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Abstract—Out-of-distribution (OOD) detection approaches
usually present special requirements (e.g., hyperparameter val-
idation, collection of outlier data) and produce side effects (e.g.,
classification accuracy drop, slower energy-inefficient inferences).
We argue that these issues are a consequence of the SoftMax
loss anisotropy and disagreement with the maximum entropy
principle. Thus, we propose the IsoMax loss and the entropic
score. The seamless drop-in replacement of the SoftMax loss
by IsoMax loss requires neither additional data collection nor
hyperparameter validation. The trained models do not exhibit
classification accuracy drop and produce fast energy-efficient
inferences. Moreover, our experiments show that training neural
networks with IsoMax loss significantly improves their OOD
detection performance. The IsoMax loss exhibits state-of-the-
art performance under the mentioned conditions (fast energy-
efficient inference, no classification accuracy drop, no collection
of outlier data, and no hyperparameter validation), which we call
the seamless OOD detection task. In future work, current OOD
detection methods may replace the SoftMax loss with the IsoMax
loss to improve their performance on the commonly studied non-
seamless OOD detection problem.

I. INTRODUCTION

Out-of-distribution (OOD) detection approaches usually
use special requirements such as input preprocessing [8],
[9], feature extraction combined with metric learning [2],
adversarial training [10]], hyperparameter validation [[11], and
collection of additional data [12], [[13]], [14], [[15]. Moreover,
current OOD methods commonly show side effects such
as classification accuracy drop [16], [9], and slow energy-
inefficient inferences [11], [2]]. Solutions based on uncertainty
(or confidence) estimation (or calibration) present complexity
and lead to slow computationally inefficient inferences [17],
(L8]], [19], [20], [21].

We define the seamless OOD detection task, which consists
of performing OOD detection under the following restrictions.
First, no classification accuracy drop is allowed. Second, the
resulting models should produce inferences with the same
speed and energy efficiency as those produced by the regularly
trained neural networks. Third, no OOD/outlier/additional/extra
data may be used. Finally, no hyperparameter validation is
required. Improving the performance of neural networks in the
seamless OOD detection problem is important from a practical
perspective. Additionally, such approaches may be combined in
future work with current and novel OOD detection techniques
to further improve the performance on the non-seamless OOD
detection task.

We argue that the unsatisfactory OOD detection performance
of modern neural networks is mainly due to the drawbacks of
the SoftMax loss (we follow the “SoftMax loss” expression as
defined in [22])). First, the SoftMax loss anisotropy does not
incentivize the concentration of high-level representations in
the feature space [1], [10], making OOD detection difficult [[10]
(Fig. [Th). Second, SoftMax loss produces overconfident low-
entropy posterior probability distributions [23]], which is in
disagreement with the maximum entropy principle [24], [25],
[26] (Fig.[Ib). Therefore, we propose the isotropy maximization
loss (IsoMax loss). To fix the SoftMax loss anisotropy, we
made IsoMax an isotropic, i.e., exclusively distance-based,
loss. To tackle the SoftMax loss overconfidence, we developed
the entropy maximization trick, which consists of training
with logits multiplied by a high constant that is removed for
inference. This technique allows IsoMax loss to produce high-
entropy (almost maximum) posterior probability distributions
in agreement with the principle of maximum entropy.

We propose to train neural networks replacing the SoftMax
loss with the IsoMax loss. The swap of the SoftMax loss with
the IsoMax loss requires changes in neither the architecture
of the model nor training procedures or parameters. For OOD
detection, we use the negative entropy of the neural network
output probabilities, which we call the entropic score (ES).
Since our solution presents neither special requirements nor
side effects, it qualifies as a seamless OOD detection approach
as previously defined.

