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Abstract—Federated learning (FL) is an emerging distributed
machine learning paradigm that protects privacy and tackles
the problem of isolated data islands. At present, there are
two main communication strategies of FL: synchronous FL
and asynchronous FL. The advantages of synchronous FL are
that the model has high precision and fast convergence speed.
However, this synchronous communication strategy has the risk
that the central server waits too long for the devices, namely,
the straggler effect which has a negative impact on some time-
critical applications. Asynchronous FL has a natural advantage
in mitigating the straggler effect, but there are threats of model
quality degradation and server crash. Therefore, we combine
the advantages of these two strategies to propose a clustered
semi-asynchronous federated learning (CSAFL) framework. We
evaluate CSAFL based on four imbalanced federated datasets in
a non-IID setting and compare CSAFL to the baseline methods.
The experimental results show that CSAFL significantly improves
test accuracy by more than +5% on the four datasets compared to
TA-FedAvg. In particular, CSAFL improves absolute test accuracy
by +34.4% on non-IID FEMNIST compared to TA-FedAvg.

I. INTRODUCTION

Federated learning (FL) [1]–[3] is an emerging machine

learning framework that utilizes multiple edge devices to

jointly train a global model under the coordination of the

central server. The training process of FL is divided into plenty

of communication rounds. In each communication round, the

edge devices download and use the global model parameters

from the central server to perform optimization with local data

for obtaining the local model parameters. Finally, each edge

device updates the local model parameters to the central server

for aggregating new global model parameters. Throughout the

training process of the federated network, the training data of

the client is always kept locally and is not transmitted, which

protects data privacy [4]–[6]. In practice, The FL framework

plays a crucial role in supporting privacy-sensitive applications

on edge devices [7].

There are two model updating mechanisms for federated

learning: synchronous and asynchronous. As shown in Fig. 1,

we observe the training process of the two update strategies.

Due to the different update mechanisms, these two FL frame-

works have their own merits and drawbacks:

• Synchronous FL: In the synchronous FL, all clients need

to download the global model parameters at a unified time
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Fig. 1. The training procedures of synchronous FL and asynchronous FL

node, and the central server waits for all clients to com-

plete the training tasks. The merits of this synchronous

updating strategy are the model has fast convergence

and high precision. The only drawback is the straggler

effect [8] caused by network resources or poor hardware

resources, which puts the server fall into an idle state.

• Asynchronous FL: Under the asynchronous FL, the cen-

tral server cooperates with clients that complete the

training tasks, rather than waiting for all clients, and

each client can ask the central server for the new global

model parameters when the training procedure is com-

pleted. Although this model updating strategy avoids

the server falling into the idle state, it also has some

shortcomings. On the one hand, this strategy makes the

data transmission larger, which may cause the server to

crash [9]. On the other hand, the gradient divergence

caused by asynchronous updating will further degrade the

performance of the model.

There have been many efforts in FL synchronous or asyn-

chronous training algorithms. McMahan et al. propose the

FL framework Federated Averaging (FedAvg) [1] and Li et

al. experimentally and theoretically prove that FedAvg can

achieve O(1/T ) convergence rate with decayed learning rate

under a statistical heterogeneous setting [10]. To relieve the

effect of imbalanced data on accuracy, Duan et al. propose

a self-balancing FL framework Astraea [11]. FedAvg and

Astraea are both synchronous FL frameworks. However, these

algorithms do not consider the stragglers, which is unfriendly

for time-critical applications. Asynchronous FL framework

mitigate the straggler effect. Xie et al. Proposed FedAsync [12]

framework with a staleness function. Chen et al. Propose an

http://arxiv.org/abs/2104.08184v1


asynchronous algorithm to tackle the challenges associated

with heterogeneous edge devices, such as computational loads,

stragglers [13]. However, these frameworks ignore the situa-

tion that the server may crash due to the continuous processing

of requests from the clients [9].

In this paper, we propose a novel clustered semi-

asynchronous federated learning (CSAFL) framework, which

mitigates the straggler effect and controls model staleness in

the asynchronous update for accuracy improvement. CSAFL

leverages a spectral clustering algorithm [14], which groups

clients according to the affinity matrix constructed by the

delay and direction of clients’ model update. In each com-

munication round with fixed time budget, the selected clients

do synchronous or asynchronous update independently, and

contribute the update parameters to the group model them be-

long to. The main contributions of this paper are summarized

as follows:

• We propose a novel clustered semi-asynchronous feder-

ated learning (CSAFL) framework. As far as I know, this

is the first framework that combines synchronous and

asynchronous update mechanisms.

