
ar
X

iv
:2

10
2.

04
68

1v
2

 [
cs

.N
E

]
 2

2
A

pr
 2

02
1

Multi-GPU SNN Simulation

with Static Load Balancing

1st Dennis Bautembach

FORTH - ICS & CSD - UOC

denniskb@ics.forth.gr

2nd Iason Oikonomidis

FORTH - ICS

oikonom@ics.forth.gr

3rd Antonis Argyros

FORTH - ICS & CSD - UOC

argyros@ics.forth.gr

Abstract—We present a SNN simulator which scales to millions
of neurons, billions of synapses, and 8 GPUs. This is made
possible by 1) a novel, cache-aware spike transmission algorithm
2) a model parallel multi-GPU distribution scheme and 3) a
static, yet very effective load balancing strategy. The simulator
further features an easy to use API and the ability to create
custom models. We compare the proposed simulator against two
state of the art ones on a series of benchmarks using three well-
established models. We find that our simulator is faster, consumes
less memory, and scales linearly with the number of GPUs.

Index Terms—SNN, AI, Deep Learning, simulation, multi-
GPU, parallel, distributed, HPC, GPGPU, CUDA

I. INTRODUCTION

Spiking Neural Networks (SNNs), first formalized in

1997 [1], have experienced a renaissance in recent years due

to the rise in popularity of Deep Learning and the widespread

availability of GPGPU hardware. While we are still waiting

for the breakthrough that will let SNNs overtake 2nd gener-

ation ANNs, the research community remains highly active,

working to improve performance, biological fidelity, support

for complex models and topologies, and user friendliness. Our

own prior work [2] surpassed the state of the art on a couple

of these criteria.

We believe that SNN simulation is fundamental to SNN de-

sign: faster simulation means faster iteration and thus quicker

progress for the field as a whole. Not only speed is important,

but so is size, especially considering that we are currently

limited to simulating a modest 1% of a rat’s visual cor-

tex [3]. While gains are still to be made from algorithmic and

data-structural improvements, we must solve multi-GPU (and

eventually multi-node) scaling. Towards this goal we present

a SNN simulator called “Spice” (/spaIk/) which scales to

millions of neurons, billions of synapses, and 8 GPUs.1 This

is made possible by three key contributions:

• A novel, cache-aware spike transmission algorithm allows

linear scaling with network size in the face of millions

of neurons that do not fit into cache.

• Our parallelization scheme distributes both computations

and storage across multiple GPUs.

• A simple neuron partitioning strategy achieves perfect

load balancing in practice albeit being completely static.

The result is a SNN simulator that makes it possible to run

ten different experiments of 100K iterations on a 24B-synapse

1We use “GPU” to refer to an entire GPU PCIe board throughout the paper.

model spanning 8 GPUs in the same time it takes competing

simulators to create a single network.

II. RELATED WORK

As noted by Tuckwell [4], early attempts to mathematically

model the function of biological neurons can be traced all the

way back to the beginning of the 20th century [5]. Research

on efficiently simulating SNNs has a long history [6], [7]

and is still showing ever-increasing interest [2], [8]–[12]. It

covers areas such as improving the biological fidelity [13] and

numerical stability of methods [12] and employing hardware

acceleration [14], [15] on such diverse platforms as VLSI [6],

FPGA [15], and even super-computers [16]. Additionally, there

have been theoretical advances such as the quantification of

the difference between two spike trains [17], the exact solu-

tion of differential equations that model membrane dynam-

ics [18], and an approach on implementing back propagation

on SNNs [19].

A. Simulator classifications

Several useful classifications of SNN simulators can be

defined based on their key traits. One classification regards

whether the simulator aims to model the exact behavior of

biological neurons [13], [20]–[25], or is just based on the

general principle of spiking neurons.

Another classification regards the customizability of the

simulators. Simulators that allow the user to specify neuron

(and synapse) models with custom behavior can be referred

to as general [2], [3], [26]–[30], in contrast to ones that only

simulate fixed types of neurons [13], [21], [25], [31].

The distinction between event- and time-driven simulation

arises in the software architecture of the simulator: Time-

driven simulators [2], [3], [18], [31]–[33] quantize time into

fixed deltas and advance the entire network state in lock-

step. In contrast, event-driven simulators [7], [18], [27], [32],

[34], [35] intentionally leave neurons in varying, past states

until it is required by the simulation to advance them, usually

because of incoming spikes. Typically, time-driven simulators

are simpler and more efficient per element but very small

deltas can become prohibitively slow. Event-driven simulators

offer arbitrary time resolution and can potentially make up

for their lower per-element performance by being able to skip

ahead in time. Falling somewhere in between are so-called

hybrid approaches [36], [37].

http://arxiv.org/abs/2102.04681v2

1 3 5 6 7 9

1 3 4 6 7 8

1 3 5 6 7 8

3 5 6 7 8 -

3 4 5 6 7 9

2 4 6 9 - -

2 3 5 6 8 -

0 2 4 5 7 8

1 3 4 5 7 9

1 2 3 7 9 -

n e u r o n p o o l

*

*

*

(b)

(a)

(c)

Fig. 1. We store our network’s topology in a padded adjacency list (a). Each
row stores a neuron’s neighbor IDs (b). The synapse pool (not depicted) has
the same size as the adjacency list with an implicit 1:1 mapping between the
two. CUDA warps (c, here chosen to be 2 threads wide) deliver spikes (*)
in a column-wise fashion, keeping recipients close together and improving
cache coherency. The thick black line illustrates how the network would be
split in two with a pivot of “4”.

