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Abstract—Few-shot classification aims at learning new con-
cepts with only a few labeled examples. In this paper, we
focus on metric-based methods that have achieved state-of-the-
art performance. However, they classify query examples based on
embeddings extracted from only the last layer. These embeddings
tend to be class-specific and may not generalize well to novel
classes or domains. To alleviate this problem, we propose the
SElf-ENsemble (SEEN) that leverages embeddings from multiple
layers. Specifically, a base classifier is built for each of the last
few layers, and the resultant base classifiers are then combined
together. Experiments on various benchmark datasets demon-
strate that the proposed method outperforms existing methods
in both standard few-shot classification and cross-domain few-
shot classification scenarios.

Index Terms—few-shot learning, meta-learning

I. INTRODUCTION

Deep neural networks have achieved great success in many

visual recognition tasks [1], [2]. Training these networks

usually requires massive labeled data, which limits their

applications since collecting and labeling massive data is

expensive or even impossible. For example, campaign budgets

restrict researchers to annotate millions of examples and rare

animal species are difficult to capture. Training a deep network

from scratch on a small number of examples easily leads to

overfitting and poor generalization. On the other hand, humans

are capable of learning new concepts with little supervision.

Recently, few-shot classification [3]–[5] has made signifi-

cant progress in bridging this gap. Many approaches have been

proposed, and they consist of two core components: a feature

extractor which maps the input space to a feature space, and

a classifier which maps the feature space to the label space.

While the feature extractor can be enhanced by techniques

such as increasing the network depth, most prior studies

focus on enhancing the classifier. For example, ProtoNet [6]

classifies examples based on the Euclidean distance between

query examples and prototypes, RelationNet [7] learns a deep

distance metric, MatchingNet [8] incorporates the classifier

with an attention mechanism, and GNN [9] employs graph

convolution blocks as the metric function. A limitation with

existing few-shot algorithms is that the classification output

is trained using embeddings extracted from the last layer only

but ignoring other layers. Features extracted from the last layer

may be too task-specific to generalize to unseen classes or

novel domains. As an illustration, Fig. 1 compares the few-

shot classification accuracies of three prototype classifiers [10],
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Fig. 1. Performance of 3 prototype classifiers and their ensemble on the
meta-testing set of mini-ImageNet using ResNet-12. Best viewed in color.

each of which is built on one of the last three layers of

a pretrained residual network (ResNet-12). As can be seen,

the classifier trained from the penultimate layer outperforms

those trained from the last and second-to-last layers. Moreover,

learners based on a single layer are usually weak. As shown

in Fig. 1, in the 1-shot setting, the three base learners have

classification accuracies of around 65%, which are much lower

than those in the 5-shot setting (approximately 78%).

Inspired by ensemble learning, in this paper we propose

a SElf-ENsemble (SEEN) to leverage the last few layers of

the neural network. Specifically, we first construct a classifier

for each of these layers, and then combine their predic-

tions to make a final prediction. We study three combina-

tion strategies: (i) uniform averaging, which treats individual

classifiers equally important, (ii) weighted averaging, and

(iii) stacking. Experimental results show that the proposed

SEEN method achieves state-of-the-art few-shot classification

performance on benchmark datasets, including mini-ImageNet,

tiered-ImageNet, and CIFAR-FS. Moreover, SEEN (with uni-

form averaging) also outperforms existing works on cross-

domain few-shot classification for the mini-ImageNet→ CUB

task.



II. RELATED WORK

Few-shot classification. Existing studies on few-shot clas-

sification [3]–[5] aim at learning from only a few labeled

examples. A few-shot model is learned from a meta-training

set, with the help of a meta-validation set for model selection,

and evaluated on a meta-testing set. Each of those meta-sets

contains a set of tasks, and their label sets are disjoint. In n-

way k-shot classification, each task is given a support set with

k examples for each of the n classes for training, and a query

set containing unseen examples for evaluation.