Our contributions are the following. First, we associate the
unsatisfactory OOD detection performance of neural networks
with the SoftMax loss anisotropy and disagreement with the
maximum entropy principle. Second, we propose the IsoMax
loss that acts as a SoftMax loss drop-in replacement and may
be used as a baseline for building improved OOD detection
approaches in future work. We show that the ES produces high
performance combined with IsoMax loss. Third, we present the
theoretical insight that associates the improved OOD detection
performance of the networks trained with IsoMax loss with
the principle of maximum entropy. Fourth, we show that our
solution produces state-of-the-art performance for the seamless
(fast energy-efficient inferences, no classification accuracy drop,
no hyperparameter tuning, and no collection of outlier data)
OOD detection task. Fifth, despite being unfair since the
approaches present different special requirements and side
effects, we compare our seamless solution with non-seamless
OOD detection methods.
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Fig. 1. SoftMax loss drawbacks and IsoMax loss benefits: (a) Adapted from [1 Fig. 1]. SoftMax loss produces separable features [1]]. Postprocessing metric
learning on features extracted from SoftMax loss-trained networks may convert from the situation on the left to the situation on the right [2], [3], [4], 5], (6],
[7]. The IsoMax loss, which is an exclusively distance-based (isotropic) loss, tends to generate more discriminative features [1]. No feature extraction and
subsequent metric learning are required when the IsoMax loss is used for training. (b) SoftMax loss trained neural networks produce overconfident low-entropy
posterior probability distributions in disagreement with the maximum entropy principle. Our entropy maximization trick, which consists in training using logits
multiplied by a constant factor called the entropic scale that is nevertheless removed before inference, enables IsoMax to generate underconfident high-entropy
(almost maximum entropy) posterior probability distributions in agreement with the principle of maximum entropy.

II. RELATED WORKS

Liang et al. [11] proposed the Out-of-DlIstribution detector
for Neural networks (ODIN) by combining input preprocessing
and temperature calibration. The authors used OOD examples
to validate the hyperparameters. Lee at al. [2] proposed
the Mahalanobis distance-based approach by adding feature
extraction, feature ensembles, and metric learning to input
preprocessing. The authors proposed using adversarial examples
rather than the OOD samples to tune hyperparameters. Since
this procedure produces more realistic estimations, in this work,
we only consider validation on adversarial samples for non-
seamless OOD detection methods. Hein at al. [10] proposed
adversarial confidence enhancing training (ACET), which uses
adversarial training.

Hsu et al. [9] proposed to use the in-distribution validation
set for hyperparameter tuning. The CIFAR10/100 validation
sets were used both for hyperparameter validation and for
constructing the OOD detection test sets, which may have pro-
duced overestimated results. We believe that the in-distribution
validation data used for defining hyperparameters should have
been removed from the training set, which would presumably
lead to an even stronger classification accuracy drop and,
consequently, a decrease in OOD detection performance. The
solution used input preprocessing and presented classification
accuracy drop of a few percentage points in some cases.

Techapanurak et al. [16] used cosine similarity and a learn-
able block composed of batch normalization, an exponential,
and a linear layer. The trained models presented classification
accuracy drop of a few percentage points in some cases. Thus,
the authors suggested using two models: one for classification
and the other for OOD detection.

Recent approaches [12], [13], [14], [15] increased the
OOD performance by training/fine-tuning using outlier data
and hyperparameter validation. Liu et al. [15] proposed
the energy score. Methods based on uncertainty/confidence
estimation/calibration [17], [I19], [18], [20], [21] have been
proposed to tackle the OOD detection problem.

III. ENTROPIC OUT-OF-DISTRIBUTION DETECTION
A. Isotropy.

To fix the SoftMax loss anisotropy caused by its affine
transformation, we forced the logits of the IsoMax loss to
depend exclusively on the distances from the high-level features
to the class prototypes.

Let fo(x) represent the high-level feature (embedding)
associated with =z, pfﬁ represent the learnable prototype
associated with class j, and d() represent the nonsquared
distance. Additionally, let §/(*) represent the label of the correct
class. Therefore, we construct an isotropic loss by writing:

exp(—d(fo(x),pk))

L ~(k) =—1lo j
(9" ]x) g Y exp(—d(fo(x), pl))

(1)

Unlike metric learning-based OOD detection approaches,
rather than learning a metric from a preexisting feature space,
in our solution, we learn a feature space that is from the start
consistent with the chosen metric, avoiding the need for feature
extraction and metric learning postprocessing phases after the
neural network training.