Lastly, simulators can also be classified according to the

employed hardware platform. Common targets include regular

CPUs [10], [27], [32], [34], [35], [38], [39], GPUs [2], [3], [8],

[9], [11], [14], [15], [22], [25], [28]–[31], [36], [37], [40]–[42]

(with some works notably combining CPU and GPU compu-

tations [14], [36], [37], [42]), as well as custom/specialized

hardware [6], [15], [16], [20], [21], [43]. There is a clear trend

in recent works to increasingly adopt specialized hardware,

especially GPUs.

The simulator presented here is of the general-purpose,

time-driven, GPU-accelerated variety.

B. Parallel Simulators

Works that aim to harvest the computational resources of

multiple GPUs have been presented as early as 2010 [42].

The simulator in [42] is notable for its spike synchronization

algorithm, pioneering the use of multiple GPUs as well as

utilizing the available CPU. Beyond that it is of no use as

its network topology and models were hard-coded. Also note-

worthy is the work by Kunkel et al. [16] which inspired our

parallelization scheme and load balancing strategy. In [16] the

authors took the famous NEST simulator [38] and scaled it to

a supercomputer comprising some 100 000 cores with decent

results. Nowadays though it is outperformed by a single GPU

by a factor of 100× (compare Fig. 5 “Brunel+” with Kunkel

et al. [16, Fig. 9]).

As immediate competitors we choose two very re-

cent works, closely related to ours: BSim [11] and

NeuronGPU [44]. Both simulators are time-driven, GPU-

accelerated, and general (to varying degrees), allowing the

implementation of the same models in all three simulators,

and therefore a direct comparison. A comparison with event-

driven simulators does not make much sense since each design

pursues distinct goals entailing different trade-offs. BSim is

the only other current, published state of the art simulator

with multi-GPU support, so a comparison with it is mandatory.

NeuronGPU stands out in that it is more focused on accuracy

over performance, featuring double precision arithmetic and

Runge-Kutta integration. It is interesting to see which perfor-

mance trade-offs this design choice implies in practice.

III. METHOD

For self-containment, we recap the basic data structures and

algorithms employed by Spice [2] (Sections III-A & III-B).

We then discuss in depth the proposed spike transmission

algorithm and its parallelization (Sections III-C–III-F).

A. Data Structures and Algorithms

Neurons and synapses are stored as a struct of arrays (SoA)

which is necessary to enable memory coalescing on GPUs

and can dramatically improve achieved memory bandwidth

compared to an array of structs (AoS) layout [45]. The user

specifies their neuron and synapse formats by inheriting from

neuron and synapse base classes, for example:

struct myneuron : neuron<float, int> {...}

which gets converted into

tuple<vector<float>, vector<int>>

via template meta programming. All neurons are stored in a

single, global SoA (Fig. 1b) which is as big as the largest

neuron model times the total number of neurons. This wastes a

few megabytes of memory in exchange for simpler addressing

and code. The same holds true for synapses.

The network’s topology is stored in a single, padded adja-

cency list (Fig. 1a). This wastes a few percent of memory in

exchange for simpler and faster code as it requires no offset

table and allows us to align rows to 128-byte boundaries which

leads to a few percent faster memory accesses. Each row’s

entries are sorted to improve cache coherency. We allocate a

synapse pool the size of the adjacency list with an implicit

1:1 mapping between the two (adj[i,j] corresponds to

synapses[i,j]).

Neuron- and synapse dynamics are specified by implement-

ing callbacks such as onUpdate() and onReceiveSpike()

which are invoked by the framework on every simulation step.

As a result of updating neurons, some of them may spike.

Their IDs are inserted into one of delay many spike arrays so

they may be delivered on the appropriate simulation step in

the future.

B. Adjacency List Construction

The network’s topology is specified through a descriptor of

the form {{range1, range2, p}, ...} which means: “connect all

neurons in range1 with all neurons in range2 with probability

p” (and so on). The out-degree of neurons in range1 follows a

binomial distribution, which can be approximated by a normal

{a} {b} {c} {d}

{a,b} {b} {c,d} {d}

{a,b,c,d} {b} {a,b,c,d} {d}

{a,b,c,d} {a,b,c,d} {a,b,c,d} {a,b,c,d}

Fig. 2. Our spike synchronization algorithm. Depicted are 4 GPUs with their
respective spike sets {a}, {b}, {c}, and {d}. The goal is for all GPUs to end
up with the union of these sets. We hierarchically gather and then distribute
the spikes again. Each arrow represents a cudaMemcpy() call. Whenever
2 GPUs end up with half of all the spikes (2nd row, 1st and 3rd GPU),
we perform a full duplex sync (crossing arrows) which saves one iteration
compared to a strictly hierarchical approach. So long as GPUs are equipped
with two copy-engines, all memory transfers between two rows take place
concurrently with respect to each other and the ongoing simulation.

distribution with mean µ = |range2| ∗ p and variance σ2 =
|range2|∗p∗(1−p). We compute the mean and variance for all

neurons, summing them if a neuron is contained in multiple

ranges. We then estimate the width of the adjacency list as

max

(

µi + 3
√

σ2

i

)

,

which allows us to pre-allocate it. The layout description is

then uploaded to the GPU where it is expanded and from it,

the adjacency list is populated.

C. Spike Transmission

Spikes are transmitted by selecting the appropriate spike

array S based on the current simulation step and delay.