Recent few-shot classification models can be categorized as

an optimization-based or metric-based method. Optimization-

based methods allow rapid model adaptation with limited

examples using gradient-based algorithms. One line of work

focuses on learning a good initialization such that a good

model can be obtained on a novel task by performing only a

few updates. A representative method is the Model-Agnostic

Meta-Learning (MAML) [11], which uses gradient descent

methods to find an initialization with better generalization

ability. To reduce the complexity of computing the expensive

second-order derivatives, first-order MAML (FOMAML) [11]

ignores the Hessian matrix, while REPTILE [12] approxi-

mates it with a combination of gradients. Another line of

work focuses on learning a good optimizer. For example,

methods in [13], [14] learn the parameter update rule with

recurrent neural networks, Meta-SGD [15] learns feature-

wise learning rate schedules, while Meta-Curvature [16], T-

Nets [17] and WarpGrad [18] learn to capture the curvatures.

While optimization-based methods allow rapid adaptation,

they suffer in the presence of domain shifts [3]. Moreover,

as the initialization/optimizer fixes the network structure and

output dimension of the last layer, they fail to generalize to

classification tasks with different numbers of classes.

On the other hand, metric-based methods have two core

components: (1) a feature extractor which maps from the

input space to a feature space, and (2) a classifier which

maps from the feature space to the label space. Several

recent works focus on designing task- or class-dependent

feature extractors to provide more discriminative and represen-

tative features. For example, CAML [19] introduces a class-

dependent transformation to capture inter-class dependencies.

TADAM [20] inserts task-conditioning layers to the feature

extractor. CTM [21] employs a feature mask to utilize inter-

class uniqueness and intra-class commonality structures. Other

methods focus on enhancing the classifier or designing proper

distance metrics. For instance, ProtoNet [6] classifies examples

based on the Euclidean distance between the query examples

and prototypes. R2-D2 [22] and MetaOptNet [23] adopt linear

models as the classifier due to their computational efficiency.

MatchingNet [8] employs the negative cosine similarity with

an attention mechanism. GNN [9] uses graph convolution

blocks as the metric function to do the classification. Rela-

tionNet [7] learns a deep metric for classification.

Data augmentation. Data augmentation can also help mitigate

the data scarcity problem in few-shot classification. For exam-

ple, DAGAN [24] trains GAN [25] to transfer image styles,

while SGM [26] learns a data generation process for unseen

classes. In contrast to augmenting samples, recent studies

also focus on task augmentation. CACTUs [27] proposes to

generate few-shot tasks from unlabeled data for training, while

MAXL [28] trains few-shot learning tasks with auxiliary tasks

to improve the generalization ability. All the above augmen-

tation approaches are general strategies such that they can be

combined with existing few-shot classification algorithms and

so we do not compare with them in the experiments.

III. SELF-ENSEMBLE (SEEN)

In this paper, we focus on the metric-based approach

for few-shot classification, which has been shown to have

promising performance [3], [29]. The proposed SEEN method

is inspired by ensemble learning [30], which combines several

base learners to build a powerful learner. The diversity among

base learners is crucial to ensemble learning. Prior works on

few-shot ensemble learning either train diverse models on

the same meta-training set [31] or train models on diverse

meta-training sets [29]. These approaches are computationally

inefficient and time-consuming by training multiple models

or gathering multiple datasets. However, as will be seen in

the sequel, the proposed SEEN method can mitigate these

shortcomings by reusing a network and building multiple

classifiers from its different layers.

The following sections will give details of SEEN, which is

first trained on the meta-training set Dtr, then does model

selection and ensemble learning on the meta-validation set

Dvl, and finally is evaluated on the meta-testing set Dts.

A. Network Architecture

Recall that there are two components in a metric-based

few-shot classifier, namely, feature extractor and classifier. As

deep networks have shown excellent performance in image

classification [1], [2], we use a L-layer neural network fθ
(parameterized by θ) as the feature extractor. As for the

classifier, the cosine classifier is simple and yet has better

generalization to novel categories than the linear classifier

[3], [32], [33]. For a query example x, the cosine classifier

computes the posterior probability that x belongs to class c as

P(y = c|x; θ, {wc}) =
exp(τ cos(wc, fθ(x)))

∑

c′ exp(τ cos(wc′ , fθ(x)))
, (1)

where wc ∈ R
d contains classifier parameters for class c, d is

the dimensionality of the feature extracted by fθ, τ > 0 is the

temperature [20], and cos(x, y) denotes the cosine similarity.

