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Abstract—Deep neural networks are behind many of the recent
successes in machine learning applications. However, these mod-
els can produce overconfident decisions while encountering out-
of-distribution (OOD) examples or making a wrong prediction.
This inconsistent predictive confidence limits the integration
of independently-trained learning models into a larger system.
This paper introduces separable concept learning framework to
realistically measure the performance of classifiers in presence
of OOD examples. In this setup, several instances of a classifier
are trained on different parts of a partition of the set of classes.
Later, the performance of the combination of these models is
evaluated on a separate test set. Unlike current OOD detection
techniques, this framework does not require auxiliary OOD
datasets and does not separate classification from detection
performance. Furthermore, we present a new strong baseline
for more consistent predictive confidence in deep models, called
fitted ensembles, where overconfident predictions are rectified by
transformed versions of the original classification task. Fitted
ensembles can naturally detect OOD examples without requiring
auxiliary data by observing contradicting predictions among
its components. Experiments on MNIST, SVHN, CIFAR-10/100,
and ImageNet show fitted ensemble significantly outperform
conventional ensembles on OOD examples and are possible to
scale.

I. INTRODUCTION

Classification is a fundamental problem of machine learning
[1]–[9], where, the goal is to assign an observation (instance)
to a set of classes.

An important subclass of classifiers is probabilistic clas-
sifiers, which predict a probability distribution over a set of
classes rather than just the most likely class. The classifier’s
decision can then be the class with the highest probability.
More formally, while a classifier is a mathematical function
h : X 7→ Y that assigns an instance x ∈ X to a class y ∈ Y ,
a probabilistic classifier outputs the conditional probability
p(Y |X). This approach is appealing because, for example,
these probability values can be considered as confidence values
that can be used to reject uncertain observations.

Neural networks are naturally probabilistic classifiers. They
are designed to assign probability values to different classes so
that the sum of these values is one. However, a possible caveat
in this approach is vulnerability to out-of-distribution examples
(overgeneralization) or in-distribution examples that the clas-
sifier is wrongly confident about (confident misclassification).
We combine these two problems, i.e. overgeneralization, and

confident misclassification, and refer to them as inconsistent
prediction confidence.

Fitted ensembles can naturally detect OOD examples with-
out requiring auxiliary data by observing contradicting predic-
tions among its components. Experiments on MNIST, SVHN,
CIFAR-10/100, and ImageNet show fitted ensemble signifi-
cantly outperform conventional ensembles on OOD examples
and are possible to scale.

In short, the contributions of this paper are:

• Introduction of separable concept learning framework
to streamline measurement of classifiers’ performance
in presence of relevant OOD examples. This framework
does not rely on auxiliary OOD datasets and combines
classification and detection performance.

• We propose a new ensembling strategy, called fitted en-
sembles, to achieve more consistent predictive confidence
in deep models.

II. RELATED WORKS

Inconsistent prediction confidence is related to model cali-
bration [10], [11], out-of-distribution detection [12]–[22], and
uncertainty estimation [23]–[26]. Model calibration in neural
networks tries to calibrate their predictive probabilities so
that they match their accuracy. A common technique for
calibration is temperature scaling [10], where outputs of the
neural network are divided by a scalar, called temperature,
before passing to the softmax layer.

By contrast, for consistent predictive confidence, the goal
in regards to in-distribution (familiar) examples, is to in-
troduce techniques that minimize predictive confidence for
misclassified examples. The discrepancy between the expected
confidence of the model and its classification accuracy can
then possibly be corrected by a model calibration method.

In the out-of-distribution detection problem, a threshold over
the confidence values for each prediction teases out out-of-
distribution examples. Like model calibration, this is also done
as a postprocessing procedure. LeCun et. al. [12] utilize the
difference of the first and the second highest class probabilities
as such confidence measure. Hendrycks et. al. [14] showed that
simply applying the maximum softmax probability is a good
baseline for out-of-distribution detection in deep NNs.
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DeVries et. al. [17] train a NN with an additional output
unit responsible for confidence estimation. Liang et. al. [15]
propose to detect out-of-distribution examples in a pretrained
model based on temperature scaling and input preprocessing,
where small perturbations are added to an input to boost
prediction confidence before inference. Their method assumes
access to a representative set for out-of-distribution data. As
an example of a metric-based out-of-distribution detection
method, in [16] each class is modeled by a Gaussian dis-
tribution with a joint covariance matrix. Later Mahalanobis
distance is applied to detect out-of-distribution and adversarial
examples. Finally, Hendrycks et. al. [18] propose to expose
the model with auxiliary data during training to minimize the
model’s confidence (a uniform output) on the extra examples.
Their work can be thought of as an application of universum
examples [27] for out-of-distribution detection.