B. Entropy Maximization.

Isotropy improves the OOD detection performance. However,
for further performance gains, we need to circumvent the
SoftMax loss propensity to produce low-entropy posterior prob-
ability distributions. To achieve high-entropy (almost maximum
entropy) distributions in agreement with the maximum entropy
principle, we introduce the entropic scale, which consists of
a constant scalar factor applied to the logits throughout the
training that is nevertheless removed prior to inference. We
call this procedure the entropy maximization trick.

The entropic scale is equivalent to the inverse of the
temperature of the SoftMax function (we follow the SoftMax
function expression as defined in [22]]). However, training with a



predefined constant entropic scale and then removing it before
inference is different from temperature calibration. On the
one hand, the temperature of a pretrained model is validated
after training and requires access to the OOD or adversarial
examples. Furthermore, overoptimistic performance estimation
is commonly produced [27]. On the other hand, our approach
requires neither hyperparameter validation nor access to the
OOD or adversarial data. Rather than be applied to pretrained
models, our approach is used to train neural networks.

The presence of the entropic scale during training does not
prevent the loss from approaching zero as required. However,
when we remove it prior to the inference, the SoftMax function
naturally makes the entropy of the output probabilities increase
to almost the maximum value possible if we use a high enough
entropic score during training. Thus, returning to Equation (1),
multiplying the embedding-prototype distances by an entropic
scale F;, and representing the 2-norm of a vector by ||.||, we
write the definition of the IsoMax loss as:

exp(—Es| fo(x) —pl)

(9" |) 08 > exp(— B || fo(z) —pyll)
j
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By applying the entropy maximization trick, the inference
probabilities for the IsoMax loss may be written as follows:

() |gp) — eXP(—er(fC)—Pﬁ,,I’I)
P = S oo o(@)—p)
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C. Prototype Initialization.

We observed that using the Xavier [28]] or Kaiming [29]
initializations for the prototypes leads to oscillations in perfor-
mance. Hence, we decided to initialize all prototypes to the
zero vector. Weight decay is applied to the prototypes because
they are trainable parameters.

D. Entropic Score.

The entropy has been studied for OOD detection [30]. We
show that the output probabilities negative entropy, which we
call the entropic score, produces high-performance results when
combined with IsoMax loss. Indeed, in such cases, the solution
may consider the information provided by all network outputs
rather than merely one output. For instance, ODIN and ACET
only use the maximum probability.

E. Implementation Details.

To calculate the losses based on cross-entropy, deep learning
libraries usually combine the logarithm and probability into
a single computation. However, we experimentally observed
that sequentially computing these calculations as standalone
operations improves the IsoMax performance. The class
prototypes have the same dimension as the neural network
last-layer representations. The number of prototypes is equal to
the number of classes. The IsoMax loss has fewer parameters
than the SoftMax loss because it has no bias to learn.

TABLE I
CLASSIFICATION ACCURACY.

Test Accuracy (%) [1]

Model Data SoftMax Loss  IsoMax Loss
SVHN 96.6 96.6
DenseNet CIFARI10 95.4 95.2
CIFAR100 77.5 717.5
SVHN 96.8 96.8
ResNet CIFAR10 95.5 95.6
CIFAR100 77.4 77.3

In addition to avoiding classification accuracy drop compared with
the SoftMax loss trained networks, IsoMax loss trained models show
higher OOD detection performance (see Table [II).

We observed classification accuracy drop and low/oscillating
performance when trying to integrate the entropic scale into the
SoftMax loss or with cosine similarity [22], [31], [32]. In such
cases, the above strategy, i.e., initialization of the loss weights
with the zero vector, cannot be performed. The Mahalanobis
distance cannot be used because the covariance matrix is not
differentiable. Hence, the nonsquared Euclidean distance is
the optimal choice for integration with the entropic scale.

IV. EXPERIMENTS

All datasets, models, and evaluation metrics used the baseline
established in [35] that was followed in the major OOD
detection papers [[L1], [2], [10]. We trained from the scratch 100-
layer DenseNet-BC [36] (growth rate k=12, 0.8M parameters)
and 34-layer ResNets [37] on CIFAR10 [38]], CIFAR100 [38]]
and SVHN [39]] using the SoftMax and IsoMax losses.