For each spike in S, the corresponding row in the adja-

cency list is selected (Fig. 1*) and the spike is delivered

to all neighbors in said row by invoking the aforementioned

onReceiveSpike() callback. This is done by launching

|S|∗width(adj)÷32 CUDA warps where warp i is responsible

for delivering spike i mod |S| to neighbors ⌊i ÷ |S|⌋ ∗ 32
through ⌊i÷ |S|⌋ ∗ 32+31 of neuron Si mod |S|, i.e. column-

wise (the neuron is advanced first, then its neighbors, Fig. 1c).

Recall that the entries of each row are sorted. By traversing the

adjacency list in a column-wise fashion the recipient neurons

are statistically expected to be close together, improving our

cache hit rate when writing to the global neuron pool. This

allows us to scale linearly even when dealing with millions

of neurons that do not fit into cache (see Section IV-B). We

chose a warp because it is the smallest computational unit that

still achieves full memory bandwidth.

D. Parallelization

Our design allows us to split the network across multiple

GPUs with per-neuron granularity. Load balancing, the act of

GPU0:

GPU1:

↓ ↔ ↑ ↓ ↔ ↑

↓ ↔ ↑ ↓ ↔ ↑

t

delay

↓ Download spike counts
↔ Synchronize spikes
↑ Upload spike counts

Fig. 3. Timeline of a dual-GPU simulation loop with delay = 4. The top
row of each GPU’s timeline depicts kernel invocations (simulation steps), the
bottom row depicts memory transfers (spike synchronizations). We group the
simulation into batches of delay many simulation steps. As soon as half the
batch has completed on all GPUs, we download spike counts (required for
address calculations), synchronize the spikes (according to Fig. 2), and upload
the new, total spike counts. Simulation steps and spike transfers of the same
color depend on each other’s completion.

deciding which neurons should be assigned to which GPU,

will be discussed later. For now let us assume we are given

a partition and see how the neuron, synapse, and adjacency

data are physically distributed. We remind ourselves that a

network, in its entirety, is defined by the neuron pool, synapse

pool, adjacency list, and user callbacks. In order to split such

a network into, say, two slices given a pivot one would:

1) Split the neuron pool into ranges [start, pivot) and

[pivot, end).
2) Split each row of the adjacency list along the pivot (via

binary search).

3) Split the synapse pool in sync with the adjacency list.

This is illustrated by the thick black line in Fig. 1. Callbacks

need not be modified. They will simply be invoked on the

new subsets of the original neuron and synapse pools. This

split can be performed implicitly during network construction

simply by modifying the topology descriptor:

{range1, range2, p}
would turn into

{range1, range2 ∩ [start, pivot), p} on GPU0 and

{range1, range2 ∩ [pivot, end), p} on GPU1

Since the network never needs to be instantiated as a whole,

the maximum network size grows linearly in the number of

GPUs.

It is noted that each half of the original network forms

a network in its very own right. It can be simulated on a

dedicated GPU independently from the other half and without

knowledge of any other GPUs in the system. Each GPU is

responsible for delivering all spikes to its neurons via its

synapses (similarly to [16]). Therefore, the only data that need

to be exchanged between GPUs are spikes.

E. Spike Synchronization

Each GPU simulates its network slice in isolation and with-

out knowledge of any other GPUs. A supervisor synchronizes

spikes between GPUs using the hierarchical algorithm de-

scribed in [46, pp. 9–18] (see Fig. 2). The synchronization is

performed with a series of cudaMemcpy() calls so they may

overlap with kernel executions, the importance of which will

become apparent shortly. Rather than synchronizing spikes

after every simulation step, we take advantage of the fact

that delay many steps can be executed in a batch: any spikes

produced inside one batch will not arrive until the next one

(known as “Timestep Grouping” [31]). We divide batches into

two halves with ⌊delay ÷ 2⌋ and ⌈delay ÷ 2⌉ many steps

respectively. After the first half completes we asynchronously

initiate spike synchronization which then runs concurrently

with the second half (Fig. 3). This has two advantages:

1) It is faster: By grouping spikes from multiple simulation

steps together we cut down on the total number of

memory transfers.

2) We maximize the probability that spike synchronization

completes before the next batch begins (which is when

the spikes will be needed).

If the simulation step and delay are long enough, we can hence

completely hide any overhead introduced by spike synchro-

nization. If, additionally, we can achieve perfect load balancing

(all GPUs completing the batch simultaneously), the simula-

tion will scale linearly with the number of GPUs.

F. Load Balancing

The goal of load balancing is to distribute the simulation

load across GPUs as evenly as possible so as to avoid the

system stalling for a long-running GPU. Ideally, all GPUs

would complete every batch at the same time. In our case

this means partitioning the neuron pool according to the above

criteria. The partitioning of the adjacency list and synapse pool

is determined by that of the neuron pool since a GPU must

always store the incoming edges to all of its neurons.

PipeDream [47], which in large part solved multi-GPU

backpropagation for conventional ANNs, opts for profiling:

Before training, the cost of each layer is measured and layers

are then optimally distributed across GPUs. This strategy has

several disadvantages and does not map well to SNNs:

• The profiling time counts towards the total simulation

time. A few seconds of profiling may be negligible in

the face of hours of training, but they do add significant

overhead in the case of short-lived SNN simulations.

• The thusly obtained neuron costs would only be valid for

the profiling period itself. SNNs exhibit very complex dy-

namic behavior with greatly varying firing patterns over

time. A partition which results in even load balancing at

the beginning of a simulation, may become completely

detrimental a few seconds into it.

