

i.e., the two-grid cycle is used to solve the second line

in (3). This procedure is repeated until we reach a small

enough matrix that can be inverted by direct methods, f.e.,

LU factorization.

In the case of a simplest geometric multigrid in D = 1, P is

a convolution with stride 2, and a kernel
[
1/2 1/4 1/2

]
(di-

rect product of convolutions in higher dimensions). Smoother

is chosen to be either some variant of damped Gauss-Seidel

(first line) or damped Jacobi (second line) methods:

x(n+1) = x(n) + ωL(A)−1
(
b−Ax(n)

)
;

x(n+1) = x(n) + ωD(A)−1
(
b−Ax(n)

)
,

(4)

where D(A) is a diagonal part of A and L(A) is a lower

triangular (including the diagonal) part of A, and ω ∈ R is

chosen based on A.

Intuition about the role of smoothers and restriction opera-

tors can be gained in the simplest case of Poisson equation [5,

Chapter 13]. It can be shown that Jacobi smoother averages

error. As a result, error considered as a function on a fine grid

lacks high-frequency components and, as a result, can be well

represented on a coarser grid. This is achieved by convolution

operator P , which coincides with a low-pass filter combined

with subsampling.

III. MATRIX-FREE MULTIGRID ARCHITECTURE

To describe our architecture, we need to introduce a few

matrices. For each level k ≥ 1 we use Ak, Pk to describe

matrix of linear operator and the restriction matrix. According

to two-grid cycle (3) the following relation holds Ak+1 =
PkAkP

T
k . For level k = 1, matrix A1 should be given either

explicitly or as a linear operator, i.e., the black-box function

that computes A1x for any given x suffices.

On each level k we need to implement two-grid cycle (3) as

neural network. There are four operations we need to consider:

computation of residual rk ≡ bk − Akxk, restriction Prk,

prolongation (interpolation) PT ek, and smoothing Nkrk .

The simplest operations are restriction and prolongation that

can be considered convolution with at least one stride > 1, and

a transpose to this operation.

x3

w2 w1 A1 w1 w2

A3x3

Fig. 1. Because Ai+1 = PiAiPT

i
, product A3x3 can be computed as a set

of convolutions (dashed lines), and transposed convolutions (solid lines), and
an application of operator on the fine grid (double line); wi corresponds to
convolution kernels.

Computation of the residual is straightforward too. Because

Ak+1 = PkAkP
T
k , any product can be computed recursively:

Amxm =




∏

l=m−1,...,1

Pl



A1




∏

l=1,...,m−1

PT
l



xm. (5)

This procedure is illustrated for k = 3 on Fig. 1.

The situation with smoothers is less straightforward. Not

all smoothers can be considered in a matrix-free framework.

For example, Gauss-Seidel smoother explicitly requires a

lower triangular part of the matrix, which can be hard to

extract. However, there is a family of smoothers, known as

polynomial smoothers [6, Section 3], that are better suited for

our purposes. Polynomial smoothers take a form

x(n+1) = x(n) + p(A)
(
b−Ax(n)

)
, p(A) =

D∑

i=0

αiA
i, (6)

where αi, i = 0, . . . , D are parameters of the smoother chosen

based on matrix A. Since (6) contains only vector-matrix

products, we can apply the smoother using (5).

As a rule, polynomial smoothers are applied to the matrix

with 1 on diagonal, i.e., the diagonal rescaling D(A)−1 is

explicitly introduced. We hide this additional factor in convo-

lution operation.

Algorithm 1 specifies the smoothers that we use. In lines 2

and 5, Ak(x) uses kernels wi, fine-grid operator A and should

be computed as in (5), convw̃i−1
in line 4 should preserve the

size of the input vector, so all strides equal 1.

To summarize, for a given level k, we implement a two-grid

cycle (3) as a convolutional neural network with the following

adjustments:

Algorithm 1 Polynomial smoothing.

1: Input: xk, bk, kernels wi, i = k−1, . . . , 1 corresponding

to convolutions Pl, l = k−1, . . . , 1, fine grid operator A,

kernels w̃j , j = 0, . . . , D that are used to compute p(A).