During meta-training, the feature extractor and cosine classi-

fier are trained jointly in a standard supervised learning manner

by minimizing the cross-entropy loss as

L(θ, {wc})

=
∑

(S,Q)∈Dtr

∑

(x,c∗)∈S∪Q

− logP(y = c∗|x; θ, {wc}), (2)

where (S,Q) denotes a task consisting of a support set S and

a query set Q, and c∗ is the true label of x.
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Fig. 2. Overview of the SEEN method. We pretrain a neural network on the meta-training set using standard supervised learning and freeze it as a feature
extractor at the meta-validation and meta-testing stages. Unlike prior works that use embeddings extracted from only the last layer, SEEN combines the last
m layers. We first build a classifier on each of the last m layers, then combine predictions from all classifiers to make a final prediction. Best viewed in color.

At the meta-testing stage, given an unseen task, retraining

the feature extractor on limited support examples may lead

to overfitting. To alleviate this problem, a commonly used

approach is to freeze the feature extractor and employ a simple

classifier on the extracted features.

We consider to replace the cosine classifier by the prototype

classifier [6], [10], also called the mean-centroid classifier [29]

or the nearest class mean classifier [34]. Let Sc be the subset

of examples in the support set S belonging to class c. For

(x, y) ∈ Sc, let fθ(x; l) be the embedding extracted from the

lth layer of the neural network fθ. The prototype of class c is

computed as

p(l)c =
1

|Sc|

∑

(x,y)∈Sc

fθ(x; l). (3)

Prototype pc can be viewed as wc in (1), and be used for the

prediction. It is more advantageous than the cosine classifier

in that it is parameter-free and thus requires no training, which

can help avoid overfitting.

The prototypes obtained from a small set of examples in

(3) can have high variance, which impairs performance. To

alleviate this problem, recent studies [10], [12], [35] use

unlabeled query examples as in transductive learning. For

example, BD-CSPN [10] rectifies the prototypes by weighting

unlabeled query examples based on their cosine similarities as

p̄(l)c =
∑

(x,y)∈Sc∪Q

softmax(τγ(x))fθ(x; l), (4)



where τ is the temperature in (1), and

γ(x) =

{

cos(p
(l)
c , fθ(x; l)) x ∈ Q

1 x ∈ Sc

. (5)

B. SElf-ENsemble (SEEN)

Existing few-shot classifiers are constructed based on em-

beddings extracted from the last layer of the neural-network

feature extractor but not from the other layers. As demon-

strated in Fig. 1, the last layer may be too specific to generalize

to novel tasks. To alleviate this problem, we propose to

build an ensemble of classifiers, each of which is built on a

specific hidden layer. As features extracted from a deep neural

network usually transit from general to specific when the

layers go deeper [36], this diversity of features from different

layers guarantees the diversity of the corresponding classifiers

constructed. Although we allow building classifiers for each

layer, the first several layers are less useful as they tend to

capture local structures such as corners and edges, which are

less discriminative for classification [37], [38].

Fig. 2 provides an overview of the proposed SEEN method.

After pretraining on the meta-training set, we freeze the

feature extractor. At the meta-validation stage, we build m
independent base classifiers for each of the last m layers. In

the experiments, we use the prototype classifier introduced in

Section III-A to evaluate the proposed SEEN. Let ŷ(l) be the

prediction from the classifier built from the lth layer. Instead

of using the prediction from a single layer, SEEN combines

their predictions as

ŷ =

L
∑

l=L−m+1

φ(x; l)ŷ(l), (6)

where φ(x; l) ∈ [0, 1] is the weight for the layer-l classifier,

and
∑L

l=L−m+1 φ(x; l) = 1.

The setting of φ(x; l) is key to the performance. We propose

three combination strategies as follows.

1) Uniform averaging, which averages predictions from

all base classifiers, with φ(x; l) = 1/m for l = L −
m + 1, . . . , L. This strategy assumes that all classifiers

contribute equally.