We opt for a much simpler, completely static solution

inspired by [16]: we split the network into hundreds of

equal-width slices and assign them to GPUs in a round-robin

Adj. List GPU 0 GPU 1

→ + (a)

(b)

Fig. 4. Our load balancing strategy. (a) We split the network into many slices
(here 4) and assign them to alternating GPUs, which averages out the variance
and skew present in the neurons’ simulation costs. (not shown) The synapse
pool is split in sync with the adjacency list. (b) The neuron pool is replicated
across GPUs as a whole which keeps global neuron IDs intact. Each GPU
only processes its assigned neurons though (according to listing 1).

fashion (Fig. 4). This averages out any variance or skew

present in the neurons’ simulation costs. The effectiveness

of this strategy depends on the assumption that the number

of neurons far outweighs the dynamic range2 of their costs,

which is a necessary condition for any load balancing strategy

(with neuron-granularity): If the dynamic range tended towards

infinity, the possibility of finding a balanced partition would

go to zero. Adversarial cases where every #GPU -th slice

happens to be more expensive than the rest are rare and, if

they occur, can be alleviated by changing the slice count.

The split happens analogously to Section III-D (albeit with

many more pivots) and, once again, can be performed im-

plicitly during network construction. The neuron pool is not

physically split but replicated across all GPUs. This wastes a

few megabytes of memory but keeps global neuron IDs intact,

absolving us from the need for (neuron ID-) translation tables.

Each GPU only processes its assigned neuron pool slices by

means of simple index manipulation (listing 1).

IV. RESULTS

We compare the performance of our simulator to that of

BSim [11] and NeuronGPU [44] using three well-established

models: Vogels-Abbott [48], Brunel, and Brunel with plas-

ticity [49], detailed in [31]. We apply a scaling factor to

synaptic weights allowing us to vary the network size while

maintaining the models’ characteristic firing patterns (detailed

in [2]). We also use a synthetic model allowing us to vary net-

work topology, size, density, activity (/firing frequency), and

delay independently from one another. Unless otherwise noted,

all synthetic benchmarks use a single, intra-connected neuron

population and a delay of 1. The models will henceforth be

referred to as Vogels, Brunel, Brunel+, and Synth.

2the ratio of the largest and smallest values that a certain quantity can
assume.

0 0.5B 1B 1.5B 2B 2.5B 3B
Synapse Count

0

2

4

6

8
R

ea
l T

im
e

 B
io

lo
gi

ca
l T

im
e

(x
)

Vogels

BSim
NeuronGPU
Spice

0 0.5B 1B 1.5B 2B 2.5B 3B
Synapse Count

0

1

2

3

4

5

6

R
ea

l T
im

e
 B

io
lo

gi
ca

l T
im

e
(x

)

Brunel

BSim
NeuronGPU
Spice

0 0.25B 0.5B 0.75B
Synapse Count

0

5

10

15

20

25

R
ea

l T
im

e
 B

io
lo

gi
ca

l T
im

e
(x

)

Brunel+

Spice

Fig. 5. Simulation time as a function of network size. We measure the time it takes to simulate 10 s of biological time for various synapse counts. We report
wall-clock time ÷ biological time.

0
0

0.5B
0.6M

 1B
0.8M

1.5B
 1M

 2B
1.1M

2.5B
1.3M

 3B
1.4M

Synapse Count
Neuron Count

0

5

10

15

20

25

30

35

R
ea

l T
im

e
 B

io
lo

gi
ca

l T
im

e
(x

)

Synth

BSim
NeuronGPU
Spice

Fig. 6. Same as Fig. 5 but for the Synth model with density = 0.156% and
activity = 0.5%. Neuron counts are provided below synapse counts.

BSim suffered from race conditions on Volta and newer

GPUs which we fixed without negatively affecting perfor-

mance. NeuronGPU and Spice worked out of the box. We

implemented our benchmarks using the C++ API for BSim

and Spice, and the Python API for NeuronGPU. All the code

used for the experiments can be found at:

• BSim github.com/denniskb/bsim, forked from master as

of Feb 19, 2020.

• NeuronGPU github.com/denniskb/neurongpu, forked

from master as of Oct 20, 2020.

• Spice github.com/denniskb/spice, as of Jan 28, 2021.

All benchmarks were performed on a Google Cloud VM

with an Intel Xeon E5-2699 v3, 8× Nvidia Tesla V100 16

GB (with P2P access), and 256 GB RAM, running a headless

Ubuntu 20 with CUDA 11 and GCC 9.

A. Simulation Time as a Function of Network Size

We measure the time it takes to simulate 10 s of biological

time for various network sizes (synapse counts). We report

wall-clock time ÷ biological time. All simulators scale close

to linearly. While both BSim and NeuronGPU technically

support spike-timing-dependent plasticity (STDP), we could

not make use of it: BSim did not contain any code samples

or documentation illustrating the use of STDP. NeuronGPU

0.2B 1B 10B 24B
Synapse Count

1

10

100

1000

S
et

up
 T

im
e

(s
)

Setup

BSim (1 GPUs)
BSim (2 GPUs)
BSim (4 GPUs)
BSim (8 GPUs)
NeuronGPU
Spice (1 GPUs)
Spice (2 GPUs)
Spice (4 GPUs)
Spice (8 GPUs)

Fig. 7. Setup time as a function of network size for the Synth model with
density = 5%. Both axes are logarithmic.

does contain a STDP synapse type which unfortunately does

not quite reflect the behavior of Brunel+. According to the

authors, modifying it “currently is a task for developers, not

for users”.