Most of these methods model out-of-distribution data by an
auxiliary dataset, which effectively reduces out-of-distribution
detection to a binary classification problem. By contrast, in
this paper, we model out-of-distribution data as a complement
of in-distribution data and assume no access to auxiliary data.

Confidence values can be interpreted as the inverse of
uncertainty values, which are not restricted to the classifica-
tion problem. In the context of deep models, [23] derive a
connection between Bayesian inference in Gaussian processes
and neural networks that apply dropout which enables them
to model uncertainty. Lakshminarayanan et. al. [28] estimate
uncertainty statistics from an ensemble of classifiers and
subsequently detect out-of-distribution examples. Unlike most
methods, they showed their technique is scalable by applying
it to the ImageNet-2012 dataset. Our proposed fitted ensemble
improves upon this approach by adding a new dimension
to regular ensemble classifiers that rectify their predictive
confidence by reformulating the original classification problem
and lowering conflict between different components.

III. SEPARABLE CONCEPT LEARNING

Recall that inductive biases are the assumptions that the
model have about the unseen instances. For example, some of
the common biases in machine learning are:
• minimum cross-validation error,
• maximum margin,
• nearest neighbors, and
• minimum description length (Occam’s razor).

To mitigate overgeneralization, in this section we introduce
another bias, called separable concept learning (SCL). In SCL
we assume a combined classifier should work well if multiple
instances of it are trained on disjoint subsets of classes (a
mathematical partition of the set of classes).

Here we assume evaluation of a classifier consists of two
components: model performance on instance x when (1)
x ∼ D∗(x|y ∈ Y ), and (2) when x ∼ D∗(x|y ∈ Y c),
where D∗ is the data distribution over similar data as in the
original data distribution D (including D), and Y c denotes
the complement of set of classes Y . We call the second
component the inhibition ability of the model because it must

inhibit its tendency to activate any output class. While the
first component can be evaluated by any classification metric,
e.g. classification accuracy, to also account for the inhibition
ability we apply separable concept learning (SCL).

The advantage of SCL over previous evaluation procedures
applied in out-of-distribution detection tasks is that it does not
rely on any threshold and measures the rejection ability of the
model implicitly without requiring auxiliary data to simulate
D∗. This is an important property because, in light of no free
lunch [29], current evaluation techniques are highly dependent
on the choice of this auxiliary set. The SCL provides a more
natural and arguably useful way to measure the inhibition
ability of learning models.

Intuitively, a set of classifiers should be able to learn
different concepts separately from each other because they
are aware of the limits of their knowledge. As a result, these
models can learn new non-overlapping concepts simply by
accepting new output nodes from a separately trained model.
In other words, it is possible to train several classifiers over
different concepts and merge them to get a single model over
the union of concepts. In this way, SCL is simulating the way
learning models can handle new emerging relevant concepts
and work together.

A closely related subject to SCL is incremental concept
learning (ICL), where concepts are presented to the learning
model incrementally [30]. The SCL can be conceived as the
extreme case of ICL where after learning a few concepts their
training instances diminish from the memory. Interestingly,
ICL and SCL are more reminiscent of human learning than the
current full concept learning approach. Furthermore, in most
realistic applications the size of Y is unknown at the beginning
or could grow over time, which makes ICL a practically
important subject in supervised learning.

Formally, to evaluate the inhibition ability of a model, let
concat be the concatenation operator that merges class scores
according to a predefined order over the set of classes Y and
then normalizes them, l(., .) be a loss function, and ρ be a
partition of Y such that every set in ρ (part of the partition) is
at least of size 2 (contains at least two classes from Y ). The
empirical separable risk of a classifier g with respect to ρ is
then defined as:

rρ(g) =
1

n

n∑
i=1

l(concat∀ρk∈ρ(gk(xi)), yi), (1)

where gk is an instance of g trained on ρk (for convenience
assume members of ρ are indexed by k), i.e. a learning model
trained on the subset of training set samples whose classes are
only included in ρk.

Definition 1. SCL Accuracy. The SCL accuracy is calculated
according to equation 1, where the predicted class is chosen
according to the optimal decision rule [31] that predicts the
class with the highest probability, and loss function is the
indicator function.

Note that in the case of ρ = {{Y }}, SCL accuracy will
reduce to the classification accuracy measure. More generally:



Proposition 1. The SCL accuracy is a lower bound for the
average classification accuracy of the component classifiers
gk when the test set is partitioned according to ρ and each gk
is evaluated on its corresponding set, i.e.

rρ(g) ≤
1

n

n∑
i=1

l(gk:yi∈ρk(xi), yi). (2)

Proof. The final normalization of the concat operator does
not change the order of class probabilities, thus it does not
affect the final classification decision and can be ignored in
our analysis. To assign test example xi to its actual label yi,
its corresponding probability p(yi|xi) should be maximum.
Because p(yi|xi) is assigned by the gk that is trained on this
class, i.e. yi ∈ ρk, and concatenation cannot increase this
value, therefore concat can only either decrease the accuracy
or preserve it.