2) Weighted averaging weights the layer-l classifier as

proportional to its performance πl on the meta-validation

set:

φ(x; l) =
πl

∑

l′ πl′
. (7)

During meta-testing, φ(·; l)’s are frozen and shared

across all testing examples.

3) Stacking [39] is an example-dependent ensemble

method. The intuition is that some examples may be

easier to be classified in certain layers. Given a query

example, we first construct a context feature from pre-

dictions of the m base classifiers:

h =
[

ŷ(L−m+1), . . . , ŷ(L)
]

∈ R
nm. (8)

We then use a meta-learner φπ : R
nm → [0, 1]m,

parameterized by π, to generate combination weights

for the m classifiers. For example, φπ can be a 2-layer

neural network followed by softmax. π is obtained by

minimizing the following objective as

L(π) = −
∑

(S,Q)∼Dvl

∑

(x,c∗)∈Q

log ŷc∗ , (9)

where ŷ is defined in (6). Training the meta-learner

may lead to overfitting. Hence, we hold out a subset

of the meta-validation set for model selection and early

stopping.

Algorithm 1 shows the training procedure of SEEN with

stacking. Among the three combination strategies, weighted

averaging and stacking require a meta-validation set to learn

the combination coefficients.

Algorithm 1 SEEN with stacking.

Require: meta-training set Dtr, meta-validation set Dvl;

Require: feature extractor fθ (a L-layer network), meta-

learner φπ , stepsize α;

Meta-Training:

1: Train fθ on Dtr using Eq. (2), and then freeze fθ;

Meta-Validation:

2: while not converged do

3: Sample a task with support set S and query set Q;

4: for layer l = L−m+ 1, . . . , L do

5: train a classifier on S using layer-l features;

6: end for

7: For each query example in Q, combine predictions

from the m classifiers using Eq. (6);

8: Update the meta-learner:

π ← π + α∇π

∑

(x,c∗)∈Q

log ŷc∗ (10)

9: end while

return fθ and φπ;

IV. EXPERIMENTS

TABLE I
STATISTICS FOR FEW-SHOT CLASSIFICATION DATASETS.

dataset #classes #images size

mini-ImageNet [8] 100 60, 000 84× 84

tiered-ImageNet [40] 608 779, 165 84× 84

CIFAR-FS [22] 100 60, 000 32× 32

CUB [41] 200 11, 788 224× 224

In this section, we empirically evaluate the performance of

the proposed SEEN method.

A. Setup

Datasets. Four benchmark datasets are used, including the

mini-ImageNet and tiered-ImageNet from ILSVRC-2012 [44],



TABLE II
FEW-SHOT CLASSIFICATION ACCURACIES (WITH STANDARD DEVIATIONS) ON mini-IMAGENET AND tiered-IMAGENET, USING A 4-LAYER

CONVOLUTIONAL NETWORK AS BACKBONE. RESULTS OF THE BASELINE METHODS ARE FROM [23]. ‘-’ INDICATES THAT THE CORRESPONDING RESULT

IS NOT REPORTED IN [23].

Model
mini-ImageNet tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

optimization-based
Meta-LSTM [14] 43.44± 0.77 60.60± 0.71 - -

MAML [11] 48.70± 1.80 63.11± 0.92 51.67± 1.81 70.30± 1.75

metric-based

MatchingNet [8] 43.56± 0.84 55.31± 0.73 - -
ProtoNet [6] 49.42± 0.78 68.20± 0.66 53.31± 0.89 72.69± 0.74

R2-D2 [22] 51.20± 0.60 68.80± 0.10 - -
RelationNet [7] 50.44± 0.82 65.32± 0.70 - -

Prototype Classifier

@last 53.60± 0.86 66.61± 0.73 56.78± 0.89 72.00± 0.75

@penultimate 46.55± 0.84 61.42± 0.76 45.37± 0.90 60.59± 0.78

@second-to-last 37.21± 0.86 50.02± 0.75 40.38± 0.89 53.97± 0.77

SEEN (uniform) 52.32± 0.83 64.58± 0.73 53.84± 0.94 68.00± 0.75

SEEN (weighted) 54.08± 0.87 66.42± 0.74 57.21± 0.93 72.21± 0.75

SEEN (stacking) 55.30± 0.88 66.70± 0.73 57.41± 0.94 72.88± 0.76

TABLE III
FEW-SHOT CLASSIFICATION ACCURACIES (WITH STANDARD DEVIATIONS) ON mini-IMAGENET AND CIFAR-FS, USING A ResNet-12 BACKBONE.