• We design two strategies to alleviate the model staleness

problem caused by asynchronous updating. The first is to

leverage a spectral clustering algorithm to divide clients

with different learning objectives into multiple groups.

The second is by limiting the model delay.

• We evaluate CSAFL on four federated datasets, and

show its effectiveness in mitigating the straggler effect

compared to T-Fedavg, and show the accuracy improve-

ment of the model is more than +5% on the four

datasets compares to TA-FedAvg. Specially, the maximum

accuracy improvement is +34.4% on FFEMNIST dataset

compared to TA-FedAvg.

The rest of this paper is organized as follows. Section II

outlines the background of synchronous FL and asynchronous

FL. Section III shows the motivation of the CSAFL frame-

work. Section IV details the design of the CSAFL framework.

Evaluation results are presented and analyzed in Section V.

Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Federated Learning

In this section, we first present the vanilla synchronous

FL framework FedAvg. Then we briefly introduce the asyn-

chronous FL framework based on Fedavg.

McMahan et al. first propose the concept of federated

learning, and later propose a widely used federated learning

framework FedAvg [1], which involves solving a machine

learning problem by loosely combining multiple devices under

the coordination of a central server. Unlike the traditional

distributed machine learning method, the computing nodes in

the FL framework keep the training data locally and do not

exchange or transfer the training data in the federated network.

Instead, only the local updates of each computing node are

transmitted, which reduces privacy risks. Nevertheless, the

Algorithm 1 Federated Averaging

1: procedure FL SERVER TRAINING

2: Initialize global model w0.

3: for each communication round t = 1, 2, ..., T do

4: St ← Randomly select K clients from N clients.

5: Server broadcasts wt to the selected clients.

6: for each client ci ∈ St parallelly do

7: w
i
t+1 ← ClientUpdate(i, wt).

8: wt+1 ← wt +
∑

ci∈St

ni

n
w

i
t+1

9: function CLIENTUPDATE(i, w)

10: ŵ ← w

11: for each local epoch e = 1, 2, ..., E do

12: for each local batch b ∈ B do

13: w ← w − η∇L(b;w)

14: return w

central server has no control over computing nodes. For

example, computing nodes can join or drop out of the federated

network at any time. In particular, the optimization goal of

general FL is:

min
w

f(w) ,

N
∑

k=1

pkFk(w), (1)

which means solving model updates w when the value of

f(w) is the smallest. In (1), N is the number of clients

participating in training, pk refers to the participation weight

of the k-th device, and pk > 0,
∑

k pk = 1, Fk(w) is the local

objective optimization function of the k-th device, we define

Fk(w) as:

Fk(w) ,
1

nk

∑

(xi,yi)∼pk
data

l(xi, yi,w), (2)

where nk is the training data size of the k-th client, (xi, yi) is

the sample of the k-th client and obeys the data distribution

pdata. l(xi, yi,w) is the prediction loss function on (xi, yi).
Specifically, the synchronous FL based on FedAvg mainly

includes a central server maintaining the global model and

multiple participants, which communicate through network

connections with the server. In each communication round t,
the server first selects a part of the client K from all clients

N to participate in the training tasks and then broadcasts the

global model wt through the network into the selected clients.

The client ci updates the w
i

t+1 locally based on wt. When

the client completes the local training procedure, it transmits

w
i

t+1 to the server through the network. The server waits for

all clients to complete the training task. Finally, the server

aggregates the new global model wt+1 by averaging the local

solutions of the clients. For an FL task, to achieve the target

accuracy, it usually needs hundreds of communication rounds.

The pseudo-code of FedAvg is shown in Algorithm 1,

where St is a random subset of K clients randomly selected in

each communication round. Minibatch B is the batch number



of training data, and b refers to the subset of training data

separated by B. Local epoch E is the number of local training.

ni is the data size of client ci and n =
∑

ci∈St
ni is the total

data size of selected clients. η is the learning rate of the local

solver.

As shown in Algorithm 1, we note that the server needs to

wait for all clients to complete the synchronous FL system’s

training tasks, which is negative for some time-critical applica-

tions. Therefore, the asynchronous FL framework is proposed.

We briefly introduce the asynchronous FL framework based

on FedAvg, where each client updates the local model to the

global model independently. Whenever the server receives the

local update from the client, it will refresh the global model.