It is fair noting that NeuronGPU uses double precision

arithmetic and “exact integration” [50] as opposed to single

precision arithmetic and Euler integration used by BSim and

Spice, which certainly contributes to the performance discrep-

ancy. It is also worth noting that Vogels and Brunel do not

perform any faster compared to [2], in spite of the V100

being ~25% faster than the then-used 2080 TI. This is because

we are bottlenecked by atomic operations. Brunel+, which is

bandwidth-bound on the other hand, does run ~20% faster.

B. Simulation Time for Networks with Large Neuron Pools

Using our Synth model we study the performance of sim-

ulators when faced with massive neuron pools that do not

fit into cache (Fig. 6). Currently the only way to achieve

this is by creating very sparse networks due to limited GPU

memory. Both BSim and NeuronGPU seem to exhibit a slight

quadratic growth now with the “bend” happening at around

800K neurons which coincides with the V100’s cache size.

Thanks to the employed cache-aware spike transmission algo-

rithm (Section III-C) our simulator continues to scale perfectly

linearly.

https://github.com/denniskb/bsim
https://github.com/denniskb/neurongpu
https://github.com/denniskb/spice

Spice

1 2 4 8
GPU Count

0

1

2

3

4

5

6

7

8

9

S
ca

le
up

 (
x)

Vogels
Brunel
Brunel+

BSim

1 2 4 8
GPU Count

0

1

2

3

4

5

6

7

8

9

S
ca

le
up

 (
x)

Vogels
Brunel

Fig. 8. Scaleup as a function of GPU count: How many times larger can we make a model on 2, 4, 8 GPUs while maintaining single-GPU simulation time?

Spice

1 2 4 8
GPU Count

0

1

2

3

4

5

6

S
pe

ed
up

 (
x)

Vogels
Brunel
Brunel+

BSim

1 2 4 8
GPU Count

0

1

2

3

4

5

6

S
pe

ed
up

 (
x)

Vogels
Brunel

Fig. 9. Speedup as a function of GPU count: How much faster does the same model run on 2, 4, 8 GPUs compared to a single GPU?

C. Setup Time as a Function of Network Size

Fast setup is important as it allows the user to spend a

greater portion of their time on running simulations. It also

speeds up parameter exploration and -tuning. We see that

Spice’s setup is lightning fast because it is performed on the

GPU (Fig. 7). We further see that it is virtually constant with

respect to network size, meaning it is entirely dominated by

spooling up threads and allocating memory—our actual setup

kernel generates networks at ~200M synapses/ms.

D. Multi-GPU Scaling

Our simulator scales with multiple GPUs in both space and

time, allowing one to increase network size while maintain-

ing simulation time (“scaleup”, Fig. 8) or to cut down on

simulation time while maintaining network size (“speedup”,

Fig. 9). Both scenarios suffer from a natural limit: spike syn-

chronization time grows linearly with the number of GPUs—

add enough and any simulation will eventually be bottlenecked

by it, leading to sub-linear or even negative scaling. This

effect sets in much earlier in the “speedup” scenario where

per-GPU simulation time goes down with the number of GPUs,

shortening the spike synchronization window. That is why we

consider “scaleup” to be the predominant use case of our

contribution.

As can be seen, we achieve close to linear scaleup except for

Vogels running on 8 GPUs. Vogels has a highly erratic firing

pattern alternating between periods during which almost every

neuron fires and periods during which few or no neurons fire.

While we avoid synchronization altogether if no spikes occur,

we still need to download spike counts to determine that no

spikes have occurred. In the 8-GPU case this takes enough

time to delay subsequent simulation steps and prevent linear

scaling.

In some cases our simulator even scales super-linearly. This

is because making a network n times larger and then splitting

it into n slices again does not yield the original network. If

the original network needed to deliver S spikes to d recipients

each, then a slice would need to deliver S ∗ √
n spikes to

d÷√
n recipients each. While the total amount of work stays

the same, the trade-offs change.

BSim performs slower on multiple GPUs compared to a

single GPU in our benchmarks. According to the authors,

BSim “works well for huge networks with a large number

of populations but does not perform well with small number

of populations, especially when the numbers of neurons in

each population are imbalanced”. Our benchmarks fall into this

category. On models that do favor BSim, the authors report a

speedup of 1.5×–2.3× using 4 GPUs [11, Fig. 7].

TABLE I
COMPARISON OF MEMORY CONSUMPTION BY SIMULATOR

Simulator BSim NeuronGPU Spice

Synapse footprint (adj. data) 8 bytes 9 bytes 4 bytes

Max. synapse
count (V100)

Vogels 1.8B 1.6B 3.5B

Brunel 1.8B 1.6B 3.5B

Brunel+ - - 0.8B

Peak RAM usage 200 GB 40 GB 100 MB

E. Memory Consumption

Each simulator’s memory usage is summarized in Table I.

BSim and NeuronGPU use twice the memory to store a

synapse’s adjacency information, compared to Spice. For non-

plastic models this limits them to half the network size. For

plastic models this difference is negligible as then VRAM

consumption is dominated by the size of the synapse pool.

More importantly though, BSim and NeuronGPU use very

memory-inefficient, intermediate data structures before com-

pacting and uploading them to the GPU. This results in very

high RAM usage (peaking at 200 GB in the case of BSim)

which may be prohibitive for some users.