For both the SoftMax loss and IsoMax loss, we used SGD
with the Nesterov moment equal to 0.9, 300 epochs with a
batch size of 64, and an initial learning rate of 0.1, with a
learning rate decay rate equal to ten applied in epochs 150,
200, and 250. We used a dropout of zero. The weight decay
was 0.0001.

We only compared approaches that did not present clas-
sification accuracy drop because this facilitates increasing
OOD detection performance [40]; moreover, it is particularly
undesired from a practical perspective [41]]. It is well known that
using OOD/outlier/background/additional data improves the
OOD detection performance. Therefore, considering that data-
based regularization techniques may benefit both SoftMax loss
and IsoMax loss, we perform all experiments without outlier
exposure [[13]], [[14], background samples [[12]], or energy-based
fine-tuning [[15]. The source code is available onlin

V. RESULTS AND DISCUSSIONS

A. IsoMax Loss Properties, Ablation Study, and Entropic Scale
Value Definition.

To experimentally show that higher entropic scales lead to
higher mean entropy probability distributions and consequently

Uhttps://github.com/dlmacedo/entropic- out-of-distribution-detection
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Fig. 2. (a) SoftMax loss minimizes both the cross-entropy and the mean entropy of the posterior probabilities. (b) IsoMax loss produces low mean entropy
posterior probabilities for a low entropic scale (Es=1). (c) IsoMax loss produces medium mean entropy for an intermediate entropic scale (Es=3). (d)
IsoMax loss produces high mean entropy for a high entropic scale (Es=10). Therefore, higher entropic scale values are correlated with higher mean entropies
as recommended by the maximum entropy principle. Notice that the orange line is almost flat in (d), so the IsoMax loss almost retains the maximum entropy
present at the beginning of the training for a high entropic scale. Hence, an entropic scale equal to ten is enough to produce posterior probability distributions
with virtually the maximum possible mean entropy log(N), where N is the number of classes. Consequently, there is no need to increase E, further. Therefore,
we decided to use =10 for IsoMax loss (see also Fig. EI) (e) The left side of the dashed vertical red line presents the classification accuracies. The right
side of the dashed vertical red line shows the OOD detection performance using the entropic score and the TNR@TPRO95 (true negative rate at 95% true
positive rate) metric. We observe that a higher mean entropy produces increased OOD detection performance regardless of the out-of-distribution (out-dist).
Isotropy by itself enables the IsoMax loss to exhibit higher performance than the SoftMax loss (Es=1). IsoMax loss trained models exhibit classification
accuracies similar to the classification accuracies presented by SoftMax loss trained networks regardless of the entropic scale.
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Fig. 3. AUROC represents the mean AUROC considering all out-of-distribution data. The classification accuracy and the mean OOD detection performance
are approximately stable for Es=10 or higher regardless of the dataset and model. Es validation cannot significantly improve the OOD detection performance.
In fact, this is not even possible because access to the OOD or outlier samples is not allowed in seamless OOD detection. Making Es learnable did not
considerably improve or decrease the OOD detection results.



TABLE 11

SEAMLESS OUT-OF-DISTRIBUTION DETECTION: NO HYPERPARAMETER TUNING. FAST AND ENERGY-EFFICIENT INFERENCES.
NO CLASSIFICATION ACCURACY DROP. NO OUTLIER/BACKGROUND DATA.

Seamless OOD Detection: No Classification Accuracy Drop. No Outlier Data.