While SCL accuracy is a simple measure to compute
classification accuracy in presence of out-of-distribution ex-
amples, equation 2 provides a way to measure the exact
amount of accuracy reduction in SCL tasks that occur due
to the existence of out-of-distribution data. Abstractly, while
comparing two learning models, M1 is strictly better than M2

if ∀ρ : rρ(M1) ≤ rρ(M2). However, the possible ways of
partitioning Y grows exponentially with the size of Y . Thus
in practice, an approximation is used by sampling from all the
possible partitions.

Informally, to apply equation 1, one can train several
components of a SCL model on different subsets of the set of
classes and measure the performance of the whole (merged)
model over the test set. This approach provides a simple
procedure to evaluate the inhibition ability of different learning
models. As we will later see, fitted ensembles can significantly
boost performance over conventional NNs on SCL tasks.

IV. FITTED ENSEMBLES

Lakshminarayanan et. al. [28] showed that applying con-
ventional ensembles is more effective than MC-dropout for
detecting out-of-distribution examples. They showed this ap-
proach scales well to higher-dimensional spaces while at the
same time improving the overall classification accuracy. In the
out-of-distribution experiment section we will show that:
• conventional ensemble techniques fail to reliably detect

many out-of-distribution examples on popular datasets,
and

• additionally, ensemble methods suffer from overconfident
predictions.

Our proposed model addresses both of these drawbacks
and adjusts the class probabilities directly. Moreover, fitted
ensembles do not sacrifice classification accuracy to reduce
overgeneralization.

The main idea is to diversify the induced feature space
by changing the original classification task. This is achieved
by deriving new classification problems from the original
problem. We extract new classification problems by combining

original classes into larger superclasses to form new super-
class spaces. A set of one or more such superclass spaces is
referred to as a sequel. A fitted ensemble is a non-empty set
of sequels.

To provide more clarity on sequels, consider a four-class
classification problem with output space Y = {A,B,C,D}.
We construct a sequel H consisting of two superclass spaces
{h0, h1} in the following manner, H = {h0, h1}, where,

h0 = {h00, h01}, h1 = {h10, h11},

h00 = {A,D}, h01 = {B,C},

h10 = {A,B}, h11 = {C,D}.

Here, each superclass (h00, h
0
1, h

1
0, and h11) includes two

classes from the original problem. In practice, we simplify
sequels by assuming that each superclass space hj is a partition
of set of original classes. A sequel consists of only those
superclass spaces that can solve the original classification
problem. In the sequel H discussed earlier, superclass space
h0 can only inform that an example belongs to either {A,D}
or {B,C}, but not to one particular class. With the addition
of space h1, we can deduce to which original class the
example belongs and solve the original classification problem.
Essentially, a sequel is a conceptual means to construct better
superclass spaces.

More formally, assume output space Y consists of n cate-
gories yi, where i ∈ {1..n}. We map Y into r new superclass
spaces hj each with |hj | ≤ n elements. In this new space,
∀ij : hji ⊂ Y and ∀i 6= k : hji ∩h

j
k = ∅. As mentioned earlier,

each superclass space sets up a new classification problem.
And, for each such space we have its corresponding member-
classifier. To put it simply, a fitted ensemble model consists
of r member-classifiers gj j ∈ {1,...,r}, where gj is trained
on hj . Each superclass space hj defines an upper bound on
the predictive confidence of the model. Given an example x, a
class probability cannot be greater than the probability of any
superclasses it belongs to, i.e. ∀yi ∈ hjk : p(yi|x) ≤ p(hjk|x).
During inference, each gj corrects the current confidence about
class probabilities by adjusting the estimated probability values
for each class in a fitted ensemble. In particular, the class
probabilities should satisfy all the inequalities in the form of
p̂(yi|x) ≤ gjk(x), where yi ∈ hjk, and p̂(yi|x) denotes the
estimation of p(yi|x) by the model. In this manner, a fitted
ensemble can indirectly make inferences about OOD examples
by deducing that the class probabilities are closer to zero for
unknown examples. Algorithms 1 summarizes the necessary
steps for constructing and training a fitted ensemble. The
procedure for rectifying class probabilities during inference
phase is outlined in algorithm 2.