2: r ← bk −Ak(x)
3: for i = 1 : (D + 1) do

4: xk ← xk + convw̃i−1
(r)

5: r ← Ak(r)
6: end for



1) wk, sk are kernel and strides (at least one stride should

be > 1) that implement convolution and transposed

convolution that corresponds to P and PT ;

2) w̃
(i)
k , i = 0, . . . , D are kernels that are used in Algo-

rithm 1 that substitutes the first and the last lines in (3);

3) all convolutions are with zero biases and without non-

linearities,

4) any matrix-vector product is computed according to (5)

(see also Fig. 1).

The whole multigrid architecture can be constructed by

recursive application of two-grid layers. To imitate matrix

inversion on the coarsest grid, we use a few additional convo-

lutions.

The presence of residuals makes it hard to draw the resulting

architecture. But, in general, a neural network that imitates

multigrid resembles U-Net [7]. The one crucial difference is

that U-Net contains only one ascending and one descending

branches, whereas our architecture contains an additional Λ-

shaped network at each place where the residual bk − Akxk

is needed.

Our approach offers the following advantages:

• Currently, no major machine learning framework supports

sparse-sparse matrix multiplication, so PAPT can not be

computed efficiently.

• The architecture is agnostic to the sparsity pattern of A
and P so that they can be changed easily. This can be

especially useful when graph neural networks are used to

learn the coarsening strategy.

• Since the network consists of convolution layers, one can

benefit from using GPU.

• There is a one-to-one correspondence between some

multigrid schemes and proposed architecture. This im-

proves interpretability.

The main disadvantage is the additional operations we

need to perform to compute Akxk. However, on modern

GPUs, training on matrices with n =
(
25 − 1

)2
takes a few

minutes, so the overhead seems to be justified by the overall

convenience of the architecture.

IV. LOSS FUNCTION

To find optimal parameters of the neural network described

in Section III, we introduce a loss function.

Let x⋆ be the exact solution to (1). It is known that for an

arbitrary linear iterative method (2) with symmetric I −NA,

the following is true
∥∥∥e(n+1)

∥∥∥ ≤ ρ (I −NA)
∥∥∥e(n)

∥∥∥ , (7)

where e(n) = x(n) − x⋆ is an error, ρ (I −NA) is a spectral

radius, and ‖·‖ is an arbitrary norm [2, Section 2.2.6].

Since neural multigrid architecture can be used as a linear

iterative method, upper bound (7) suggests that ρ (I −NA) is

a good loss function.

Because ρ (I −NA) is not readily available, it is a custom

to use an approximation or upper bound to the spectral radius.

Following [3], we use Gelfand formula [8], and stochastic trace

x

φ(x)

Fig. 2. When delta-function is presented as a right-hand side of a continuous
problem, the weak form results in a sparse right-hand side because only a
small number of (shaded) tent functions feels the presence of the source
(denoted by a point).

estimation [9] to derive the following approximation to the

spectral radius:

ρ(B) ≃ ρ1(B, k,Nbatch) ≡


 1

Nbatch

Nbatch∑

j=1

∥∥Bkzj
∥∥2
2




1
/
2k

,

(8)

where B is an arbitrary matrix, and each zj, j = 1, . . . , Nbatch

is a random vector with components i.i.d. according to

Rademacher distribution. In all our experiments we use k =
Nbatch = 10.

V. RESTRICTION ON ARCHITECTURE FOR LINEAR

ITERATIVE METHODS

Standard machine learning pipeline consists of choosing an

appropriate architecture, training (supervised or unsupervised)

with a given loss function, and applying trained model to

unseen data [10, Chapter 11]. In this section, we argue that this

approach is insufficient for training specific neural networks

if we are to use them as iterative methods.

To make an argument, we consider the following boundary

value problem:

∆u(x, y, z) = −δ(x)δ(y)δ(z), u(x, y, z)|x2+y2+z2=R2 = 0,
(9)

that is, a 3D Poisson equation with a point source at the origin,

considered inside a sphere of radius R. The solution is easily

obtained from Green function [11, Section 1.10]

u(x, y, z) =
1

4π

(
1√

x2 + y2 + z2
−

1

R

)
. (10)

One way to solve (9) numerically is to use finite ele-

ment method (see [12] for introduction). For a suitable

defined mesh (for example the mesh as in Fig. 3 can

be used), we introduce a set of piecewise linear functions

φi(x, y, z) that possess cardinality property: φi(xj , yj, zj) =
δij , where (xj , yj, zj) is a fixed grid point. The solution

is approximated as u(x, y, z) =
∑

i φi(x, y, z)ui, and PDE

is enforced in a weak form by Petrov-Galerkin condition∫
dxdydz φi(x, y, z) (∆u(x, y, z) + δ(x)δ(y)δ(z)) = 0. That

gives us a system of linear equations (1) with sparse matrix

and sparse right-hand side. The sparsity of the right-hand side

is illustrated by Fig. 2.