Therefore, the server does not need to wait for stragglers for

aggregation.

B. Related Work

Federated Learning (FL), first proposed by Google, is a new

approach to fitting machine learning into the edge. Existing

FL frameworks can be classified into synchronous FL and

asynchronous FL according to model updating. Most of the

studies on synchronous FL do not consider the issues of

stragglers due to the device heterogeneity and the instability

of network conditions [1] [15] [16]. To eliminate the straggler

effect on the statistical heterogeneity, Li et al. [17] propose

a near term, experimentally prove this term can improve the

stability of the framework and provide convergence guarantees

in theory. However, the server still needs to wait for the local

updates of stragglers before aggregation. In order to address

the issue that all clients have to wait for the slowest one, Li et

al. [18] propose a strategy to let the central server only accept

the responses of the top threshold k clients, and the rest of the

clients are regarded as stragglers. This method simply dropouts

the stragglers, ignores the possibility of valuable data on the

stragglers. In addition, to mitigate the impact of stragglers,

Dhakal et al. [19] develop a coded computing technique for

FL where sever compensates the gradient of the stragglers.

However, this compensation is the result of the sever calculates

the gradients based on the client’s parity data. There is a risk

of privacy leakage.

Asynchronous FL has a natural advantage over synchronous

FL in solving the straggler effect [20] [21] [22], where the

server can aggregate without waiting for stragglers. Chen et

al. propose a ASO-Fed framework [13], which updates the

global model in an asynchronous manner to tackle stragglers.

However, gradient staleness is not considered, which may

threaten the convergence of the model. Especially, Xie et al.

develop a FedAsync [12] algorithm which combines a function

of staleness with asynchronous update protocol. However, the

clients will continue to transmit a large amount of data to

the server, which may cause the server to crash. In terms of

reducing data transmission, Wu et al. propose a SAFA [20]

protocol which divides clients into three types, in which

asynchronous clients continuously perform local update until

the difference between local update version and global model

TABLE I
THE STATISTICS OF THE FOUR FEDERATED DATASETS

Task Dataset Model devices samples

Image Classification
MNIST

MCLR
1000 69035

FEMNIST 200 18345
Simulation Test Synthetic(0.8,0.5) 100 75349

Sentiment Analysis Sent140 LSTM 772 40783

version reaches tolerance. Although SAFA considers model

staleness, the server needs to wait for the asynchronous clients.

III. PRELIMINARY CASE STUDIES AND MOTIVATION

In this section, we illustrate our preliminary case studies,

which guide the motivation for a new grouping model update

strategy in FL.

Asynchronous FL has a natural advantage in solving the

straggler effect in FL [20], but the model delay caused by

asynchronous update may affect the accuracy of the model. To

investigate the influence of different updating strategies on the

accuracy of the model influence of different model updating

strategies, we study the training process of synchronous FL

and asynchronous FL. More specifically, we set up this test

based on a 62- class Federated Extended MNIST [23] (FEM-

NIST) dataset using the multinomial logistic regression model.

The statistical information of FEMNIST dataset is shown in

Table I. In order to show the straggler effect clearly, we set a

fixed time budget hyper-parameter for each communication

round. So in a communication round, the client may do

multiple synchronous or asynchronous updates. Under a fixed

time budget, we set up two groups of experiments based on

FedAvg, which are T-FedAvg and TA-FedAvg. TA-FedAvg is

an asynchronous update algorithm based on FedAvg. In this

FL test, we adopt the same notation as [1]: the number of

all clients K = 200, the size of local minibatch B = 10,

the number of local epochs E = 10, the number of round

T = 200, the learning rate η = 0.03, the number of selected

clients per round is 20. We add the time budget of each round

H . In this test, H = 15000ms.

The top-1 test accuracy of the two model update strategies

based on FEMNIST dataset is shown in Fig. 2. For the

TA-FedAvg algorithm, a 26.3% reduction in the top-1 test

accuracy compared to the T-FedAvg algorithm. This test shows

that the asynchronous update strategy harms the accuracy

of the model. In the case of synchronous model update, all
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Fig. 2. The straggler effect in the synchronous FL framework can be observed
in the figure on the left, and the frequency distribution of the clients‘ idle
time is unbalanced; The figure on the right shows the accuracy comparison
of asynchronous FL and synchronous FL in the process of model training.



clients simultaneously download the global model parameters

from the server. There is no client training with old model

parameters in the same communication round. Obviously, the

model delay of each client is 1. However, in the case of

asynchronous model update, When the server receives the local

model parameters uploaded by one client, the global model

on the server has been updated many times by other clients.