V. SUMMARY AND FUTURE WORK

We presented a SNN simulator that utilizes all available

hardware at close to 100% efficiency, enabling the simu-

lation of larger models in less time than ever before. The

employed multi-GPU parallelization-, spike synchronization-,

and latency hiding techniques are not tightly coupled to the

rest of our pipeline and should be adaptable to a variety of

simulators. Merely the strided load balancing strategy might

prove difficult to adapt, seeing as most simulator designs lend

themselves to a striped approach.

Several areas for future work can be identified. First, we

would like to add support for per-synapse delays. Since the

number of distinct delays is finite (and rather small for most

models), an obvious solution would be to store per-delay adja-

cency lists. Instead of transmitting all spikes from delay steps

ago, one would (in a loop) transmit 1-step old spikes via the

first adjacency list, 2-steps old spikes via the second adjacency

list, and so on. The total amount of work remains the same

and with the help of CUDA Dynamic Parallelism one could

also avoid overhead from additional kernel launches. More

importantly, this feature would work completely orthogonally

to the existing pipeline: each per-delay adjacency list would

be split across multiple GPUs just as it is now. We could still

hide spike synchronization latency but its efficiency would be

determined by the minimum delay in the system.

Typical spike arrays are so small that the spike synchro-

nization time is entirely dominated by CUDA API overhead

(cudaMemcpy() calls), effectively serializing operations that

ought to run concurrently. It is worth investigating whether the

spike synchronization could be carried out more efficiently by

the CPU instead, especially for eight or more GPUs.

// TID = thread ID

// NT = thread count

// S = slice width

// NGPU = GPU count

// GID = GPU ID

// N = neuron count

void updateNeurons(...) {

for (int i = TID; ; i += NT) {

int j = (i / S * NGPU + GID) * S + i % S;

if (j >= N) return;

onUpdate(neurons[j]);

}

}

Listing 1. The basic structure of our neuron update kernel. The neuron

pool (‘neurons’) is replicated across all GPUs. Each GPU only processes

its assigned slices though, via simple manipulation of the loop index.

Another interesting research direction is procedural connec-

tivity [51]. The authors only store the parameters used to

create the network and then generate adjacency data on the fly.

Perhaps procedural generation could be used for other aspects

of a SNN model, too.

ACKNOWLEDGMENTS

We thank Sergiu Oprea for his inputs on our algorithm and

the authors of BSim and NeuronGPU for their assistance with

the benchmarks.

REFERENCES

[1] W. Maass, “Networks of spiking neurons: The third genera-
tion of neural network models,” Neural Networks, vol. 10,
no. 9, pp. 1659 – 1671, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608097000117

[2] D. Bautembach, I. Oikonomidis, N. Kyriazis, and A. Argyros, “Faster
and simpler snn simulation with work queues,” in 2020 International

Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8.

[3] J. C. Knight and T. Nowotny, “GPUs Outperform Current HPC and Neu-
romorphic Solutions in Terms of Speed and Energy When Simulating a
Highly-Connected Cortical Model,” Frontiers in Neuroscience, vol. 12,
no. December, pp. 1–19, 2018.

[4] H. C. Tuckwell, Introduction to theoretical neurobiology. Vols. 1 and 2.
Cambridge University Press, 1988.

[5] L. Lapique, “Recherches quantitatives sur l’excitation electrique des
nerfs traitee comme une polarization.” Journal of Physiology and

Pathololgy, vol. 9, pp. 620–635, 1907.

[6] F. J. Pelayo, E. Ros, X. Arreguit, and A. Prieto, “VLSI Implementation
of a Neural Model Using Spikes,” Neuron, vol. 121, pp. 111–121, 1997.

[7] M. Mattia and P. Del Giudice, “Efficient event-driven simulation of
large networks of spiking neurons and dynamical synapses,” Neural

Computation, vol. 12, no. 10, pp. 2305–2329, 2000.

[8] M. A. Van Der Vlag, “Multi-GPU Brain: A multi-node implementation
for an extended Hodgkin-Huxley simulator,” 2019.

[9] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier,
“SpykeTorch: Efficient Simulation of Convolutional Spiking Neural
Networks with at most one Spike per Neuron,” no. Mm, pp. 1–16,
2019. [Online]. Available: http://arxiv.org/abs/1903.02440

[10] S. Panagiotou, R. Miedema, H. Sidiropoulos, G. Smaragdos, C. Strydis,
and D. Soudris, “A novel simulator for extended Hodgkin-Huxley neural
networks,” pp. 395–402, 2020.

[11] P. Qu, Y. Zhang, X. Fei, and W. Zheng, “High Performance Simulation
of Spiking Neural Network on GPGPUs,” IEEE Transactions on Parallel

and Distributed Systems, vol. 31, no. 11, pp. 2510–2523, 2020.

http://www.sciencedirect.com/science/article/pii/S0893608097000117
http://arxiv.org/abs/1903.02440

[12] Z.-Q. K. Tian and D. Zhou, “Library-based Fast Algorithm for
Simulating the Hodgkin-Huxley Neuronal Networks,” pp. 1–19, 2021.
[Online]. Available: http://arxiv.org/abs/2101.07257

[13] T. S. Chou, H. J. Kashyap, J. Xing, S. Listopad, E. L. Rounds,
M. Beyeler, N. Dutt, and J. L. Krichmar, “CARLsim 4: An Open
Source Library for Large Scale, Biologically Detailed Spiking Neural
Network Simulation using Heterogeneous Clusters,” Proceedings of the

International Joint Conference on Neural Networks, vol. 2018-July, pp.
1158–1165, 2018.

