
Rotated Ring, Radial and Depth Wise Separable Radial Convolutions

Wolfgang Fuhl
University of Tübingen

Sand 14, 72076 Tübingen, Germany
wolfgang.fuhl@uni-tuebingen.de

Enkelejda Kasneci
University of Tübingen

Sand 14, 72076 Tübingen, Germany
enkelejda.kasneci@uni-tuebingen.de

Abstract

Simple image rotations significantly reduce the accu-
racy of deep neural networks. Moreover, training with
all possible rotations increases the data set, which also
increases the training duration. In this work, we address
trainable rotation invariant convolutions as well as the
construction of nets, since fully connected layers can only
be rotation invariant with a one-dimensional input. On
the one hand, we show that our approach is rotationally
invariant for different models and on different public data
sets. We also discuss the influence of purely rotational
invariant features on accuracy. The rotationally adaptive
convolution models presented in this work are more
computationally intensive than normal convolution models.
Therefore, we also present a depth wise separable approach
with radial convolution. Link to CUDA code https:
//atreus.informatik.uni-tuebingen.de/
seafile/d/8e2ab8c3fdd444e1a135/

1. Introduction
Deep neural networks have become the state of the art

in image processing. Many applications requiring image
classification [51, 14], landmark regression [65], image
segmentation [53, 23, 32, 19] or 3D reconstruction [52],
validation [26, 31], gaze estimation [21], object detec-
tion [38, 28, 24, 22, 36, 20], shape estimation [34, 33, 35],
saliency prediction [39, 29] are realized by deep neural net-
works. This requires a large annotated data set [49], as well
as additional data manipulation [55], to obtain robust and
efficient networks. This data manipulation requires addi-
tional computational effort during training and extends the
data set many times over. One of the most frequently used
data manipulations is the mirroring and rotation of images.
However, mirroring can only be applied to two axes in 2D
images and is therefore inexpensive. In contrast, the rota-
tion offers an infinite number of possibilities. Modern train-
ing methods use optimizers like SGD [3] or ADAM [47]
which, in turn, use one or more gradient moments [60]. In

addition, techniques such as Batch Normalization [44] have
been developed to stabilize the training and improve gener-
alization. The training of really deep nets was only possible
with Residual Layers [41] and there are many techniques to
include data manipulation according to optimization strate-
gies in the training [55]. While all these techniques further
stabilize the training and promote generalization, object ro-
tation is still a major challenge together with the resource
consumption reduction [27]. Examples of applications in-
clude: carried eye trackers with adjustable cameras like the
Dikablis Professional, food [58], objects in a kitchen [8],
galaxies [1], the underwater world from the perspective of
a diver, plankton [54], grabbing robot arms with a moving
camera [59] and many more. In these tasks, it is desirable to
use neural networks, which by definition are rotation invari-
ant, to reduce the training time and ensure that the objects
can be detected under all possible rotations. The various ap-
plications summarized above have already produced some
scientific work in the field of rotational invariance.

The first group of approaches addresses the integration
of rotation into the training data. Here, different transforma-
tions are applied to the data and a separate mesh is trained
for each transformation. In the end, either the mean value of
all nets [4, 9, 50] or the maximum result of a rotation map
of all nets is used [63, 61]. The second group focuses on
learning about the actual transformations [7, 42, 45]. Here
nets are trained, which transform the data to a uniform rep-
resentation. As in the first group, it is necessary to rotate
the data during training. The final group of approaches
tackles the complete integration of trainable rotated filters
[11, 57, 2, 5, 6, 64, 56, 66], to which this work contributes.
This means that the built-in layers are learned holistically
with the net and can be trained with the back propagation
algorithms. This final group is also referred to as steer-
able approaches It is not necessary to transform the data
for training for this group.

In this work, we propose two novel approaches for inte-
grated rotation invariant training of deep neural networks.
Our work can be seen as an extension of the rotated weights
approaches [11, 57], which reduce the performance of neu-

9876

ar
X

iv
:2

01
0.

00
87

3v
3 

 [
cs

.C
V

] 
 1

7 
Ja

n 
20

21

https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/
https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/
https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/


ral networks drastically. This is completed by rotating the
filter per filter level outgoing of the center and selecting the
maximum response per rotation ring. Since our approach
increases the computational costs of deep neural networks,
we also propose a radial convolution approach which only
consists of a radial weight vector. In addition, we further re-
duce the computational complexity of our approaches with
the technique of depth wise separable convolutions, pro-
posed in MobileNet [43]. We tested our layers with dif-
ferent models and on different publicly available data sets.
Our main contributions are as follows:

1 Rotated ring convolutions.
2 Separable depth wise rotated convolutions.
3 Radial Convolutions.
4 Publicly available CUDA implementations for both.