V. FITTED ENSEMBLE EXPERIMENTS

In this section the MNIST, CIFAR-10/100, SVHN, and
ImageNet-2012 datasets support a variety of experiments that
assess the performance of fitted ensembles. The general setup
is to train a model on a dataset that is representative of the
true data distribution, and then evaluate the confidence of the



Algorithm 1: Fitted Ensemble Construction
Input Dataset D with original classes Y
number of sequels m
size of superclass spaces for each sequel si

,

set of superclass members H
set of member-classifiers G
1. set H and G to ∅
2. for i = 1 to m
3. for j = 1 to si
4. randomly partition Y into |Y |/si superclasses
5. append this partition to H
6. create a new dataset with the new superclass labels
7. train a member-classifier g on the new dataset
8. append g to G
9. end for
10. end for
13. Return G and H

Algorithm 2: Probability rectification
in Fitted Ensemble

Input test example x
member-classifiers G
set of superclass members H
total number of classes n
1. for i = 1 to n
2. Initialize p(yi|x) = 1
3. end for
4. for i = 1 to |G|
5. set Gi to g
6. calculate probability vector g(x)
7. for j = 1 to |g(x)|
8. for all class indices s in superclass Hi

j
9. p(ys|x) = min(p(ys|x), gj(x))
10. end for
11. end for
12. end for
13. Return class probability vector p(y|x).

model predictions on both unseen and in-distribution classes.
Following [20], [28] and unlike many new out-of-distribution
modeling methods, we assume the model has no access to any
out-of-distribution data, neither directly as in [15], [16], [19],
nor indirectly as in [14], [18], [21]. Hence, it is not comparable
to these methods. Therefore, we focus our comparison to
conventional ensembles as an established strong method [24]
to address out-of-distribution problem.

Following [28], we plot histograms of different confidence
values, where a good model should be less confident about
out-of-distribution examples. Moreover, a model’s confidence
should decrease for in-distribution examples that it misclassi-
fies. The results suggest fitted ensembles are indeed successful
at both of these tasks and significantly improve on conven-
tional ensembles in recognizing examples from unfamiliar
classes.

For consistency following [28], all the models applied in
these experiments follow a small VGG-like [32] architecture
for each classification/member problem, except for ImageNet
experiment in which we use DenseNet [33] architecture to
show the results are generalizable to different architectures.

A. The Set of Sequels

Except for in the ImageNet experiment, each fitted ensemble
includes four extra superclass spaces (two sequels) in addition
to the regular classification problem. Two of these spaces are

TABLE I: Classification accuracy of ensembles of five CNNs
and fitted ensembles on various data sets.

DATA SET CNNS FITTED ENSEMBLES
MNIST 99.65 99.70
SVHN 96.95 97.10
CIFAR-10 93.1 93.4
CIFAR-100 69.15 69.85

created by combining every two consecutive classes from the
original dataset, starting from 0 and 1, respectively, to form
superclasses. For datasets with 10 classes that means H =
{h0, h1}, where h0 = {h0i = {y2i, y1+2i} : i ∈ {0..4}}, and
h1 = {h1i = {y1+2i, y(2+2i)mod10} : i ∈ {0..4}}.

The next two superclass spaces are created similarly, except
that we combine every other class. These four superclass
spaces add 20 constraints to adjust the primary probability
values (four for each class). In the ImageNet experiment, in
addition to the regular classification problem, the fitted ensem-
ble includes two extra superclass spaces (one sequel), each
of which is constructed by combining every two consecutive
classes (according to the PyTorch1 framework’s default class
ordering) from the original dataset.

To confirm that adding superclass spaces does not negatively
affect classification performance, first we trained an ensemble
of five CNNs and compared its performance to an ensemble
of five fitted ensembles. Note that each fitted ensemble con-
tains the five member networks as just explained. While the
aggregate of fitted ensembles takes more space, the question
is whether that additional space affords superior detection
of out-of-distribution examples without loss of in-distribution
accuracy.

For the aggregate of fitted ensembles, we combined the
results of the five different fitted ensembles at the superclass
spaces level. That is, Algorithm 2 is applied after combining
outputs of all corresponding member-classifiers. The combi-
nation is always a weighted average with uniform weights.

Table I depicts the classification accuracy of each of the
two ensembles when run once on a variety of datasets. The
table shows that the aggregate of fitted ensembles successfully
maintains (or improves) the classification performance of its
base classifiers after adding sequels. Note that we utilize
small network architectures (wider architectures can improve
accuracy on CIFAR-100).

B. Confidence Consistency Experiments

In the rest of the experiments of this section, we evaluate the
out-of-distribution recognition and overconfidence reduction
ability of fitted ensemble. In these experiments, we apply an
ensemble of five fitted ensembles (each with five superclass
spaces) and compare its performance with an ensemble of 50
CNNs, which is twice as many neural networks as the aggre-
gate of fitted ensembles. A large number of neural networks
in regular ensembles (50) rules out any further improvement

1https://pytorch.org/



of confidence values because of conventional ensembling.
Because [28] have already shown that ensembles significantly
outperform MC-dropout for uncertainty estimation we did not
include MC-dropout results in these experiments.