RESULTS OF THE BASELINE METHODS ARE FROM [23]. ‘-’ INDICATES THAT THE CORRESPONDING RESULT IS NOT REPORTED IN [23].

Model
mini-ImageNet CIFAR-FS

1-shot 5-shot 1-shot 5-shot

optimization-based
SNAIL [42] 55.71± 0.99 68.88± 0.92 - -

AdaResNet [43] 56.88± 0.62 71.94± 0.57 - -

metric-based

ProtoNet [6] 59.25± 0.64 75.60± 0.48 72.20± 0.70 83.50± 0.50

TADAM [20] 58.50± 0.30 76.70± 0.30 - -
MetaOptNet [23] 64.09± 0.62 80.00± 0.45 72.00± 0.70 84.20± 0.50

Prototype Classifier
@last 63.84± 0.96 74.79± 0.70 74.12± 1.01 80.86± 0.73

@penultimate 65.10± 0.91 78.48± 0.63 75.61± 0.95 83.24± 0.70

@second-to-last 60.91± 0.94 75.17± 0.68 69.91± 0.98 81.00± 0.73

SEEN (uniform) 67.71± 0.91 80.05± 0.62 76.78± 0.95 84.49± 0.70

SEEN (weighted) 67.73± 0.92 80.02± 0.61 76.50± 0.93 83.26± 0.67

SEEN (stacking) 67.98± 0.93 80.12± 0.63 77.11± 0.97 84.83± 0.69

CIFAR-FS from CIFAR-100, and CUB [41]. A summary of

those datasets is shown in Table I.

Mini-ImageNet [8] consists of 100 randomly chosen classes

from ILSVRC-2012 [44]. Each class contains 600 images of

size 84 × 84. Following [14], the 100 classes are randomly

split into 64, 16, 20 classes for meta-training, meta-validation,

and meta-testing, respectively.

Tiered-ImageNet [40] is a larger subset of ILSVRC-

2012 [44], with 608 classes categorized into 34 high-level

categories. We use 20 categories (with 351 classes) for meta-

training, 6 categories (with 97 classes) for meta-validation, and

8 categories (with 160 classes) for meta-testing. The category-

level division increases the semantic distance between classes

from different categories, and makes few-shot classification

more challenging.

CIFAR-FS [22] is a recent benchmark for few-shot classi-

fication. It has 100 classes from CIFAR-100. Similar to mini-

Imagenet, the classes are randomly split into 64, 16, and 20 for

meta-training, meta-validation, and meta-testing, respectively.

Each class has 600 images of size 32× 32. The resolution is

lower than mini-ImageNet, and thus more difficult.

CUB is a dataset of 200 bird species and has 11, 788 images.

Following [3], we randomly split the classes into 100, 50
and 50 for meta-training, meta-validation, and meta-testing,



respectively. We use this dataset in the experiment on cross-

domain few-shot classification in Section IV-C.

Backbone Networks. The feature extractor is implemented by

two commonly used backbones: (i) a shallow 4-layer convo-

lutional network (Conv-4-64 [8]) and (ii) a deep residual net-

work (ResNet-12 [1]). Conv-4-64 has 4 repeated convolutional

blocks, in which each block consists of a 3× 3 convolutional

layer with 64 filters, a batch normalization layer, a ReLU non-

linear layer, and a 2×2 max-pooling layer. ResNet-12 consists

of 4 residual blocks, in which each block stacks three 3 × 3
convolutional layers with batch normalization and ReLU non-

linearity followed by 2×2 max-pooling. The number of filters

in each block starts from 64, and is then doubled sequentially

to 512 in the last block. Features extracted from the hidden

layers are downsampled with global max-pooling [45] before

feeding to the base classifiers.