2. Related Work

Since the state of the art is divided into three main
groups, we have divided this section into three subsections.
The first group deals with the separate learning of transfor-
mations by individual neural networks and the subsequent
combination for classifications. The second group learns
how to transform input data to a unified representation, al-
lowing any net to be used subsequently. In the last group,
the filters are rotated and fully integrated into the back prop-
agation for training. In the following subsections, individ-
ual approaches are described in detail.

2.1. Data Augmentation and Ensemble building

In this group, transformations are applied to the data dur-
ing training and trained with a variety of nets. This ensem-
ble of nets increases the accuracy of the transformed data
while also increasing the calculation time because multi-
ple nets have to be trained. In [4], for example, such an
ensemble was trained were each net learned its own trans-
formation. For the application, the results of the nets were
averaged and, in case of a classification, the maximum was
selected. In [9], galaxies were transformed and merged.
This representation was used for training. The mesh learned
to see the galaxy from different points of view in parallel,
which made it more robust and accurate. A very similar
approach was presented in [50]. Here, Siamese networks
with shared weights were used. Instead of merging the
feature vectors of these networks, a max pooling was ap-
plied. The output of the max pooling was used to train a
subsequent classifier. Another approach is exhibited in [63]
which internally uses an ensemble of oriented edge detec-
tors. The output of these edge filters is projected on a two-
dimensional rotation map using different meshes. The map
is then used by a classifier to determine the class and rota-
tion. [61] presents a similar approach because it uses a set of

meshes to create a two-dimensional rotational map. How-
ever, compared to [63], wavlets are used instead of oriented
edge filters.

2.2. The learning of Transformations

Unsupervised learning is the first approach when learn-
ing transformations. For this purpose, [42] used an autoen-
coder and let it learn the reverse transformation. The au-
toencoder was trained with as many transformations as pos-
sible on the data and the classifier was trained on the output,
which received a uniform input from the autoencoder. A
similar approach was presented in [45]. Here, a small net-
work with weakly monitored learning was trained to trans-
form the input data into a uniform output. This small net can
then be integrated at any point in the net. In [7], we went
one step further and trained the network to learn deformable
convolutions and a deformable region of interest pooling.
However, deformable convolutions and a deformable re-
gions have to be trained for the different transformations.
As in the first group, the data with applied transformations
must be available in the training for learning transforma-
tions. This is a big disadvantage because it prolongs the
training and there is no guarantee that all transformations in
the training have been considered.

2.3. Steerable approaches

This section explores the methods that transform filters
and, as a result, do not require rotation of the training data.
The network filters’ ability to adapt, thus negating the need
for a rotation of the input data, is the ultimate goal. These
approaches are also called controllable approaches. The
theoretical framework was presented in [6]. Based on the
rotation of filters, a number of approaches have been pro-
posed [12, 57, 5, 6, 64, 56, 66] which differ only minimally.
Informed by the work in [6], group-equivariant convolution
neural networks (GCNNs) were proposed in [5]. These con-
sist of groups of rotated convolutions which are then used
to perform a pooling operation along the output layers. The
groups of convolutions are limited to 90 degrees. Harmonic
nets (N-Nets) [64] are an extension without the restriction
of 90 degrees. N-Nets limit the filters to circular harmon-
ics and require summing over several convolutions. That
makes these nets, like many others, very computationally
demanding when compared to standard convolutions. An-
other approach is the use of vector field nets [56, 57]. Here,
the filter is rotated by predefined rotations and the maximum
is selected from the output. In this approach, the maximum
and the orientation are both passed, leading the naming of
the nets. Oriented Response Networks (ORN) [66] are sim-
ilar networks in that the number of orientations is arbitrary.
For this purpose, the filter is rotated based on the orienta-
tions and the maximum is selected from the convolution.
The difference between ORN’s and vector field networks is

9877



Figure 1. Visual description of the depth wise convolutions with the radial filter construction (RSDW). The left and ride side are the depth
wise convolutions and in the center are the radial filters. In comparison to RAD the filters are applied as 2D Convolutions per channel and
not as tensors.

that, in an ORN, the filter is actively rotated, but the amount
of orientation is preliminarily fixed to four or eight. The
response, as well as the orientation, is passed. Since this
method is not rotation invariant, as is the case in vector
fields, the orientation is passed to the next layer. The au-
thors propose two ways to make ORN’s rotation invariant.
The first is a SIFT feature, such as alignment, and the sec-
ond is maximum selection. A further variant of this rotating
filters approach and a novel rotated pooling based module
using the filter orientations was presented in Rotationally-
Invariant Convolution Module (RIC) [12]. Here the authors
have limited themselves to 3 × 3 convolutions and rotated
only the weights between corners. This turns one filter into
exactly four for all rotations. The other weights (corners
and center) are identical. As in [12], we do not use any ro-
tation in the training phase and evaluate different rotations
in the validation phase.