All the experiments in this section include a VGG-like
architecture for neural networks. This architecture includes
nine (3×3) convolutional layers each with 100 output feature
maps, followed by two fully-connected layers (of size 1, 000)
and a softmax layer. All layers are followed by ReLU non-
linearity and an additional batch-normalization layer. Further-
more, there is a max-pooling layer, after three consecutive
convolutional layers. The weight initialization follows [34] for
convolutional layers and [35] for linear layers.

The models are trained by Adam optimizer [36] with a batch
size of 40 in all our experiments. The learning rate always
starts at 0.01 and is decayed by multiplying by 0.4 after every
10 epoch. All the models are trained for 52 epochs. Even
though the hyperparameters are not optimized for any specific
dataset, we found our setup generally robust on all the four
datasets studied in this work.

The loss function is always cross-entropy and no dropout or
any other regularization, except for batch-normalization, was
applied. For preprocessing all the datasets were normalized.

A light data augmentation was performed on each dataset.
For MNIST and SVHN dataset, the images are first zero
padded to obtain 34×34 resolution images and then randomly
cropped to get to 32×32 images. The CIFAR-10/100 datasets
are first padded to 36×36 images and then randomly cropped
to obtain 32×32 images. The training images in these datasets
are also randomly horizontally flipped.

1) MNIST Experiment: The MNIST dataset consists of
gray-scale images of digits and is separated into 60,000
training and 10,000 testing images. First an ensemble of 50
regular CNNs and five fitted ensembles (25 CNNs) were
trained on MNIST.

For out-of-distribution data we applied notMNIST2, a
dataset similar to MNIST but consisting of alphabet letters.

Due to space limitations, we exclude the graph of this
experiment. Nevertheless, we observe a substantial decrease
of highly-confident out-of-distribution examples in the aggre-
gate of fitted ensembles (from about 34% down to about
15.5%), which is evidence of the effectiveness of our approach.
Furthermore, there is a large amount of highly-confident
examples from the notMNIST dataset in the CNN ensemble
that showcases the ubiquity of the overgeneralization (all 50
CNN models are over 95% confident about 34% of out-of-
distribution examples).

It is also noteworthy that a considerable amount (about 15%)
of out-of-distribution examples have been correctly rejected
by the fitted ensemble aggregate ensemble, whereas the CNN
ensemble is never totally unsure (considering that random
probability is 10%) about any out-of-distribution example.

2Available at http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-
dataset.html

2) SVHN Experiments: This next experiment evaluates fit-
ted ensembles on the SVHN dataset of colorful digit images.
Higher noise in examples and greater input space makes this
dataset more challenging than MNIST. The test set of the
CIFAR-10/100 dataset serves as the out-of-distribution data.

Considering the CIFAR-10 test set as out-of-distribution
data, histograms of confidence values are depicted in figure 1
for an ensemble of (a) 50 CNNs (b) five fitted ensembles. Note
that there are 26,032 test examples in SVHN (some of the
bars go above 10,000 examples). The plots illustrate that both
ensembles are successful in this task. However, the aggregate
of fitted ensembles rejects more out-of-distribution examples
and adjusts the confidence values more accurately.

In contrast, the ensemble of CNNs assigns high-confidence
values to many out-of-distribution examples and is very confi-
dent about a significant proportion of misclassified examples.
A similar result is observed when applying CIFAR-100 as an
out-of-distribution dataset (graphs are excluded due to space
constraints). The results reaffirm that the aggregate of fitted
ensembles performs better in out-of-distribution recognition.

3) CIFAR-10 and CIFAR-100 Experiments: CIFAR-10/100
are datasets of tiny images of 10 and 100 different types
of animals and moving objects, respectively. The datasets
are considerably more challenging than MNIST and SVHN
because of the greater variety of images. We observe similar
trends when we compare an ensemble of 50 regular CNNs
versus five fitted ensembles trained on these datasets and treat
SVHN and the remaining CIFAR-10/100 as out-of-distribution
data. However, due to space constraints, we only include
the result for models trained on CIFAR-10 compared against
CIFAR-100 data as unseen classes in Figure 2.

Overall, the results exhibit again the superior performance
of fitted ensembles in assigning low confidence values or
rejecting out-of-distribution data on out-of-distribution data.
Furthermore, fitted ensembles assign lower confidence values
to misclassified examples.

C. SCL Experiments

To demonstrate the performance of fitted ensemble on SCL
we evaluated the accuracy of an ensemble of three fitted
ensembles versus an ensemble of three conventional CNNs.
We applied the same datasets, neural network architecture,
and training procedure from the past experiments for all
neural networks. However, we applied four superclass spaces
(including the original classification problem) for each fitted
ensemble. The set of sequels for fitted ensembles are changed
to conform with five total number of classes.