Model (trggti?l o (u%?ele?n) Fast and Energy-Efficient Inferences. No Hyperparameter Tuning.
TNR@TPR95! (%) [1] AUROC? (%) [1] DTACC? (%) [1]
SoftMax+MPS* / SoftMax+ES® / IsoMax+MPS® / IsoMax+ES’ (ours)

CIFARI0  SVHAN 322/332/645/71.0  86.6/869/946/96.6  79.9/79.9/88.1/916
TinyImageNet [33]] 55.8/59.8/81.1/88.0 93.5/942/968/97.8 87.6/87.8/90.8/93.2
DenseNet LSUN [34] 64.9/69.5/88.5/945 952/959/97.9/988  89.9/90.0/93.1/94.9
CIFARI00  SVHN 20.6 /249 /27.5/23.4 801/819/863/88.6 73.9 /7431799 / 83.7
TinyImageNet 19.4 /237 /424 / 49.1 7.0/78.8/902/926  70.6/71.1/83.6/86.6
LSUN 18.8 / 24.4 / 48.9 / 63.0 759/779/913/94.7 69.5/702/84.2/89.1
SVHN CIFAR10 81.5/837/91.6/941  965/969/982/98.5 91.9/92.1/94.1/95.0
TinyImageNet 88.2/90.0/953/97.0 97.7/98.1/989/99.1  93.5/93.7/954/96.1
LSUN 86.4/884/947/968 97.3/97.8/98.7/99.1  92.8/93.0/95.0/95.9
CIEARI0  SVHN 43.1/445/81.7/83.6 91.7/920/96.8/971  86.5/86.5/91.2/91.9
TinylmageNet 463 /48.0/66.0/702 89.8/90.0/93.9/94.6 84.0/84.1/87.1/88.3
ResNet LSUN 512/533/76.6/823  922/926/962/969  86.5/86.6/90.1/91.5
CIFARI00  SVHN 159/18.0/225/202  71.3/727/83.9/853  66.1/66.3/77.8/79.7
TinyImageNet 18.5/224/389/50.6 747/763/89.2/92.0  68.8/69.1/822/85.6
LSUN 184 /224 /41.4/548 747/765/90.1/932  69.1/69.4/833/87.5
SVHN CIFAR10 67.3/67.7/90.5/923 89.8/89.7/97.9/98.0 87.0/86.9/93.7/94.1
TinyImageNet 66.9/673/92.1/944 89.0/89.0/982/984  86.7/86.6/943/94.8
LSUN 62.27/625/88.6/90.8 86.0/858/97.6/97.8 842/84.1/93.4/93.6

"True negative rate at 95% true positive rate. >Area under the receiver operating characteristic curve. *Detection accuracy [2]. *SoftMax+MPS
means training with SoftMax loss and performing OOD detection using the maximum probability score (MPS), which is the approach defined
in [35]]. *SoftMax+ES means training with SoftMax loss and performing OOD detection using the entropic score (ES). SIsoMax+MPS means
training with IsoMax loss and performing OOD detection using the maximum probability score (MPS). "IsoMax+ES means training with
IsoMax loss and performing OOD detection using the entropic score (ES) (our proposal). The best results are shown in bold. To the best of
our knowledge, our IsoMax+ES approach presents state-of-the-art performance under these severely restrictive assumptions.

improve the OOD detection performance, we trained DenseNets
on SVHN using the SoftMax loss and IsoMax loss with distinct
entropic scale values. We used the entropic score and the
TNR@TPRYS5 (true negative rate at 95% true positive rate) to
evaluate the OOD detection performance (Fig. [2).

Fig. [Zh shows that the SoftMax loss generates posterior
distributions with low mean entropy. Fig. b illustrates that
the unitary entropic scale (E;=1) does not increase the mean
entropy of the probability distributions. In other words, isotropy
alone is not enough to produce low mean entropy probability
distributions, and the entropy maximization trick is necessary.
Nevertheless, Fig. [k shows that the simple replacement
of anisotropic logits based on the affine transformation by
isotropic logits is enough to produce some OOD detection
performance gains for all out-of-distribution (out-dist) data,
even without the mentioned trick (E;=1). Fig. Eh shows
that an intermediate entropic scale (E;=3) provides medium
mean entropy probability distributions with the additional
OOD detection performance gains regardless of the out-of-
distribution data (Fig. [2e). Fig. 2 illustrates that a high entropic
scale (E25=10) produces even higher mean entropy probability
distributions and the highest OOD detection performance for
all out-of-distribution data considered (Fig. [2¢). We emphasize
that regardless of training with the entropic scale, if it is not
removed for inference, the IsoMax loss produces outputs with

entropies as low as those produced by the SoftMax loss and
high OOD detection performances are no long observed.