Let U be a space of functions on a finite 3D grid with

spacing ≃ H , and N be a linear neural network U
N
→ U that



Fig. 3. The figure shows how the receptive field of fixed architecture with
only local layers (shaded) changes after refinement. Since convolutions are
performed on discrete data, information from the dot in the middle can spread
over the smaller region (enclosed by the circle) in physical space. This limits
the ability to generalize for a neural network with fixed architecture.

acts like linear operator on space U . Let uk ∈ U be a function

equals 1 at point k and 0 at all other points. Because the grid

is finite, it is possible to find a minimal radius Rk such that

all nonzero elements of N (uk) are inside the ball with radius

Rk centered at point k. We define the radius of influence of

a given network N as

rH(N ) = max
k

Rk.

The example of this radius is given in Fig. 3 for convolution

with 5× 5 kernel.

Now, if refinement is performed and the architecture of the

network does not contain dense layers, the radius of influence

shrinks as explained in the same Fig. 3. This fact is used to

prove the following statement.

Proposition. Let AH be a matrix of linear problem (9)

obtained using finite element method on a given grid with

spacing ≃ H . Let N be a neural network, that consists on

finite number of (local) convolutional layers1, and used as N
in linear iterative method (2). Suppose that the network has

been trained to provide a good convergence for grid H , that

is, ρ(I−NHAH) = ǫ≪ 1. It is always possible to find a grid

with spacing ≃ h < H such that ρ(I − NhAh) is arbitrary

close to 1.

Proof. Without loss of generality we can assume that for grid

H the radius of influence rH(N ) is smaller than a grid size

in a physical space, which is R for our problem. For h =
H
/
2p, p > 1 the radius of influence is rh(N ) = rH(N )/2p.

Let bh be a discrete right hand side corresponding to a delta

function in equation (9). If we start from zero initial guess

x(0) = 0, an estimation to the initial error in L2 norm reads

h3
∥∥∥e(0)

∥∥∥
2

2
≃ 4π

∫ R

0

dr r2u(r)2 = R
/
(12π), (11)

1We exclude nonlocal convolutions based on graph Laplacian as in [13].

and a lower bound on error for step n = K (Krh (N ) < R)

reads

h3
∥∥∥e(K)

∥∥∥
2

2
≥ 4π

∫ R

Krh(N )

dr r2u(r)2 =

=
(
R
/
(12π)

)(
1−

Krh (N )

R

)3

.

(12)

To derive equation (12), we assumed that our iterative method

recovers the exact solution for all points that the network

reached. Note that this argument is valid only because bh is a

sparse vector.

From (7) we conclude

ρ(I −NhA)
K ≥

∥∥∥e(K)
∥∥∥
2

/∥∥∥e(0)
∥∥∥
2
≥

(
1−

Krh (N )

R

)3/2

.

(13)

Because rh can be arbitrary small for sufficiently small h =
H/2p, the expression in the brackets above can be arbitrary

close to 1, which signifies arbitrary slow convergence.

Remark 1. The proposition above holds for networks that

consist of (local) convolutional layers. We exclude networks

with dense and nonlocal layers because they require ≃ O(N2)
(N is a number of inputs) flops, which is unacceptable for

iterative methods. On the other hand, convolutional neural

networks require ≃ O(N) flops and can be applied on grids

with different sizes and geometries.

Remark 2. Our “radius of influence” is similar to the

“domain of dependence” used to analyze convergence of

numerical methods [14, Section 10.7]. Also, there is an evident

parallel with CFL condition [15].

Corollary. Let AH be a matrix of linear problem (9) obtained

using finite element method on a given grid with spacing

≃ H . Let N be a neural network, that consists of finite

number of (local) convolutional layers. It is not possible to

have ‖I −NhAh‖ ≤ ǫ≪ 1, with ǫ independent on h < H . In

other words, it is impossible to uniformly approximate inverses

to Ah using fixed architecture with local layers.