In addition to regular classification problem, we added three
extra constraint-problems for MNIST, SVHN and CIFAR-
10 datasets, as follows: H = {h0 = {h00 = {y0}, h01 =
{y1}, h02 = {y2}, h03 = {y3, y4}}, h1 = {h10 = {y0, y1}, h11 =
{y2}, h12 = {y3}, h13 = {y4}}, h2 = {h20 = {y0}, h21 =
{y1, y2}, h22 = {y3}, h23 = {y4}}}. Finally, for CIFAR-
100 with 50 classes in the SCL task, we applied the same
four superclass spaces as in the out-of-distribution examples
experiments.

http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html


(a) 50 CNNs (b) five fitted ensembles

Fig. 1: Distribution of confidence values for SVHN (in-distribution) and CIFAR-10 (out-of-distribution) examples. (a)
the result from 50 CNNs of the ensemble show the limit of ensembling for improving confidence values. (b) an aggregate
of five fitted ensembles significantly outperform the regular ensemble. Note that some of the bars go above the 10,000 upper
bound of the graph because there are 26,032 test examples in SVHN.

(a) 50 CNNs (b) five fitted ensembles

Fig. 2: Distribution of confidence values for CIFAR-10 (in-distribution) and CIFAR-100 (out-of-distribution) examples
for an ensemble of (a) 50 CNNs and (b) five fitted ensembles.

For SCL, each training set was split into two sub-training
sets. The split ensures that the first sub-training set includes
all the examples from the first half of classes from the original
training set, and the second sub-training set includes the rest.
This split is arbitrary because the set of classes are independent
in each dataset.

After training two classifiers on each dataset, the classifiers
are merged and applied to classify the test data. Table II sum-
marizes the classification accuracy results with this procedure
on different datasets. Each experiment is repeated five times
except for CIFAR-100, which is a single run. The results show
that the aggregate of fitted ensembles significantly (p < 0.01
based on the Wilcoxon test) outperforms conventional ensem-
bles on each SCL task with multiple runs (MNIST, SVHN,
and CIFAR-10).

TABLE II: SCL accuracy of ensembles of CNNs and fitted
ensembles on various data sets (mean and standard deviation
is from five runs). Aggregate of fitted ensembles lead to
significantly better classification accuracy in the presence of
unseen classes.

DATA SET CNNS (STD) FITTED ENSEMBLES (STD)
MNIST 98.27 (0.17) 98.70 (0.08)
SVHN 93.11 (0.09) 94.01 (0.08)
CIFAR10 82.39 (0.36) 83.45 (0.19)
CIFAR100 60.80 62.80

D. ImageNet Experiments

ImageNet-2012 dataset consists of about 1.2 million images
with 1,000 classes that were originally used for a vision
competition in 2012. All the images in the dataset are first
resized to 299×299 images and normalized. Then, each image



is padded by 15 pixels on each side, after which a random crop
of size 299× 299 is extracted for data augmentation. The test
and out-of-distribution data are resized to 299 × 299 as well
and then normalized by the same normalization parameters as
training data.

To our knowledge, the ensemble baseline of [28] is the only
technique that can scale up to ImageNet for out-of-distribution
detection. To show that fitted ensembles are also scalable to
large-scale real-world problems we trained a fitted ensemble
consisting of three member-classifiers on ImageNet-2012. The
first two constraint-problems are formed by merging every two
consecutive classes from the total 1,000 classes of ImageNet.
That is, the process merges the first and second classes, third
and fourth classes, etc., to form the first superclass space, and
then merges second and third classes, fourth and fifth classes,
etc to construct the second superclass space. Note that these
two superclass spaces define a sufficient set of constraints to
make a classifier over the entire 1,000 classes (one sequel). In
this section, we call such a combined classifier, classifier1.

The last sequel is simply the original dataset with the same
1,000 classes, and, for simplicity, we refer to its corresponding
member-classifier as classifier2. All the member-classifiers
are neural networks with DenseNet-BC [33] architecture with
growth rate of 64, 16 initial features (with no additional layers
before entering the first block) and block configurations of
sizes 6, 6, 12, 12, respectively.

Each network is trained for 40 epochs, where in the first
20 epoch the learning rate is increased by a factor of 1.25
after each epoch and is decayed by a factor of 0.8 after each
epoch during the rest of the training. The initial learning rate
is 0.001.

The optimizer is SGD with Nesterov momentum, batch size
of 64, the momentum of 0.9, and weight decay of 10−4. In
the interest of time, we did not optimize the architecture or
training procedure because the goal of this experiment is not
to improve classification accuracy but rather the consistency
of predictive confidence values.

1) Results: To confirm that fitted ensembles can adjust pre-
dictive confidences more accurately we have calculated the av-
erage predictive confidence (maximum activation) for all cor-
rectly classified and misclassified examples for classifier1,
classifier2, and the whole fitted ensemble, along with the
classification accuracy of each. Furthermore, to compare the
performance of the fitted ensemble with a conventional ensem-
ble we trained a regular ensemble consisting of two models
(comparable to two sequels) following the same architecture,
data preprocessing/augmentation, and optimization procedure
as the networks of the fitted ensemble.