For the proposed SEEN, in both backbones, we build a

prototype classifier (introduced in Section III-A) from each

of the last three layers. For SEEN with stacking, the meta-

learner is a 2-layer MLP with the ReLU activation. The hidden

layer size is the same as the input dimensionality. After that,

a softmax layer is used to guarantee the sum of combination

weights equals one.

Training Strategy. During meta-training, we train the feature

extractor and classifier with SGD (momentum 0.9 and weight

decay of 0.0005). For all backbones and datasets, the learning

rate starts at 0.1 and is reduced by 90% at epochs 10, 20, and

40. The maximum number of training epochs is 60. Following

[10], [20], we set the temperature in Eqs. (1) and (4) to 10.

For fair comparison, we adopt the same data augmentation

procedures (random crop, color jittering and horizontal flip)

as in [23], [32]. During meta-validation, we select the best

feature extractor based on the 5-way 5-shot performance on

the meta-validation set. For weighted averaging, we compute

the weights from the average classification accuracies on the

meta-validation set. For stacking, we randomly split the meta-

validation set into two disjoint subsets with 60% and 40% for

learning the meta-learner and early stopping respectively. We

use the Adam optimizer [46] to train the meta-learner with

learning rate 0.0005 and a maximum of 10 training epochs.

B. Few-Shot Classification

We compare the proposed SEEN with both metric-based

and optimization-based few-shot methods. The metric-based

methods include MatchingNet [8], ProtoNet [6], Relation-

Net [7], TADAM [20], R2-D2 [22], Prototype Classifier, and

MetaOptNet [23]. The optimization-based methods include

Meta-LSTM [14], MAML [11], SNAIL [42], and AdaRes-

Net [43].

The experimental setup is identical to that in [23]. For

baselines that do not need a meta-validation set, the meta-

training and meta-validation sets are merged as a larger set

for meta-training. Hence, all methods use the same amount of

information.

The performance is evaluated on the meta-testing set with

the 5-way k-shot (k = 1, 5) evaluation protocol. In each testing

TABLE IV
5-WAY 5-SHOT ACCURACIES IN mini-IMAGENET → CUB. RESULTS OF

THE BASELINES ARE FROM [31].

MAML [11] 51.34± 0.72

MatchingNet [8] 53.07± 0.74

ProtoNet [6] 62.02± 0.70

Cosine Classifier [3] 62.04± 0.76

Linear Classifier [3] 65.57± 0.70

Diverse-20-Full [31] 66.17± 0.55

Prototype Classifier

@last 61.89± 0.74

@penultimate 65.58± 0.78

@second-to-last 64.19± 0.76

SEEN (uniform) 67.16± 0.74

episode, we sample 5 classes from the meta-testing set, with

k+15 examples from each class, where k of these are support

examples for training the classifier and 15 query examples for

testing. We report the average classification accuracy over 600
episodes.

Results. Table II shows results on using the shallow backbone.

In the 5-way 1-shot setting, the prototype classifier built from

the last layer is competitive on both datasets, while SEEN with

stacking outperforms all baselines. Note that as the layer goes

lower, the performance of the corresponding classifier becomes

worse remarkably, suggesting that those layers contain much

less discriminative features than the last layer. Hence, simply

averaging the predictions from the three base classifiers is not a

good strategy, and it performs even worse than the best single-

layer classifier.

Table III shows results on using the deep backbone. Again,

the proposed SEEN surpasses all baselines in both settings.

Moreover, on mini-ImageNet, the deep backbone performs

much better than the shallow backbone (in Table II) as

expected. Among the three single-layer prototype classifiers,

the best is built from the penultimate layer, which suggests

that the last layer is too specific to generalize to novel classes.

All the three variants of SEEN outperform the other baselines,

with the one using stacking performing slightly better among

the three variants.