[14] G. Smaragdos, G. Chatzikonstantis, R. Kukreja, H. Sidiropoulos,
D. Rodopoulos, I. Sourdis, Z. Al-Ars, C. Kachris, D. Soudris, C. I. De
Zeeuw, and C. Strydis, “BrainFrame: A node-level heterogeneous accel-
erator platform for neuron simulations,” Journal of Neural Engineering,
vol. 14, no. 6, 2017.

[15] A. Sripad, G. Sanchez, M. Zapata, V. Pirrone, T. Dorta, S. Cambria,
A. Marti, K. Krishnamourthy, and J. Madrenas, “SNAVA—A real-
time multi-FPGA multi-model spiking neural network simulation
architecture,” Neural Networks, vol. 97, pp. 28–45, 2018. [Online].
Available: https://doi.org/10.1016/j.neunet.2017.09.011

[16] S. Kunkel, M. Schmidt, J. M. Eppler, H. E. Plesser, G. Masumoto,
J. Igarashi, S. Ishii, T. Fukai, A. Morrison, M. Diesmann, and M. Helias,
“Spiking network simulation code for petascale computers,” Frontiers in

Neuroinformatics, vol. 8, no. October, pp. 1–23, 2014.

[17] M. C. W. Van Rossum, “A novel spike distance,” Neural Computation,
vol. 13, no. 4, pp. 751–763, 2001.

[18] M. Rudolph and A. Destexhe, “Analytical integrate-and-fire neuron
models with conductance-based dynamics for event-driven simulation
strategies,” Neural Computation, vol. 18, no. 9, pp. 2146–2210, 2006.

[19] M. S. Tomlinson, “Spike Transmission for Neural Networks,” 1990.

[20] E. Ros, E. M. Ortigosa, R. Agı́s, R. Carrillo, and M. Arnold, “Real-time
computing platform for spiking neurons (RT-spike),” IEEE Transactions

on Neural Networks, vol. 17, no. 4, pp. 1050–1063, 2006.

[21] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” ISCAS 2010 - 2010 IEEE International Symposium on Cir-

cuits and Systems: Nano-Bio Circuit Fabrics and Systems, pp. 1947–
1950, 2010.

[22] C. M. Thibeault, R. Hoang, and F. C. Harris, “A novel multi-GPU
neural simulator,” 3rd International Conference on Bioinformatics and

Computational Biology 2011, BICoB 2011, no. 1, pp. 146–151, 2011.

[23] A. Antonietti, C. Casellato, J. A. Garrido, N. R. Luque, F. Naveros,
E. Ros, E. D’Angelo, and A. Pedrocchi, “Spiking neural network with
distributed plasticity reproduces cerebellar learning in eye blink con-
ditioning paradigms,” IEEE Transactions on Biomedical Engineering,
vol. 63, no. 1, pp. 210–219, 2016.

[24] D. Lee, G. Lee, D. Kwon, S. Lee, Y. Kim, and J. Kim, “Flexon: A
flexible digital neuron for efficient spiking neural network simulations,”
Proceedings - International Symposium on Computer Architecture, pp.
275–288, 2018.

[25] M. A. Van Der Vlag, G. Smaragdos, Z. Al-Ars, and C. Strydis, “Explor-
ing complex brain-simulation workloads on multi-GPU deployments,”
ACM Trans. on Architecture and Code Optimization, no. 4, 2019.

[26] D. F. M. Goodman, “The Brian simulator,” Frontiers in Neuroscience,
vol. 3, no. 2, pp. 192–197, 2010.

[27] D. Pecevski, D. Kappel, and Z. Jonke, “NEVESIM: event-driven neural
simulation framework with a Python interface,” Frontiers in Neuroinfor-

matics, vol. 8, no. August, pp. 1–20, 2014.

[28] M. Stimberg, D. F. M. Goodman, and T. Nowotny, “Brian2GeNN: a
system for accelerating a large variety of spiking neural networks with
graphics hardware,” bioRxiv, p. 448050, 2018. [Online]. Available:
https://www.biorxiv.org/content/early/2018/10/20/448050

[29] H. Hazan, D. J. Saunders, H. Khan, D. T. Sanghavi,
H. T. Siegelmann, and R. Kozma, “BindsNET: A machine
learning-oriented spiking neural networks library in Python,”
vol. 12, no. December, pp. 1–18, 2018. [Online]. Available:
http://arxiv.org/abs/1806.01423{%}0Ahttp://dx.doi.org/10.3389/fninf.2018.00089

[30] E. Yavuz, J. Turner, and T. Nowotny, “GeNN: A code generation
framework for accelerated brain simulations,” Scientific Reports,
vol. 6, no. June 2015, pp. 1–14, 2016. [Online]. Available:
http://dx.doi.org/10.1038/srep18854

[31] N. Ahmad, J. B. Isbister, T. S. C. Smithe, and S. M.
Stringer, “Spike: A GPU Optimised Spiking Neural Network
Simulator,” bioRxiv, p. 461160, 2018. [Online]. Available:
https://www.biorxiv.org/content/early/2018/11/06/461160

[32] E. Ros, R. Carrillo, E. M. Ortigosa, B. Barbour, and R. Agı́s, “Event-
driven simulation scheme for spiking neural networks using lookup
tables to characterize neuronal dynamics,” Neural Computation, vol. 18,
no. 12, pp. 2959–2993, 2006.