Hence, the entropy maximization trick enables the migration
from low-entropy distributions (Fig. [2h,b) to high-entropy
distributions (Fig. [2d). For a high entropic scale, the IsoMax
loss minimizes the cross-entropy while producing high-entropy
probability distributions as recommended by the principle of
maximum entropy. More importantly, higher entropy posterior
probability distributions directly correlate with increased OOD
detection performances despite the out-of-distribution data.
Fig. [2d shows that an entropic scale E,=10 is enough to
produce essentially the maximum possible entropy. Therefore,
we defined the entropic scale as a constant equal to ten.

B. Classification Accuracy and OOD Detection Performance
Dependence on the Entropic Scale Value.

After defining Es=10 for the IsoMax loss based on the
previous experiments, we performed additional analyses. Fig. [3]
shows that regardless of the combination of dataset and
model, the classification accuracy and the mean OOD detection
performance are essentially stable for ;=10 or higher, as
the entropic scale is already high enough to ensure near-
maximal entropy. Hence, validation of E; does not produce
a considerable performance increase. In fact, this is not even
possible because we consider access to OOD or outlier samples
to be forbidden. Making E; learnable did not significantly affect



TABLE III
NON-SEAMLESS OUT-OF-DISTRIBUTION DETECTION: UNFAIR COMPARISON OF APPROACHES WITH DIFFERENT SPECIAL REQUIREMENTS
AND SIDE EFFECTS. NO CLASSIFICATION ACCURACY DROP. NO OUTLIER/BACKGROUND DATA.

Non-seamless Out-of-Distribution Detection:

Data 00D Approaches with Different Special Requirements and Side Effects.
Model (training) (unseen)
AUROC (%) [ DTACC’ (%) [1]
ODIN! / ACET? / IsoMax+ES?® (ours) / Mahalanobis®
CIFARIO SVHN 92.8 / NA /96.6 / 97.6 86.5 / NA / 91.6 / 92.6
TinyImageNet 97.2 / NA / 97.8 / 98.8 92.1 / NA /93.2/95.0
DenseNet LSUN 98.5/ NA / 98.8 / 99.2 943/ NA / 94.9 / 96.2
CIFAR100 SVHN 88.2 / NA / 88.6 / 91.8 80.7 / NA / 83.7 / 84.6
TinyImageNet 853/ NA/92.6/97.0 772/ NA / 86.6 / 91.8
LSUN 85.7 / NA / 94.7 /1 97.9 773/ NA/89.1/93.8
SVHN CIFAR10 91.9/NA /98.5/98.8 86.6 / NA / 95.0 / 96.3
TinyImageNet 94.8 / NA /99.1 / 99.8 90.2 / NA /96.1 / 98.9
LSUN 94.1 / NA /99.1/99.9 89.1 / NA / 95.9 / 99.2
CIFARIO SVHN 86.5/98.1/97.1/95.5 77.8 / NA /91.9 / 89.1
TinylmageNet 93.9 / 85.9 / 94.6 / 99.0 86.0 / NA / 88.3 / 95.4
ResNet LSUN 93.7 / 85.8/96.9 / 99.5 85.8 / NA /91.5/97.2
CIFAR100 SVHN 72.0/91.2 /853 /844 67.7/ NA /79.7 /1 76.5
TinyImageNet 83.6/752792.0/87.9 75.9 / NA / 85.6 / 84.6
LSUN 81.9 / 69.8 / 93.2 / 82.3 74.6 /| NA / 87.5/ 79.7
SVHN CIFAR10 92.1/97.3/98.0/97.6 89.4 / NA / 94.1 / 94.6
TinyImageNet 92.9/97.7/98.4/99.3 90.1 / NA /94.8 / 98.8
LSUN 90.7 /99.7 / 97.8 / 99.9 88.2 / NA /93.6 / 99.5