3. Method

Figure 2. Visual description of the filter construction of our radial
convolutions (RAD). The same color stands for the same value.
On the left side of the arrow are the parameters without bias term
and on the right side, the applied convolution. Each input convo-
lution tensor has other radial parameters per input channel.

Figure 2 shows the radial convolutions. As you can see,
the weights to be learned (always on the left side of an ar-
row) correspond to an integer distance from the center of
the filter (always on the right side of an arrow). The filters
are then constructed so that the distance of the index in the
filter to the center is the index of the parameters.

Fcin,cout
(i, j) = Wcin,cout

(round(sqrt(i2 + j2))) (1)

This indexing is described in Equation 1 where i, j is the
2D Filter Index and W is the weight field. Since the convo-
lutions are tensors and not only 2D filters, each channel in
the tensor has its own weight field cin. This is, of course,
also valid for the output channels cout where each channel
has a separate tensor. In the following, this method will be
called RAD.

We have also extended this method with the technique
of depth wise convolutions. In the first step, a tensor based
depth wise convolution is performed, which determines the
number of channels in the middle layer. This can be seen
in Figure 1. In the middle layer, the radial convolutions are
applied not as tensor, but as individual 2D convolutions for
each input channel. Thus, the first depth wise convolution
determines the number of output and input channels in the
middle layer in Figure 1. At the end, a depth wise convo-
lution is performed again to create a desired output depth.
This method is called RSDW in the following.

Fcin/out
(i, j) = Wcin/out

(round(sqrt(i2 + j2))) (2)

Equation 2 shows the change for the middle section of
Figure 1. Since we only use one 2D convolution for each
input channel and the input and output layers have the same
size, we only need one additional filter index for the chan-
nels cin/out.

Both methods (RAD, RSDW) are by definition rotation
invariant because each feature in e.g. a 3 × 3 field can be
rotated around the central pixel without changing the multi-
plication equation with the filter. In addition, all pixels with
the same distance from the center can be permuted arbitrar-
ily without changing the multiplication equation. Of course,
this is also a disadvantage because the learned features are
less meaningful. Since this is generally already the case for
purely rotation invariant features [11, 57, 2, 5, 6, 64, 56, 66],
however, it is not a major disadvantage.

With our third approach (RING), we address the reduced
meaningfulness of the features from the first approach. For

9878



Figure 3. Visual description of the rotated ring convolutions (RING). In the top row the rotations for a 3 × 3 are shown. For a 5 × 5
convolution, the outer ring is rotated independently. This can be seen in the bottom row.

this purpose, we use a similar approach to the rotated fil-
ters [66]. However, in our method, each individual ring of
the filter rotates. This can be seen in Figure 3. In the case
of a 3×3 convolution, this corresponds to the rotated filters
of [66]. In the case of a 5 × 5 convolution (lower part of
figure 3), another ring is added. This second or third ring,
if the central weight is considered a separate ring, will also
rotate independently. This independent rotation of the rings
makes it possible to learn more than just the features with
rotated filters. An example is shown in Figure 4 where each
pattern represents the same feature.

Figure 4. Visual example of features that rotate within themselves.
All three patches represent the same feature and the two outer rings
are always independently rotated around the central pixel.

As you can see, the outer and inner ring always rotate,
independently, around the central pixel. Another advantage
of looking at each ring independently is that not all com-
binations of both rotations result in their own filters. Each
ring gets its own convolution filters, thereby reducing the
number convolutions to 8+16 instead of 8∗16. At the end,
the maximum of each ring is selected and added together
with the bias term. Compared to the rotated filters [66], our
method does not require a fixed number F of filters which
has to be set in advance because each ring is always com-
pletely rotated. Our method results in

∑f
i=2 2 ∗ (i+ i− 2)

convolutions for symmetric filters with width and height f .
To train these rotating filters using the backpropagation

algorithm, the error as well as the gradient must be rotated.
To make this easier and to use the fast cuDNN convolutions,
we have simply added several storage stages, which allow
us to assign the error to each rotated filter and, subsequently,
to each weight. This is similar to the idea behind rotated

filters [66], the difference being that we add separate stages
for multiple rings.