Therefore, we realize that the model delay of each client is

not steady. Due to the instability of model delay, the accuracy

of asynchronous updates has decreased significantly.

As shown in Fig. 2, we can observe the clients’ idle time

distribution, which clearly shows that the server needs to wait

too long, and the idle time is unbalanced in synchronization

FL. However, in asynchronous FL, the server does not need

to wait for all clients to complete the training tasks of

each round. That is, when a client finishes uploading local

model parameters, the server immediately refresh the global

model, so the idle time of each client is 0. We assume that

the communication time for the client to download model

parameters from the server is negligible.

The preliminary case study shows that there is a straggler

effect in the synchronous model update. In addition, the

asynchronous model update strategy has the effect of precision

degradation caused by model delay. We are also inspired by the

Iterative Federated Clustering Algorithm (IFCA) framework

proposed by Avishek [24], which considers different groups of

users have their objectives. Therefore, we propose a novel clus-

tered semi-asynchronous federated learning (CSAFL) frame-

work.

IV. CSAFL

A. Framework Overview

To tackle the straggler effect in synchronous FL and model

staleness in asynchronous FL, we propose a novel clustered

semi-asynchronous federated learning (CSAFL) framework,

which leverages a clustering algorithm based on similarity

metrics to group clients. CSAFL combines synchronous FL

and asynchronous FL to drive clients to update local model

parameters to the same group’s group model. As far as we

know, this is the first paper to combine synchronous and

asynchronous update mechanisms.

Our model architecture is shown in Fig. 3, CSAFL includes

several groups, which can be deployed to the central server,

or some devices in the middle layer, such as the edge server.

They maintain the group models. In a group, the group model

is the global model and the latest model. In this paper, we

assume that all groups are deployed on a central server.

CSAFL also contains a number of clients, which can be mobile

phones, IoT devices, etc. There is a one-to-one communication

between the client and its group. Due to the asynchronous

update mechanism, the model maintained on the client is not

necessarily the latest.

The training process of CSAFL is shown in Algorithm

2, CSAFL first initializes the group model WG
0 . In each

communication round, the selected clients update the group

model in its group, as shown in Fig. 3. For group gx, clients
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Fig. 3. The framework of CSAFL. In a group training process, group 1
randomly selects three clients, A, B, C. The up arrow indicates that the client
updates the local model to the group model, and the down arrow indicates
that the client downloads the parameters of the group model

A,B,C are the selected clients in one communication round.

The update process within the group gx is divided into the

following five steps:

1) Group gx broadcasts the initial model to clients A,B,C
and passes the version number of the group model,

which is represented by (W gx , 0)

2) After the clients A,B,C receive the latest group model,

they independently update the version number of the

local model, such as, for client A (V A
pre, V

A
new)

3) Clients A,B,C asynchronously update the group model

according to its computing capacities and communi-

cation conditions. Each process of the asynchronous

update will increase the version number of the group

model. Before update operation, the difference between

Vpre and Vnew is calculated. If the difference is more

significant than the tolerance H of gradient staleness,

the clients whose time budgets are not exhausted are

forced to update synchronously.

4) After each synchronization update, all clients download

the same group model.

5) Repeat step 2 to step 4 until the time budget of the

communication round is exhausted.

Similarly, when other clients are selected, the training

process within the group is the same. Each group completes

its own intra group update without interference. Each group

has the same number of communication rounds.

We cover more details of CSAFL in the following four

sections.

B. Clustering Strategy

Clustering Algorithm

As shown in Algorithm 2, we apply spectral clustering

in this paper. Spectral clustering is more suitable for our

framework, the following reasons:



• It is more general than the K-Means clustering algo-

rithm [25], concretely, it is suitable for both convex sets

and non-convex sets.

• It is not very sensitive to stragglers.

• It uses the Laplacian Eigenmaps for high-dimensional

data, which reduces the load of calculation.

Similarity Metrics

The traditional clustering federated learning (CFL) frame-

work is based on the similarity of sub-optimization tasks,

which only considers the similarity of gradient direc-

tion [26] [27]. But in FL, this is not comprehensive. For

example, In the asynchronous FL, we assume that the network

conditions are same, and the transmission capacities of the

devices are also fixed, and the device cA with high computing

power and the device cB with poor computing power are

divided into a group, the cA will constantly refresh the global

model with its own local updates, and the result of model

training is more inclined to the cA. In the synchronous FL, this

grouping strategy will lead to the model training inefficient.