ODIN, the Mahalanobis approach, and ACET present hyperparameters that must be validated for each combination of datasets and models.
They also require previously known optimal adversarial perturbation values for each combination of datasets and models. 'ODIN uses input
preprocessing, temperature calibration, and adversarial validation, i.e., hyperparameter tuning using adversarial examples [11]]. >ACET uses
adversarial training, resulting in slower training, possibly reduced scalability for large images, and eventually classification accuracy drop [10].
3IsoMax+ES means training with IsoMax loss and performing OOD detection using the entropic score (ES). Considering that validating
using adversarial examples cannot produce significant gains (Fig. , we prefer to keep E.=10 to maintain the simplicity of the solution. *The
Mahalanobis solution uses input preprocessing, feature ensemble, feature extraction followed by metric learning, and adversarial validation [2].
>Detection accuracy [2]. The best results are shown in bold (2% tolerance).

TABLE IV
NON-SEAMLESS OOD DETECTION: INFERENCE DELAYS. PRESUMED COMPUTATIONAL COST AND ENERGY CONSUMPTION RATES.

Non-seamless Out-of-Distribution Detection:

Model Data Hardware Inference Delays. Presumed Computational Cost and Energy Consumption Rates.
(training) (inference) -
SoftMax Loss [35] IsoMax Loss (ours) ODIN [L1), Mahalanobis [,
Generalized ODIN [9]
MPS / ES (ms) [}] MPS / ES (ms) [}] (ms) [}]
CIFAR10 CPU 18.1/19.4 18.0/19.2 242.4 (=~ 10x slower)
DenseNet GPU 11.6 / 13.0 11.6/11.5 39.2 (=~ 4x slower)
CIFAR100 CPU 18.4/19.8 18.4/19.3 261.0 (=~ 10x slower)
GPU 129/ 11.4 11.8/11.5 39.6 (= 4x slower)
SVHN CPU 18.1/18.6 183/ 18.6 241.5 (~ 10x slower)
GPU 11.6/11.9 11.7 /7 11.6 39.6 (= 4x slower)
CIFAR10 CPU 223/232 23.0/235 250.4 (=~ 10x slower)
ResNet GPU 45/38 42741 15.4 (=~ 4x slower)
CIFAR100 CPU 23.3/23.1 23.3/23.8 252.6 (=~ 10x slower)
GPU 43739 43742 14.8 (~ 4x slower)
SVHN CPU 23.1/23.4 2347233 263.8 (=~ 10x slower)
GPU 421740 4.0/4.0 15.7 (=~ 4x slower)

MPS means maximum probability score. ES means entropic score. For SoftMax loss and IsoMax loss, the inference delays combine both
classification and detection computation. For the methods based on input preprocessing, the inference delays represent only the input
preprocessing phase. All values are in milliseconds. The inference delay rates presumably reflect similar computational cost and energy
consumption rates.



the OOD detection performance. Table [[| shows that the IsoMax
loss trained models do not show classification accuracy drop.

C. Seamless Out-of-Distribution Detection.

To the best of our knowledge, the proposal presented in
[35] and our method are the only solutions that qualify as
seamless OOD detection approaches. Table [[I| shows that the
models trained with the SoftMax loss using the maximum
probability as the score (SoftMax+MPS) always present the
worst performance results and that replacing the maximum
probability score by the entropic score (SoftMax+ES) produces
OOD detection performance gains.

The combination of the models trained using IsoMax loss
with the entropic score (IsoMax+ES), which is the proposed
solution, significantly improves, usually by several percentage
points, the OOD detection performance across almost all
datasets, models, out-of-distribution data, and metrics.

The entropic score produces high OOD detection per-
formance when the distributions present high entropy (Iso-
Max+ES). Indeed, both producing high-entropy distributions
and the entropic score contribute to improving the OOD
detection performance. However, the contribution of producing
high-entropy distributions is considerably more important.

The model does not affect the analyses presented. Indeed,
the comments shown above are valid for both DenseNet and
ResNet models.