Proof. Since ρ(I − NhAh) ≤ ‖I −NhAh‖ for any matrix

norm, the statement can be proven by contradiction.

Remark 3. It is crucial that operator A−1
h is nonlocal. For

example, Ah from the statement is equivalent to N with a

single convolutional layer.

Remark 4. It is known that neural network can approximate

arbitrary nonlinear operator [16]. The corollary above does

not contradict this result because it is restricted to neural

networks with a finite number of layers.

VI. ARCHITECTURES AND A BASELINE SOLVER

Architecture that we propose in Section III is a convolu-

tional neural network. We want to train this architecture on

small linear problems with a number of variables n ≃ 210 and

apply it on large linear problems with n ≃ 220. According



to the result in the previous section, it is necessary to enlarge

the network when we refine the grid. The simplest strategy

is a serialization of layers. By serialization, we mean that an

additional layer uses parameters from a previous layer. Here

we formulate a few concrete architectures that we are going

to compare in Section VII.

A. LMG

As a baseline model we use multigrid with linear interpo-

lation and two pre-smoothing and two post-smoothing Jacobi

sweeps (second line of equation (4)) with ω = 4/5 (this ω
is optimal for five-point discretization of Poisson equation

in 2D [4, Section 2.1.2]). Linear interpolation means that P
corresponds to convolution with strides (2, 2) with the kernel

klinear =
1

2



1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4


 . (14)

B. s1MG(rs)

The name of the model derived from the fact that it is a

neural multigrid (MG) architecture with a single serialized

layer (s1), which contain adjustable restriction and smoothing

operators (rs), with weights w and w̃ respectively. To have the

same number of floating-point operations as a baseline model,

we use smoothing (Algorithm 1) with D = 0. Both w and w̃
represents kernels of sizes 3× 3, which initially coincide with

linear interpolation (14). Convolutional layer with kernel w has

strides (2, 2), and the layer with kernel w̃ has strides (1, 1).
For this model, we use exact matrix inversion as a coarse-

grid correction. This is possible because we can always stack

enough layers to have a single unknown on a coarse grid for

considered model problems.

C. s1MG(s)

This model is the same as the previous one but with two

differences. First, the restriction operator is fixed to be linear

interpolation (14), and only the smoothing operator is learned.

Second, we explicitly incorporate diagonal rescaling with

D(A)−1 on each level. This is possible because restriction

operators are fixed, so all diagonal can be computed in

advance.

D. s3MG(s)

The model is the same as a previous one, but now we

train three distinct layers with w̃1, w̃2, w̃3. The serialization

is performed as follows:

layer 1 : w̃1; layer 2 : w̃2; layer 3 : w̃3;

layer 4 : w̃1; layer 5 : w̃2; layer 6 : w̃3;

layer 7 : w̃1; . . .

(15)

E. U-Net

This is an attempt to reproduce results from [17].2 We use

architecture presented in Fig. 4, but with 5 layers. U-Net is

2Which is nontrivial because the code is absent and the architecture of the
model is unspecified. We cannot also use results from the article because they
are scarce, and authors measure performance relative to the multigrid method,
which they did not bother to describe in detail.

w̃1
w1

w̃2 w̃2

w1
w̃1

Fig. 4. U-Net architecture with two layers. Convolutions with all strides equal
1 are denoted by double lines (they correspond to smoothing in multigrid
architecture), the single line represents convolution with at least one stride
> 1, dashed line is a transpose to this operation, a curved line is a skip
connection (copy and add).

used as N in linear iteration (14). Parameters for all layers are

distinct, and no serialization is performed.

F. fMG

This is another model without serialization. We use 5 layers

with distinct restriction w and smoothing w̃ operators. Two

convolutions are used as a coarse grid correction. All kernels

are initialised as bilinear interpolation (14).

VII. EXPERIMENTS

We start by defining the model equation and then comment

on the performance of the models. All of the equations below

correspond to the following boundary value problem
(
a
∂2

∂x2
+ b

∂2

∂y2
+ c

∂2

∂x∂y

)
u(x, y) = f(x, y),

x, y ∈ (0, 1)
2 ≡ Γ, u(x, y)|∂Γ = 0,

(16)

that is, a second-order equation with Dirichlet boundary con-

ditions. For all discrete problems, we also perform a Jacobi

preconditioning step A→ D(A)−1/2AD(A)−1/2 [18, Section

3.1].