Similarly, the data amount of different devices and different

network conditions will make this grouping strategy have a

bad impact on the performance of the model. Therefore, the

data amount and the computing power of the device, and

the network condition between the devices and the server

may also be indicators of devices’ similarity. The above three

indicators are represented by the local model update latency

of the client, so we determine the metrics for measuring

the clients’ similarity: gradient direction and the latency of

model update. In the local update of a client, the local update

latency can be divided into two parts: computation latency

and communication latency, and we define the following three

delay models:

1) Computation Latency: To quantify the randomness of

the client’s computing capabilities, we use a shift exponential

distribution [28]:

P [ticp < t] =

{

1− e
−

µi
di

(t−xidi) t ≥ xidi
0 otherwise

, (3)

where xi > 0 and µi > 0 are parameters related to the

computing capabilities of the client ci. xi > 0 and µi > 0
represent the maximum and fluctuation of the client ci com-

putation capabilities, respectively. di is the size of the dataset

on the client ci, and t is the computation latency of the

client ci. Because the physical facility’s computing capabilities

where the group is located is much greater than that of the

client, We ignore the delay due to group model aggregation.

Based on (3), we can get the mathematical expectation of

computation latency for client ci as follows:

tiexcp = xidi +
di
µi

, (4)

2) Communication Latency: We consider such a commu-

nication scenario, where all the clients participating in the

training are within the cell radius of the central server. Those

who are out of range can not participate in training. There is

path loss in the transmission link. Given an FDMA system

Algorithm 2 clustered semi-asynchronous federated learning

Input: number of all clients R, number of selected clients per

round K , set of groups G, learning rate η, local minibatch

size B, number of local epochs E,global initial model w0,

time budget of each communication round H , number of

round T , delay threshold per round L.

Output: updated group model parameters WG
T .

1: procedure FEDSPECASYNC TRAINING

2: Initialize group model.

3: for all gi∈G, initial w
gi
0 to w0

4: WG
0 ← [wg1

0 , ...,wgn
0 ] .

5: for each communication round t = 1, 2, ..., T do

6: St ← Sever selects random K clients from all

clients R.

7: for all gi∈G, initial vgi to 0, Sgi
t ← {cj |

cj∈gi.clients, ∀cj∈St}.
8: for each group gi in G parallelly do

9: for all cj∈S
gi
t , initial v

cj
pre to 0, v

cj
new to 0,

w
cj
last to w

gi
0

10: for each client cj in Sgi
t parallelly do

11: while H is not exhausted do

12: ∆v ← v
cj
new − cprevj .

13: if ∆v > L then

14: Ssyn ← {cj | the H of cj is not

exhausted, ∀cj∈S
gi
t }.

15: SynUpdates(Ssyn)

16: else

17: w
cj
last ←ModelUpdates(cj , w

cj
last).

18: w
gi
T ← w

cj
last.

19: vgi ← vgi + 1.

20: v
cj
prev ← v

cj
new .

21: v
cj
new ← vgi .

22: function MODELUPDATES(c, w)

23: B ← split dataset of client c into batches of size B.

24: for each local epoch e from 1 to E do

25: for each local batch b ∈ B do

26: w ← w − η∇L(b;w).

27: return w.

28: function SYNUPDATES(Ssyn)

29: for each client cz in Ssyn parallelly do

30: w
cz
last ← ModelUpdates(cz, wcz

last)

31: vgi ← vgi + 1.

32: n←
∑

cz∈Ssyn
ncz .

33: w
gi
last ←

∑

cz∈Ssyn

ni

n
w

cz
last.

34: for each client cz in Ssyn parallelly do

35: w
cz
last ← w

gi
last.

36: vczprev ← vgi .
37: vcznew ← vgi .
38: w

gi
T ← w

gi
last.



Algorithm 3 Grouping Clients

Input: number of all clients K , learning rate η, local mini-

batch size B, number of local epochs E,global ini-

tial model w0, number of group n pre-training hyper-

parameter α, weight of time β.