D. Non-seamless Out-of-Distribution Detection.

To tackle non-seamless OOD detection, IsoMax should
work as a baseline to be combined with OOD techniques
(e.g., outlier exposure, adversarial training, input preprocessing,
energy score) rather than competing as a standalone solution.
Nevertheless, Table provides a perspective for how our
baseline seamless (standalone) approach compares to non-
seamless (composed) solutions.

From a qualitative perspective, ODIN and Mahalanobis use
input preprocessing; i.e., to perform OOD detection, each
inference requires a first neural network forward pass, a
backpropagation, and a second forward pass. They produce
slower and less energy-efficient inferences than models trained
with IsoMax loss, which are as fast and computationally
efficient as the models trained with SoftMax loss. Input
preprocessing is indeed a limitation from an economic and
environmental perspective [42].

ODIN requires temperature calibration after neural network
training, while the Mahalanobis approach requires feature
ensemble and metric learning. Unlike pretraining-based solu-
tions, our approach requires no postprocessing after the neural
network training. ACET requires adversarial training, which
produces slower training and may limit the application of ACET
to large images [43].

From a quantitative point of view, Table shows that
IsoMax+ES considerably outperforms ODIN in all evaluated
scenarios. Therefore, in addition to avoiding hyperparameter
tuning and access to the OOD or adversarial samples, the
results show that the entropy maximization trick is much more

effective in improving the OOD detection performance than
temperature calibration, even when the latter is combined
with input preprocessing. Furthermore, IsoMax+ES usually
outperforms ACET, in some cases by a large margin. Moreover,
in most cases, the Mahalanobis method surpasses IsoMax+ES
by less than 2%. In some scenarios, IsoMax+ES outperforms
the Mahalanobis method.

Table [[V] presents the inference delays for the SoftMax loss,
IsoMax loss, and competing methods using a CPU and GPU.
We observe that neural networks trained using the IsoMax
loss produce inferences equally as fast as those produced by
networks trained using the SoftMax loss, regardless of whether
a CPU or GPU is used for inference.

Additionally, the entropic score is as fast as the usual
maximum probability score. Moreover, the methods based
on input preprocessing were more than ten times slower on
the CPU and approximately four times slower on the GPU.
These ratios also presumably apply to the computational cost
and energy consumption.

To agree with the maximum entropy principle and achieve
high performance, rather than generating calibrated maximum
probabilities, IsoMax must produce the lowest possible maxi-
mum probabilities.

VI. CONCLUSION

We proposed a seamless OOD detection approach based
on logit isotropy and the maximum entropy principle. The
proposed IsoMax loss acts as a SoftMax loss drop-in replace-
ment that produces accurate predictions in addition to fast
energy- and computation-efficient inferences. No hyperparam-
eter tuning is needed. Hence, no additional procedure other
than straightforward neural network training is needed.

OOD detection is performed using the rapid entropic score.
Collection of outlier/background data is also not required. To
the best of our knowledge, the IsoMax loss does not present
any drawbacks compared to the SoftMax loss.

The direct replacement of the SoftMax loss by the IsoMax
loss significantly improves the baseline OOD detection perfor-
mance of neural networks. Therefore, rather than the limitations
of the models, the low OOD detection performance of deep
networks is due to the SoftMax loss drawbacks, i.e., anisotropy
and overconfidence.

In future work, the research community may combine the
IsoMax loss with data-based loss regularization techniques
[12], [13], [14] to improve the performance. Approaches based
on pretrained models [11], [2l], [44] or energy-based fine-
tuning/score [15] may be applied on IsoMax loss pretrained
networks rather than on SoftMax pretrained models.

Thus, rather than competitors, these approaches are actually
complementary to IsoMax loss, as they may be combined
to achieve even higher overall OOD detection performance.
IsoMax loss may replace SoftMax loss as a higher performance
baseline for constructing OOD detection solutions.



Another option is to use recent data augmentation techniques
[45]], [46]. We believe that the simplicity of our solution makes
it scalable to large images. Hence, we intend to apply this
approach to ImageNet [33]. Finally, since our approach consists
of only loss replacement and is based on the general principles
of isotropy and maximum entropy, it may be extended to other
machine learning methods beyond neural networks.
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