A. Model equations

1) Poisson equation: Here a = b = −1, c = 0, and the

corresponding kernels are

kP(5) =




0 −1/4 0
−1/4 1 −1/4
0 −1/4 0



 , (17)

kP(9) =




0 0 1/60 0 0
0 0 −4/15 0 0

1/60 −4/15 1 −4/15 1/60
0 0 −4/15 0 0
0 0 1/60 0 0



, (18)

kP(M) =




−1/20 −1/5 −1/20
−1/20 1 −1/20
−1/20 −1/5 −1/20



 , (19)

which correspond to second-order, and two distinct fourth-

order schemes. The last discretization is known as Mehrstellen



TABLE I
kP(5) , EQUATION (17), ρ(I −NA)

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG

3 0.11 0.047 0.046 0.028 0.50 0.031
4 0.13 0.051 0.050 0.035 0.54 0.034
5 0.15 0.057 0.058 0.041 0.58 0.037

6 0.16 0.19 0.066 0.050 0.92 0.37
7 0.17 0.58 0.073 0.059 − 0.80
8 0.19 − 0.080 0.065 − −
9 0.20 − 0.088 0.073 − −
10 0.21 − 0.094 0.083 − −
11 0.23 − 0.10 0.092 − −

and can be used to construct sixth-order accurate discretization

for sufficiently smooth right-hand side and boundary data [19].

2) Anisotropic Poisson equation: In this case a = −ǫ, b =
−1, c = 0 and the kernel reads

kA =




0 −1/(2 + 2ǫ) 0
−ǫ/(2 + 2ǫ) 1 −ǫ/(2 + 2ǫ)

0 −1/(2 + 2ǫ) 0


 , (20)

and we use ǫ = 2 and ǫ = 10.

3) Mixed derivative: Here a = b = −1 and c = 2τ . The

kernel is

kM =



−τ/8 −1/4 τ/8
−1/4 1 −1/4
τ/8 −1/4 −τ/8


 , (21)

and we test for τ = 1/4 and τ = 3/4.

B. Results

Results are gathered in Tables I–VII. Each table contains

ρ(I−NA) approximated by equation (8) for a given architec-

ture N , J fixes the number of grid points along each direction

nx = (2J − 1), ny = (2J − 1), and a total number of points

n = nxny . Symbol “−” means that ρ1 ((I −NA) , 10, 10) ≥
1 (see (8))3. Each model that uses serialization applied with J
layers, U-Net and fMG both contain ≤ 5 layers for all grids.

The training is done for J ≤ 5, then we test for J ∈ [6, 11].

3This fact does not automatically mean that the actual spectral radius is
greater than one. It might as well be merely close to one. In any case
ρ1 ((I −NA) , 10, 10) ≥ 1 implies a significant deterioration of the solver.

TABLE II
kP(9) , EQUATION (18), ρ(I −NA)

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG

3 0.16 0.058 0.069 0.042 0.53 0.030
4 0.22 0.063 0.073 0.041 0.58 0.031
5 0.25 0.070 0.079 0.049 0.62 0.038

6 0.28 0.081 0.088 0.086 − 0.54
7 0.30 0.33 0.096 0.11 − 0.89
8 0.32 0.82 0.10 0.12 − −
9 0.35 − 0.11 0.13 − −
10 0.37 − 0.12 0.14 − −
11 0.40 − 0.13 0.15 − −

TABLE III
kP(M) , EQUATION (19), ρ(I −NA)

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG

3 0.073 0.030 0.036 0.022 0.40 0.017
4 0.094 0.034 0.041 0.028 0.44 0.019
5 0.11 0.041 0.048 0.02 0.60 0.022

6 0.12 0.13 0.058 0.042 0.96 0.52
7 0.13 0.40 0.065 0.051 − 0.99
8 0.14 0.78 0.071 0.057 − −
9 0.15 0.99 0.077 0.063 − −
10 0.16 − 0.083 0.069 − −
11 0.17 − 0.090 0.076 − −

1) Poisson equation: (Tables I–III) For all discretizations

of the Poisson equation, we can see that architectures U-Net,

fMG, and s1MG(rs) fail to provide a good solver for J ≥ 6.

Presumably, the spectral radius of error propagation matri-

ces corresponding to U-Net and fMG architectures deteriorates

because neural networks have fixed sizes.