[33] A. Hanuschkin, S. Kunkel, M. Helias, A. Morrison, and M. Diesmann,
“A General and Efficient Method for Incorporating Precise Spike Times
in Globally Time-Driven Simulations,” Frontiers in Neuroinformatics,
vol. 4, no. October, pp. 1–19, 2010.

[34] A. Delorme and S. J. Thorpe, “SpikeNET: An event-driven simulation
package for modelling large networks of spiking neurons,” Network:

Computation in Neural Systems, vol. 14, no. 4, pp. 613–627, 2003.
[35] J. Reutimann, “Event-driven simulation of spiking neurons with stochas-

tic dynamics,” no. 2593, 2002.
[36] F. Naveros, N. R. Luque, J. A. Garrido, R. R. Carrillo, M. Anguita,

and E. Ros, “A Spiking Neural Simulator Integrating Event-Driven
and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-
Processing: A Case Study,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 26, no. 7, pp. 1567–1574, 2015.
[37] F. Naveros, J. A. Garrido, R. R. Carrillo, E. Ros, and N. R. Luque,

“Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-
processing for Spiking Neural Networks,” Frontiers in Neuroinformatics,
vol. 12, no. February, pp. 1–22, 2018.

[38] H. E. Plesser, J. M. Eppler, A. Morrison, M. Diesmann, and M. O.
Gewaltig, “Efficient parallel simulation of large-scale neuronal networks
on clusters of multiprocessor computers,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 4641 LNCS, pp. 672–681, 2007.
[39] J. A. Garrido, R. R. Carrillo, N. R. Luque, and E. Ros, “Event and Time

Driven Hybrid Simulation of,” no. June 2011, 2014.
[40] B. Kasap and A. J. van Opstal, “Dynamic parallelism for synaptic

updating in GPU-accelerated spiking neural network simulations,”
Neurocomputing, vol. 302, pp. 55–65, 2018. [Online]. Available:
https://doi.org/10.1016/j.neucom.2018.04.007

[41] P. Szynkiewicz, “A novel GPU-enabled simulator for large scale spik-
ing neural networks,” Journal of Telecommunications and Information

Technology, vol. 2016, no. 2, pp. 34–42, 2016.
[42] P. Krishnamani and V. Venkittaraman, “Acceleration of spiking neural

networks on single-GPU and multi-GPU systems,” no. May, p. 81, 2010.
[Online]. Available: http://gradworks.umi.com/14/75/1475559.html

[43] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the SpiNNaker system
architecture,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2454–2467, 2013.

[44] B. Golosio, G. Tiddia, C. De Luca, E. Pastorelli, F. Simula, and P. S.
Paolucci, “A new gpu library for fast simulation of large-scale networks
of spiking neurons,” arXiv preprint arXiv:2007.14236, 2020.

[45] M. Harris, “How to access global memory efficiently in cuda
c/c++ kernels,” 2013, nvidia Developer Blog. [Online]. Available:
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/

[46] P. Micikevicius, “Multi-gpu programming,”
2011, supercomputing 2011. [Online]. Available:
https://www.nvidia.com/docs/IO/116711/sc11-multi-gpu.pdf

[47] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. Devanur,
G. Granger, P. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in ACM Symposium on Operating

Systems Principles (SOSP 2019), October 2019. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/pipedream-generalized-pipeline-parallelism-for-dnn-training/

[48] T. P. Vogels and L. F. Abbott, “Signal propagation and logic gating in
networks of integrate-and-fire neurons,” Journal of neuroscience, vol. 25,
no. 46, pp. 10 786–10 795, 2005.

[49] N. Brunel, “Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons,” Journal of computational neuroscience,
vol. 8, no. 3, pp. 183–208, 2000.

[50] S. Rotter and M. Diesmann, “Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling,” Biological

Cybernetics, vol. 81, no. 5, pp. 381–402, Nov 1999. [Online]. Available:
https://doi.org/10.1007/s004220050570

[51] J. C. Knight and T. Nowotny, “Larger gpu-accelerated brain
simulations with procedural connectivity,” Nature Computational

Science, vol. 1, no. 2, pp. 136–142, Feb 2021. [Online]. Available:
https://doi.org/10.1038/s43588-020-00022-7

http://arxiv.org/abs/2101.07257
https://doi.org/10.1016/j.neunet.2017.09.011
https://www.biorxiv.org/content/early/2018/10/20/448050
http://arxiv.org/abs/1806.01423{%}0Ahttp://dx.doi.org/10.3389/fninf.2018.00089
http://dx.doi.org/10.1038/srep18854
https://www.biorxiv.org/content/early/2018/11/06/461160
https://doi.org/10.1016/j.neucom.2018.04.007
http://gradworks.umi.com/14/75/1475559.html
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://www.nvidia.com/docs/IO/116711/sc11-multi-gpu.pdf
https://www.microsoft.com/en-us/research/publication/pipedream-generalized-pipeline-parallelism-for-dnn-training/
https://doi.org/10.1007/s004220050570
https://doi.org/10.1038/s43588-020-00022-7

	I Introduction
	II Related Work
	II-A Simulator classifications
	II-B Parallel Simulators

	III Method
	III-A Data Structures and Algorithms
	III-B Adjacency List Construction
	III-C Spike Transmission
	III-D Parallelization
	III-E Spike Synchronization
	III-F Load Balancing

	IV Results
	IV-A Simulation Time as a Function of Network Size
	IV-B Simulation Time for Networks with Large Neuron Pools
	IV-C Setup Time as a Function of Network Size
	IV-D Multi-GPU Scaling
	IV-E Memory Consumption

	V Summary and future work
	References