Output: set of groups G
1: procedure GROUPING CLIENTS

2: M← Calculate M \\ref CALCULATE M
3: [g1.clients, ..., gn.clients]← SpectralClustering(M)

4: G← [g1, ..., gn]
5: return G

with a total bandwidth of W , for client ci, its signal-to-noise

ratio (SNR) is defined as follows [29]:

SNRi =
PiP

i
L

N0W
, (5)

where Pi is the transmission power (unit: dbm) from client

ci to its group gx, N0 is the thermal noise variance (unit:

dbm/hz), P i
L is the path loss (unit: db) between client ci and

group gx, we define P i
L as follows:

P i
L = 100.7 + 23.5 lgR, (6)

Where R is the distance (unit: km) between client ci and

group gx.

Based on (5) and (6), we define the transmission speed from

client ci to group gx as follows:

Ci = γiW log 2(1 + SNRi), (7)

where γiW represents the bandwidth allocated to client ci.
Based on (7), we define the communication latency of local

update of client ci as:

ticm =
Smodel

Ci

, (8)

where Smodel is the size of the model update. Because the

transmission power of the physical facility where the group

gx is located is relatively large, we ignore the communication

latency from the group gx to the client ci.
3) Model Update Latency: We only cluster the classified

clients once, so we take the mathematical expectation of each

device’s computation latency. Therefore, in the process of a

model update, the model update latency of the client ci is

defined by the following formula:

ti = ticm + tiexcp, (9)

Inspired by these CFL papers [26] [27], we calculate the

cosine similarity of the gradient update between clients to

obtain their similarity. We define the cosine similarity between

client ci and client cj :

Cosine 〈i, j〉 =
∆w

i ·∆w
j

‖∆w
i‖ ‖∆w

j‖
, (10)

where ∆w
i is the vector of gradient update of client ci,

similarly, ∆w
j is the vector of gradient update of client cj .

Algorithm 4 Similarity Matrix Calculation

Input: (same as Algorithm 3)

Output: similarity matrix M
1: procedure CALCULATEM
2: Sr ← set of all clients R
3: NormalizeTime(Sr)

4: for each client cj in Sr parallelly do

5: ∆w
cj
0 ← PreTrainClient(cj, w0)

6: for each client cj in Sr parallelly do

7: L ← Similarity(cj , Sr, β)

8: M←M+ [[L]]

9: return M

10: function SIMILARITY(c, S, β)

11: L ← [βtc].
12: for each client cj in S parallelly do

13: cosine← CosineSimilarity(∆w
c
0, ∆w

cj
0 )

14: L ← L+ [cosine]

15: return L

16: function PRETRAINCLIENT(c, w)

17: ŵ ← w

18: B ← split dataset of client c into batches of size B.

19: for each local epoch e from 1 to E do

20: for each local batch b ∈ B do

21: w ← w − η∇L(b;w).

22: ∆w ← w − ŵ

23: return Flatten(∆w)

24: function NORMALIZETIME(S)

25: avg ←
∑

cj∈S

t
cj
cm+t

cj
excp

‖S‖

26: var ←
∑

cj∈S

(t
cj
cm+t

cj
excp−avg)2

‖S‖
27: for each client cj in S parallelly do

28: tcj ←
tcmcj

+texcp
cj

−avg

var

Building Affinity Matrix

Before we build the affinity matrix, we should build the

similarity matrix. In order not to make the latency with a small

value lose its effect, we need to normalize these latencies. As

shown in Algorithm 4, we first calculate the variance and mean

value of the model update latency of the clients to be classified,

expressed by var and avg respectively, and then normalize the

model update latency of the clients (line 3, Line24 to line28):

tin =
ti − avg

var
. (11)

Finally, given a hyper-parameter weight β, βtin which repre-

sents the trade off between model update latency and gradient

update on the same client ci.
We first leverage the (10) to calculate the cosine similarities

between the client ci and the clients to be classified. We use

a vector I (I ⊂ R
1×v) to represent the cosine similarities

of the client ci. v is the number of clients to be classified.



Then we connect tin and vector cosine as vector L (L ⊂
R

1×(v+1)). Finally, the vector L is used as the client’s data

ci for classification. Similarly, the similarity matrix M (M ⊂
R

v×(v+1)) is constructed by calculating the vector L of all

clients to be classified. At last, Gaussian similarity is used to

construct an affinity matrix between clients based on the row

vector of the similarity matrix M . The formula is as follows:

Gaussian 〈i, j〉 = e−
‖Li

−Lj‖
2σ2 , (12)

In this paper, we use the average aggregation strategy of

FedAvg.