This explanation does not work for s1MG(rs) because of

the serialization performed. We can conjure that because both

restriction and smoothing operators are optimized, s1MG(rs) is

getting tuned to the spectrum of the matrix with n = (25−1)2,

since the spectrum changes when J increases, the solver ceases

to be efficient. It is evident from other examples that the naive

serialization does not seem to work when both restriction and

smoothing operators are optimized.

The only two solvers (besides a baseline model) that retain

their efficiency are s1MG(s) and s3MG(s). The latter is better

than the former for five-point (17) and Mehrstellen (19) dis-

cretizations, but for the long stencil (18) s1MG(s) is superior.

We can conclude that for the Poisson equation, U-Net is the

weakest model, fMG and s1MG(rs) fail to generalize on the

test set, and both s1MG(s) and s3MG(s) can generalize and

outperform a baseline model on a test set.

2) Anisotropic Poisson equation: (Tables IV, V) For equa-

tion (20), the trend is largely the same. That is, fMG, s1MG(rs)

and U-Net lose their efficiency, s1MG(s) and s3MG(s) are

robust and outperform a baseline model.

It is instructive to discuss results for anisotropic equation

with ǫ = 10. First, we can see that all solvers are relatively

inefficient. The reason is a full coarsening that we applied.

If one uses semicoarsening instead, the results would be the

TABLE IV
kA , EQUATION (20), ǫ = 2

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG

3 0.23 0.071 0.076 0.047 0.65 0.060
4 0.29 0.076 0.085 0.048 0.70 0.067
5 0.31 0.084 0.093 0.054 0.76 0.075

6 0.33 0.31 0.10 0.066 − 0.39
7 0.36 0.74 0.11 0.089 − 0.74
8 0.38 − 0.12 0.10 − −
9 0.41 − 0.13 0.11 − −
10 0.44 − 0.15 0.12 − −
11 0.47 − 0.16 0.13 − −



TABLE V
kA , EQUATION (20), ǫ = 10

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG

3 0.59 0.40 0.44 0.42 0.91 0.44
4 0.73 0.42 0.47 0.42 0.99 0.47
5 0.81 0.49 0.53 0.49 − 0.53

6 0.88 − 0.59 0.53 − −
7 0.94 − 0.63 0.57 − −
8 − − 0.68 0.61 − −
9 − − 0.73 0.65 − −
10 − − 0.78 0.70 − −
11 − − 0.83 0.75 − −

same as for the isotropic Poisson equation. Because of the full

coarsening, the U-Net solver fails already on a train set. If one

further increases ǫ, our networks would not be able to provide

efficient solvers unless strides are chosen appropriately. If

strides and sizes of filters are considered as hyperparameters,

it should be possible to apply Bayesian optimization [20],

reinforcement learning [21], or genetic programming [22] to

construct optimal solver.

3) Mixed derivative: (Tables VI-VII) Equation with mixed

derivative changes type from elliptic to hyperbolic when τ
crosses 1. It is interesting to look at how our models behave

when τ approach 1.

For τ = 1/4 architectures s1MG(s), s3MG(s) produces

more efficient solvers than the standard multigrid with two

Jacobi sweeps. On the other hand, U-Net is of no use even

on the test set, and fMG and s1MG(rs) deteriorate rapidly for

J > 5.

We can see that for τ = 3/4 s3MG(s) performs substantially

better than s1MG(s) on the train set. However, on the test set, it

results in only a marginally smaller spectral radius. This means

that the training and serialization strategies are not ideal. It

should be possible to use additional parameters of s3MG(s)

more efficiently. Other architectures behave similarly to the

case τ = 1/4.

VIII. REPRODUCIBILITY

To ensure complete reproducibility, we share a set of

Jupyter notebooks that contain all models, linear equations,

and training loops: https://github.com/VLSF/nmg.