Table III summarizes the confidence statistics of
classifier1, classifier2, the overall fitted ensemble
(denoted by f-ensemble in the table), and the conventional
ensemble. The overall result is more consistent predictive
confident values in the fitted ensemble, where the average
predictive confidence for misclassified examples is about 23%
better (lower) compared to the conventional ensemble, while

the average confidence of the correctly classified examples is
about 11% lower.

In the next experiment, the performance of this fitted en-
semble against out-of-distribution data is evaluated. We apply
four out-of-distribution datasets. The first two are artificial
images generated by sampling from Rademacher and isotropic
Gaussian distributions, respectively. The third dataset is Tex-
tures3, which consists of 5,640 images of 47 different type of
textures, and the last dataset is SVHN. We use these datasets
because they do not include any objects that resemble those
in ImageNet.

Table IV shows the performance of each model in handling
out-of-distribution data. There are three metrics applied in this
experiment. The first metric, called FPR-at-95%-TPR [17],
[18], reports a false positive rate with the threshold that results
in a 95% true positive rate. Here the in-distribution data are
positive and out-of-distribution data are considered negative
examples. Intuitively by applying the threshold value on con-
fidence values that 95% of in-distribution examples pass, this
metric measures the rate of out-of-distribution examples that
are more confident than the least 5% in-distribution examples.

The second metric is the area under the ROC curve (AU-
ROC), the curve that plots true positive rate against false
positive rate for all different threshold values. This holistic
metric can be interpreted as the probability that the classifier
is more confident about an in-distribution example than an
out-of-distribution example. Therefore, the higher AUROC the
better. An AUROC of 100% shows that the classifier always
detects out-of-distribution data, regardless of the threshold
value, and an AUROC of 50% is no better than a random
classifier.

The last metric, called detection error, reports the highest
possible detection rate if we choose the optimal threshold
value [37]. Note that these metrics can be sensitive to the
relative size of in-distribution versus out-of-distribution sets.
For the two artificial datasets, we used the same amount of
in- and out-of-distribution data, while for the Textures and
SVHN datasets we included all images and all test images,
respectively.

The results suggest that the fitted ensemble is overall
superior to both of its component classifiers and to the regular
ensemble in detecting out-of-distributed examples. On both
artificial datasets, the fitted ensemble performs significantly
better than the conventional ensemble on both FPR at 95%
TPR and AUROC metrics.

The Texture images are also detected very significantly
better by the fitted ensemble than the others. However, the
SVHN images are detected significantly better by classifier1,
and combining classifier1 by classifier2 slightly degrades
the performance of the fitted ensemble. Even so, the fitted
ensemble beats the conventional ensemble with a large margin
(about 45% improvement by AUROC measure).

Interestingly, the AUROC value for the conventional ensem-
ble, and that of classifier2, are both below 50%, implying

3Available at http://www.robots.ox.ac.uk/∼vgg/data/dtd/.

http://www.robots.ox.ac.uk/~vgg/data/dtd/


TABLE III: Average predictive confidence in ImageNet experiment. Better predictive confidence consistency is seen in fitted
model through its lower predictive confidence of misclassified examples while improving accuracy of member classifiers.

METRIC CLASSIFIER 1 CLASSIFIER 2 F-ENSEMBLES ENSEMBLE
AVG. MISS-PREDICTION CONF. 38.79(30.10) 57.83(24.26) 29.95(28.54) 52.94(23.28)
AVG. CORRECT PREDICTION CONF. 80.58(27.43) 88.09(17.94) 74.66(31.11) 85.80(19.22)
AVG. TOTAL PREDICTION CONF. 70.11 80.33 64.14 78.03
CLASSIFICATION ACCURACY 74.93 74.36 76.49 76.34

TABLE IV: Performance of different models towards out-of-
distribution data.

DS& METRIC CLASS. 1 CLASS. 2 F-ENS. ENS.
FPR AT 95%
TPR
RADEMACHER 100 100 49.89 98.71
GAUSSIAN 99.33 100 41.84 99.00
TEXTURES 74.06 81.88 70.60 80.74
SVHN 78.53 96.53 84.28 96.75
AREA UNDER
ROC CURVE
RADEMACHER 77.63 67.06 94.51 89.90
GAUSSIAN 87.84 66.70 94.89 89.79
TEXTURES 79.16 72.45 80.84 76.65
SVHN 87.41 40.24 82.97 37.74
BEST DETECTION
ERROR
RADEMACHER 17.26 22.62 6.90 7.50
GAUSSIAN 11.64 22.65 6.93 7.54
TEXTURES 10.08 10.14 9.98 10.14
SVHN 18.88 34.23 23.29 34.24

they both perform worse than a random classifier for detecting
SVHN images. In contrast, the high detection rate of SVHN
images by classifier1, as evidenced by AUROC, reaffirms
that the reformulation of classification problems in fitted
ensembles can indeed lead to a novel type of diversity in
ensemble techniques, a kind of diversity that is not attainable
by regular ensembling.