To verify our CSAFL framework is reasonable, we will

evaluate it based on several real federated datasets in the next

section.

V. EVALUATION

In this section, we introduce the experimental results of

the CSAFL framework. We evaluate our experiments based

on four open federated datasets. We show the details of

our experiments in Section V-A. Then, in Section V-B, we

present the performance improvement of our method compared

to the baselines. In order to further verify the effectiveness

of our grouping strategy and update strategy, specifically,

we design comparative experiments, which are introduced in

Section V-C and Section V-D, respectively. For comparison,

we fix the hyper-parameter time budget T in all experiments.

Specifically, each communication round in the training process

of each experiment has the same time budget. Our code is

based on TensorFlow [30].

A. Experimental Setup

The parameter of FL setting we used in this paper is

described in III, and except these, we set model delay threshold

L = 4, We evaluated our experiments on four federal datasets,

where including two image classification datasets and a syn-

thetic dataset, an emotion analysis dataset. We use a convex

multinomial logistic regression (MCLR) model for training the

first three datasets, and we use a Long Short-Term Memory

(LSTM) model for training the last emotion analysis task.

The statistical information of datasets and models is shown

in Table I. The details are as follows:

Datasets and Models. Our experiments are based on four

non-IID datasets which are class-imbalanced and data-

imbalanced, and we leverage the appropriate models to train

these datasets, the details follow as:

• MNIST [31]: a handwritten digits data set, which is

divided into 0 to 9 the 10 categories of numbers, each

data is a flatted 784 dimensional (28x28) pixel image.

According to the power law, we assign data to 1000
clients, and each client has two types of digits. We use

the MCLR model, and the input of the model is pixel

images, and the output is 10 labels of digitals.

• FEMNIST: a 62 class federated extended MNIST dataset,

which is based on EMNIST [32] dataset construction,

and only sampling a to j these 10 types of lowercase

characters. We divide data into 200 clients by the power

law, and each client contains five types. We also use the

MCLR model, and the input and output of the model are

similar to MNIST.

• Synthetic: Shamir et al. propose a synthetic federated

dataset [33]. We set (a,b)=(0.8, 0.5) and divide data into

100 clients. Similarly, for this synthetic data set, we use

the MCLR model to test it.

• Sentiment140 (Sent140) [34]: a data set based on Twitter

users’ emoticons to express the sentiment, each user as a

client, we use a two-layer logistic regression model with

256 hidden units to train emoticons based on 100 Twitter

users.

Baseline. We have two baseline methods:

• a synchronous method FedAvg with the time budget that

we call it T-FedAvg.

• The asynchronous method is based on T-fedAvg, which

we call it TA-FedAvg.

Comparison methods. In order to Significantly illustrate the

performance of our method, we designed six comparison ex-

periments. The specific FL settings are similar to our method.

We will elaborate in the following sections.

Metrics. We have two metrics:

1) Frequency of clients’ idle time: We record each client’s

idle time in the training process of the synchronous

round. In order to evaluate the effectiveness of the

CSAFL framework in mitigating the straggler effect, we

evaluate the frequency of clients who wait for more than

60% of the time budget.

2) Accuracy: CSAFL framework is based on the clustered

algorithm, and its extended comparative experiments are

also divided into groups for testing. The accuracy of

each client is calculated based on the group model of

the group to which the client belongs, so we use the

weighted test accuracy to evaluate each group model

for intuitively expressing the overall performance of

grouped experiments.

B. Experimental Results

As shown in Table II, we present the experimental results

of our framework with the baseline methods. The results

show that our method is superior to the baseline method in

MNIST, FEMNIST, Synthetic. Especially, CSAFL improves

test accuracy by 43.7% on synthetic( 0.8, 0.5) with L = 15000.

besides, the accuracy of TA-FedAvg is better than that of T-

FedAvg, which indicates the influence of the straggler effect

on synchronous FL. Although the average test accuracy of

CSAFL is not better than that of T-FedAvgg on Sent140, we

can observe from Fig. 4 that the group curve of CSAFL is

superior.