TABLE VI
kM , EQUATION (21), τ = 1/4

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG

3 0.11 0.040 0.049 0.029 0.49 0.043
4 0.14 0.049 0.056 0.032 0.54 0.048
5 0.15 0.061 0.065 0.037 0.58 0.054

6 0.17 0.27 0.073 0.045 0.88 0.34
7 0.18 0.67 0.081 0.052 − 0.78
8 0.19 − 0.088 0.062 − 0.98
9 0.21 − 0.095 0.072 − −
10 0.22 − 0.10 0.083 − −
11 0.24 − 0.11 0.092 − −

TABLE VII
kM , EQUATION (21), τ = 3/4

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG

3 0.24 0.097 0.15 0.055 0.51 0.062
4 0.35 0.11 0.16 0.071 0.56 0.069
5 0.41 0.12 0.19 0.087 0.61 0.082

6 0.46 0.24 0.23 0.19 0.79 0.33
7 0.50 − 0.25 0.25 0.99 0.72
8 0.54 − 0.28 0.28 − 0.98
9 0.59 − 0.31 0.30 − −
10 0.63 − 0.33 0.33 − −
11 0.68 − 0.36 0.35 − −

IX. RELATED WORK

Here we discuss a few related attempts to improve the

multigrid method with machine learning tools. In the already

mentioned paper [3], authors use stochastic gradient-based

optimization to learn optimal multigrid solvers. This work

roughly corresponds to architecture s1MG(rs), and our training

strategy is exactly the same as in [3]. From the results, (Tables

I–VII) we can conclude that simultaneous optimization of

restriction and smoothing operators does not lead to a robust

solver.

The other multilevel solver that we tried is a U-Net from

[17]. As we pointed in Section VI, we cannot be sure that

we reproduce results from [17] because the paper contains

omissions. However, U-Net architecture from Fig. 4 fails

on the test set and even unable to work on the train set

for the anisotropic Poisson equation. It is not hard to see

that U-Net architecture is just a slightly generalized filtering

preconditioner [23]. Given that, the whole scheme from [17]

is a generalized Richardson iteration for the preconditioned

system. An optimal spectral radius for the preconditioner

Richardson method is (κ(NA)− 1)
/
(κ(NA) + 1), where

κ(NA) is a condition number, so to match multigrid κ(NA)
should be about 1.5. This means N should be much better

than (optimal) Schwarz preconditioners for Poisson equation

[24].

Two articles that firmly demonstrate that machine learning

is a valuable tool for the construction of multigrid solvers are

[25] (geometric multigrid), [26] (algebraic multigrid). In both

cases, the authors take Gauss-Seidel smoother and focus on

restriction weights. In some sense, our contribution is comple-

mentary because we focus on finding optimal smoothers and

use bilinear interpolation as PT . We can speculate that in both

cases, scalable solvers are obtained in part because authors

utilize ready-made coarsening strategies and robust smoother.

Namely, in [25] a strategy from algebraic multigrid (AMG)

is used to restore the solution on the fine grid in such a way

that b − Ax = 0 for red points in a red-black pattern, and

in [26] authors completely rely on AMG coarsening strategy.

An attractive alternative would be to use kriging to perform

coarsening as explained in [27].

Other related areas are Bootstrap AMG [28] and optimiza-

tion based on local Fourier analysis [30], [29].



X. CONCLUSION

We introduce a convenient architecture that represents multi-

grid as a convolutional neural network. Using the simple

3D Poisson equation, we argue that the training of linear

solver should be supplemented by a mechanism that enlarges

the network’s size. The simplest possible solution based on

serialization of layers performs well, i.e., result in a robust

solver competitive with a baseline model, but only for some

architectures. Sadly, serialization does not work for the most

promising architecture that combines optimization of smooth-

ing and restriction operators. In our opinion, this problem can

be solved either by a modification of the loss function or by

an introduction of an additional mechanism that assembles

multigrid based on pretrained layers. This is the focus of our

current research.

REFERENCES

[1] Y. Saad, “Iterative methods for linear systems of equations: A brief
historical journey,” in 75 years of mathematics of computation, ser.
Contemp. Math. Amer. Math. Soc., Providence, RI, 2020, vol. 754, pp.
197–215.

[2] W. Hackbusch, Iterative solution of large sparse systems of equations,
2nd ed., ser. Applied Mathematical Sciences. Springer, [Cham], 2016,
vol. 95.

[3] A. Katrutsa, T. Daulbaev, and I. Oseledets, “Black-box learning of
multigrid parameters,” J. Comput. Appl. Math., vol. 368, pp. 112-524,
12, 2020.

[4] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid. Academic
Press, Inc., San Diego, CA, 2001, with contributions by A. Brandt, P.
Oswald and K. Stüben.