2) Dissimilar-architecture Ensemble Experiment: In the
previous experiment, the conventional ensemble consisted of
two CNNs with an identical architecture (similar to network
components of the fitted ensemble). In this section, we evaluate
the effect of including dissimilar network architectures in an
ensemble on improving predictive confidence consistency. To
our knowledge, this approach has not been investigated for
this problem before. Nevertheless, it is interesting to compare
the kind of diversity introduced to an ensemble by a fitted
ensemble with the diversity induced by dissimilar network
architectures in an ensemble.

To this end, we construct an ensemble by combining two
pretrained models on ImageNet, namely DenseNet-121 and
DenseNet-161, from the PyTorch framework, and compared
them with the fitted ensemble from the previous experiments.
Note that the two pretrained models are significantly deeper
and more accurate than classifier1 and classifier2 of the
fitted ensemble.

The confidence statistics of the fitted ensemble (f-ensemble),

TABLE V: Average predictive confidence of fitted ensemble
versus regular ensemble. The fitted ensemble makes more
consistent predictive confidence value evident by its lower
predictive confidence of misclassified examples.

METRIC F-ENSEMBLES ENSEMBLE
AVG. MISS-PREDICTION
CONF. 29.95(28.54) 40.33(22.78)
AVG. CORRECT
PREDICTION CONF. 74.66(31.11) 75.71(23.90)
AVG. TOTAL
PREDICTION CONF. 64.14 68.11
CLASSIFICATION
ACCURACY 76.49 78.53

and the ensemble of the two pretrained models from Py-
Torch, are summarized in Table V. Interestingly, the result
shows more consistent predictive confident values in the
fitted ensemble, where the average predictive confidence for
misclassified examples is about 10% better (lower) compared
to the regular ensemble, while the average confidence of the
correctly classified examples is only 1% lower.

Following the previous section, the next experiment evalu-
ates the performance of the two ensembles while encountering
out-of-distribution data. The experimental setup is the same as
the out-of-distribution experiment in the previous section.

Table VI depicts the performance of the two ensembles in
handling out-of-distribution data. Again the FPR at 95% TPR,
area under the ROC curve, and detection error are applied to
quantify the detection performance.

The results suggest that the fitted ensemble is performing
better on three of the four benchmarks, namely Rademacher,
Gaussian, and the Textures datasets. However, the dissimilar-
architecture ensemble can detect the SVHN images far better
than the fitted ensemble. These results suggest that applying
different network architectures in an ensemble can be more
advantageous than the common similar-architecture practice
for detecting out-of-distribution data. Nevertheless, fitted en-
sembles can enjoy the same kind of diversity to perform even
better.

VI. DISCUSSION AND CONCLUSIONS

This study addresses the confidence inconsistencies that can
occur in modern neural network models. We proposed a new
framework, called separable concept learning, that generalizes
the rigid set up of the conventional classification framework to
a more flexible setting that considers out-of-distribution exam-



TABLE VI: Performance of fitted versus regular ensemble
towards out-of-distribution data.

DATASET& METRIC F-ENSEMBLE ENSEMBLE
FPR AT 95% TPR
RADEMACHER 49.89 99.64
GAUSSIAN 41.84 98.60
TEXTURES 70.60 78.32
SVHN 84.28 15.58
AREA UNDER ROC CURVE
RADEMACHER 94.51 87.37
GAUSSIAN 94.89 89.75
TEXTURES 80.84 76.51
SVHN 82.97 97.27
BEST DETECTION ERROR
RADEMACHER 6.90 12.26
GAUSSIAN 6.93 10.27
TEXTURES 9.98 10.10
SVHN 23.28 8.13

ples. This new framework evaluates classifiers’ performance
by simulating a system of classifiers that work in harmony
to achieve a unified goal, while each classifier may encounter
examples of new but relevant classes.

Furthermore, to handle the inconsistent prediction confi-
dence in neural networks we introduced fitted ensembles.
Fitted ensembles introduce a new dimension to boost ensem-
bles, where the diversity is preserved by learning different
superclasses as output units. Our experiments show that this
new reformulation of the original problem can enable fitted
ensembles to produce less overconfident predictions and detect
even more out-of-distribution examples compared to regular
ensembles. Furthermore, our ImageNet experiments with fitted
ensembles show scalability of this approach.

Overall, a new method is introduced to rectify neural
network predictions and make them more suitable for handling
unknown situations, and a new paradigm for evaluation is
introduced to reveal their advantages. The hope is that these
contributions can lead to better techniques to eventually make
reliable classifiers and pave the way to a more consistent
evaluation of them.
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