C. Cross-Domain Few-Shot Classification

Cross-domain few-shot classification is useful in situations

where we have access to a large dataset on training, but only

a small number of examples from the target domain on meta-

testing. In this experiment, we meta-train on the source domain

mini-ImageNet, and meta-test on the novel target domain

CUB. The setup (5-way 5-shot) is identical to that in [3], [31],

and the same dataset splits and RestNet-18 [1] backbone are

used. We randomly sample 1000 few-shot episodes from the

meta-testing set of CUB as in [3], [31], and report the average

classification accuracy.

For the proposed SEEN, we train the feature extractor using

Adam with learning rate 0.001, batch size 16, and a maximum

of 400 epochs. As the meta-validation set of CUB is not

available, we use uniform averaging to combine predictions



TABLE V
ABLATION STUDY ON 5-WAY CLASSIFICATION WITH mini-IMAGENET.

Classifier 1-shot 5-shot

Prototype Classifier

@last 63.84± 0.95 74.79± 0.70

@penultimate 65.10± 0.91 78.48± 0.63

@second-to-last 60.98± 0.94 75.17± 0.68

SEEN (stacking) 67.98± 0.93 80.12± 0.63

Cosine Classifier

@last 59.21± 0.83 73.95± 0.66

@penultimate 60.74± 0.84 76.29± 0.62

@second-to-last 57.00± 0.86 72.56± 0.67

SEEN (stacking) 63.12± 0.86 78.56± 0.61

from the prototype classifiers built on the last three layers.

We compare the proposed SEEN with the optimization-based

method of MAML [11], metric-based methods (i.e., Prototype

classifiers, MatchingNet [8], ProtoNet [6], cosine and linear

classifier [3]), and an ensemble method (i.e., Diverse-20-

Full [31]). Unlike the current state-of-the-art method Diverse-

20-Full [31], which is an ensemble of 20 networks while

SEEN uses only one network.

As shown in Table IV, the classifier built on the last

layer performs worse than those built on the penultimate

and second-to-last layers by a large margin, suggesting that

the last layer is too domain-specific to generalize to the

novel domain. Although none of the single-layer prototype

classifiers outperforms the competitive baselines, combining

them together in SEEN leads to the best performance.

D. Ablation Study

In this section, we compare the prototype classifier and

cosine classifier when used with SEEN for 5-way classification

on the mini-ImageNet dataset. The setup is the same as in

Section IV-B. According to results in Table V, SEEN shows

significant improvement over classifiers that use only a single

layer in both 1-shot and 5-shot classification. Specifically,

for the prototype classifier, combining the last three layers

improves the 1-shot classification accuracy by 2.88% and 5-

shot accuracy by 1.67% over the best single-layer classifier.

For the cosine classifier, combining the last three layers im-

proves the 1-shot classification accuracy by 2.38% and 5-shot

accuracy by 2.27%. Those results show that the improvement

by SEEN is agnostic to the choice of classifier. We also notice

that the prototype classifier performs better than the cosine

classifier, suggesting that the parameter-free classifier helps

avoid overfitting in the few-shot setting.

E. Visualization

In the experiment with mini-ImageNet using the ResNet-12
backbone, we visualize the t-SNE [47] embeddings of the last

three layers obtained from a random 5-way 5-shot episode in

the meta-testing set. According to Fig. 3(a), features from the

penultimate and second-to-last layers have more compact and

separable structure than those from the last layer. Fig. 3(b)

shows visualizations for a random 5-way 5-shot episode from

the meta-testing set of CUB in the cross-domain few-shot

experiment. Again, clusters in the penultimate and second-

to-last layers are tighter than those from the last layer. All of

those results show that the features learned in the penultimate

and second-to-last layers are more discriminative and helpful

for classification than those of the layer layer.

V. CONCLUSION

In this paper, we proposed the SEEN method for few-shot

classification. We first build base classifiers on each of the last

several layers and then combine them together to construct

a strong model. This helps to avoid overfitting and enables

the model to generalize better to novel classes or domains.

Experiments on benchmark datasets demonstrate that SEEN is

an effective method to improve base classifiers. Future work

may apply the proposed SEEN to other few-shot learning

problems such as few-shot image segmentation.
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