[5] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2003

[6] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, “Parallel multigrid
smoothing: polynomial versus Gauss-Seidel,” J. Comput. Phys., vol. 188,
no. 2, pp. 593–610, 2003.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
worksfor biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer,[Cham], 2015, pp. 234–241

[8] V. Kozyakin, “On accuracy of approximation of the spectral radius
by the Gelfand formula,” Linear Algebra Appl., vol. 431, no. 11, pp.
2134–2141, 2009.

[9] H. Avron and S. Toledo, “Randomized algorithms for estimatingthe trace
of an implicit symmetric positive semi-definite matrix,” J.ACM, vol. 58,
no. 2, pp. Art. 8, 17, 2011.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, ser. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, 2016.

[11] J. D. Jackson, Classical electrodynamics, 3rd ed. John Wiley &
Sons,Inc., New York-London-Sydney, 1998.

[12] P. G. Ciarlet, The finite element method for elliptic problems, ser.
Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2002, vol. 40, reprint of the
1978 original.

[13] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks
andlocally connected networks on graphs,” in International Conference
on Learning Representations, CBLS, 2014.

[14] R.J. LeVeque, Finite difference methods for ordinary and partial differen-
tial equations. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2007.

[15] R. Courant, K. Friedrichs, and H. Lewy, “On the partial differencee
quations of mathematical physics,” IBM J. Res. Develop., vol. 11,
pp.215–234, 1967

[16] T. Chen and H. Chen, “Universal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its application
to dynamical systems,” IEEE Transactions on Neural Networks, vol. 6,
no. 4, pp. 911–917, 1995.

[17] J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon, “Learning
neural PDE solvers with convergence guarantees,” in International
Conference on Learning Representations, 2019.

[18] A. J. Wathen, “Preconditioning,” Acta Numerica, vol. 24, p. 329–376,
2015.

[19] J. B. Rosser, “Nine-point difference solutions for Poisson’s equation,”
in Computers and mathematics with applications, 1976, pp. 351–360.

[20] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[21] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” Journal of Machine Learning Research, vol. 18, no. 185, pp.
1–52, 2018.

[22] J. Schmitt, S. Kuckuk, and H. Köstler, “Constructing efficient multigrid
solvers with genetic programming,” in Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, ser. GECCO’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1012–1020.

[23] C. H. Tong, T. F. Chan, and C.-C. J. Kuo, “Multilevel filtering precon-
ditioners: extensions to more general elliptic problems,” SIAMJ. Sci.
Statist. Comput., vol. 13, no. 1, pp. 227–242, 1992

[24] X. Zhang, “Multilevel Schwarz methods,” Numer. Math., vol. 63, no.4,
pp. 521–539, 1992.

[25] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel, “Learning
to optimize multigrid PDE solvers,” in Proceedings of the 36th Interna-
tional Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, vol. 97. PMLR, 09–15 Jun 2019, pp. 2415–2423.

[26] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh, “Learning
algebraic multigrid using graph neural networks,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, vol. 119. PMLR, 13–18 Jul 2020, pp.
6489–6499.

[27] H. Gottschalk and K. Kahl, “Coarsening in algebraic multigrid using-
gaussian processes,” arXiv preprint arXiv:2004.11427, 2020.

[28] A. Brandt, J. Brannick, K. Kahl, and I. Livshits, “Bootstrap AMG,”
SIAM J. Sci. Comput., vol. 33, no. 2, pp. 612–632, 2011.

[29] J. Schmitt, S. Kuckuk, and H. Köstler, “Optimizing geometric multigrid
methods with evolutionary computation,” ArXiv: 1910.02749,2019.

[30] R. Wienands and W. Joppich, Practical Fourier analysis for multigrid
methods, ser. Numerical Insights. Chapman & Hall/CRC, Boca Raton,
FL, 2005, vol. 4.

http://arxiv.org/abs/2004.11427

	Introduction
	Multigrid method
	Matrix-free multigrid architecture
	Loss function
	Restriction on architecture for linear iterative methods
	Architectures and a baseline solver
	LMG
	s1MG(rs)
	s1MG(s)
	s3MG(s)
	U-Net
	fMG

	Experiments
	Model equations
	Poisson equation
	Anisotropic Poisson equation
	Mixed derivative

	Results
	Poisson equation
	Anisotropic Poisson equation
	Mixed derivative


	Reproducibility
	Related work
	Conclusion
	References