More detail that each communication round’s test accuracy

is shown in Fig. 4 and Fig. 6. We observe that our method

is roughly as fast as synchronous FL and faster than asyn-

chronous FL in the convergence speed of the model on FEM-

NIST. That is, our CSAFL framework can converge infinite
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Fig. 4. The accuracy curves of CSAFL, R-FedAvg, baselines and NoG-FedAvg on MNIST and FEMNIST. 10K=10000, 15K=15000, unit:ms.
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Fig. 5. The frequency distribution of the clients’ idle time. 10K=10000, 15K=15000, unit: ms.

communication rounds. On the other hand, the convergence

rate of CSAFL is about the same as that of the T-FedAvg

and TA-FedAvg on MNIST, which may be that different

model update strategies will not cause significant divergence

of gradients on MNIST.

C. Effects of The Grouping Strategy

To demonstrate the effectiveness of the grouping strategy,

we set up two groups of comparative experiments, as follows:

• Under the same update strategy, we use the random

grouping method R-FedAvg based on T-FedAvg to com-

pare with CSAFL. As shown in Table II, the test accuracy

of CSAFL is higher than that of the R-FedAvg at least

7.9% on MNIST, FEMNIST, Synthetic. As for Sent140,

We can observe that in Fig. 4, the curve of CSAFL is

higher than R-FedAvg in overall accuracy. In short, our

grouping strategy is effective.

• Similarly, based on the same update strategy, we design a

NoG-FedAvg without grouping. Compared with CSAFL,

the results show that the curve fluctuation of CSAFL is

smaller than that of NoG-FedAvg in Fig. 4 and Fig. 6.

D. Effects of The Update Strategy

In order to verify the effectiveness of the update strategy,

we designed two groups of comparative experiments:



TABLE II
CSAFL AND ITS COMPARISON ALGORITHMS ARE EVALUATED ON FOUR FEDERATED DATASETS, AND THIS TABLE SHOWS THE ACCURACY OF THE

MODEL WITH THESE ALGORITHMS

Dataset-Time Budget T-FedAvg TA-FedAvg G-FedAvg GA-FedAvg R-FedAvg NoG-FedAvg CSAFL

MNIST-10000 90.0 86.1 96.3 95.8 88.0 89.9 96.2
MNIST-15000 90.0 86.0 96.2 95.6 88.3 89.6 96.2
FEMNIST-10000 77.1 55.1 88.6 77.1 62.4 74.1 84.2
FEMNIST-15000 77.4 51.1 89.7 77.7 63.0 77.2 85.5
Synthetic-10000 26.6 33.0 88.1 64.8 31.9 40.5 66.2
Synthetic-15000 20.4 53.6 71.4 62.3 35.6 52.9 64.1
Sent140-10000 71.3 62.3 71.0 63.6 66.4 69.5 68.0
Sent140-15000 71.1 62.5 69.7 62.8 65.3 70.1 69.0
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Fig. 6. The accuracy curves of G-FedAvg, GA-FedAvg on MNIST and FEMNIST. 10K=10000, 15K=15000, unit: ms.

• For different update strategies in the case of grouping, we

design the synchronous FL and asynchronous FL based

on FedAvg, which are named G-FedAvg and GA-FedAvg,

respectively. As shown in Table II, we can observe that

our method’s experimental results are better than other

update strategies.

• Without grouping, we use GA-FedAvg and T-FedAvg

to compare with TA-FedAvg, and the results show the

effectiveness of our strategy

E. effects of the update strategy

In order to verify that CSAFL can mitigate the straggler

effect, as shown in Fig. 5, in the time budget L = 15000ms,

we can observe the frequency distribution of clients’ idle

time. The results show that CSAFL can significantly mitigate

the straggler effect. Especially on the MNIST, FEMNIST,

Sent140, these frequencies of the clients’ idle time is close

to zero after 6000ms. On the Synthetic, we can observe that

the frequencies of T-FedAvg’s clients’ idle time are greater

than 0.07 after 9000ms, which also shows that the conclusion

in Section D is correct. That is, the straggler effect affects the

accuracy of the synchronization updates.

VI. CONCLUSION

In this work, we propose a new clustered semi-asynchronous

federated learning framework (CSAFL), which can effectively

mitigate the straggler effect and improve the accuracy of

the asynchronous FL. Based on four datasets, our evaluation

experiments show that the CSAFL framework is better than

asynchronous FL on accuracy, convergence speed, and CSAFL

is an effective solution to the straggler effect in synchronous

FL. We further prove the effectiveness of the grouping strategy

and update mechanism.

In the future, we will explore the following directions:

1) The advantages of our framework in privacy protection.

2) We will further expand the trade-off of time and direc-

tion; personalized learning beta is based on various data

sets.

3) We will explore a better strategy to aggregate global

models.
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