Data: Data,Weights,WRot
Result: Output,ORot
Function Forward is

WRot=RotateRings(Weights);
ORot=cuDNNFWD(WRot,Data);
Output=Comp&MaxPerRing(ORot);

end
Data: ErrorIn,ORot,WRot
Result: ErrorOut,ERot
Function Backward is

ERot=MaxPerRingBWD(ErrorIn,ORot);
ErrorOut=cuDNNBWD(WRot,ERot);

end
Data: ERot,Data
Result: Grad
Function CompGradis

GRot=cuDNNCompGrad(Data,ERot);
Grad=RotateRingsGrad(GRot);

end
Algorithm 1: Algorithmic description of the modifica-
tions to the convolution procedure for the forward, back-
ward, and gradient computation work flow.

Algorithm 1 describes modifications to the back propa-
gation algorithm that were made in order to use the normal
convolution together with the cuDNN implementations for
convolution. In the forward algorithm, the filters have to
be created based on the ring rotations (RotateRings). After-
wards, the cuDNN convolution can be used. To combine the
results of the individual rings and to achieve the correct out-
put depth, the combination and maximum selection must be
executed after the convolution (Comp&MaxPerRing). For
the back propagation of the error, the input gradient must be
assigned to the maxima selected in the forward step (Max-
PerRingBWD). Following this, the cuDNN back propaga-
tion can be used. To calculate the gradients, the assigned er-
ror and the input data can be used directly with the cuDNN

9879



gradient calculation. Finally, only the calculated gradients
have to be assigned to individual weights in the non-rotated
filter (RotateRingsGrad). Later, the weights can be updated
with any optimizer.

Table 1. The necessary weights without bias term. Conv represents
a normal tensor convolution. In case of RSDW, out1 stands for the
output channels of the first depth wise convolution and out2 for the
output channels of the last depth wise convolution.

Method Weights
Conv 3× 3 3*3*in*out
Conv 5× 5 5*5*in*out
RIC 3× 3 [11] 5*in*out
ORN 3× 3 [66] 3*3*in*out
ORN 5× 5 [66] 5*5*in*out
RAD 2 (ours) 2*in*out
RAD 3 (ours) 3*in*out
RSDW 2 (ours) (in*out1) + (2*out1) + (out1*out2)
RSDW 3 (ours) (in*out1) + (3*out1) + (out1*out2)
RING 3× 3 (ours) 3*3*in*out
RING 5× 5 (ours) 5*5*in*out

Table 1 shows the required parameters for each ap-
proach. As you can see, no approach requires more pa-
rameters than a typical convolution. However, the number
of parameters for RIC [11], as well as for RAD, is much
lower. In the case of RSDW, it depends on the number of
depth wise convolutions, where the depth of the first is out1
and the depth of the second is out2.

Table 2. The complexity of one layer execution without biasterm.
Conv represents a normal tensor convolution. In case of RSDW,
out1 stands for the output channels of the first depth wise con-
volution and out2 for the output channels of the last depth wise
convolution.

Method Complexity
Conv 3× 3 w*h*3*3*in*out
Conv 5× 5 w*h*5*5*in*out
RIC 3× 3 [11] 4*w*h*3*3*in*out
ORN-F 3× 3 [66] F*w*h*3*3*in*out
ORN-F 5× 5 [66] F*w*h*5*5*in*out
RAD 2 (ours) w*h*3*3*in*out
RAD 3 (ours) w*h*5*5*in*out
RSDW 2 (ours) (w*h*out1) * ((in) + (3*3) + (out2))
RSDW 3 (ours) (w*h*out1) * ((in) + (5*5) + (out2))
RING 3× 3 (ours) w*h*3*3*in*out
RING 5× 5 (ours) (8*w*h*in*out)*(3*3 + 2*5*5)

In Table 2, the complexity of a layer is provided based on
the input depth in and surface w × h. As you can see, only
the depth wise convolutions for certain depths can reduce
complexity. Once constant factor in all other methods is the
expense, which is greater than ordinary convolutions. In the
case of ORN [66], this is the predefined number of rotated
filters F . For RIC [11], it is the four integrated rotations

and, for RING, the sum of the rotations of the individual
rings (

∑f
i=2 2 ∗ (i+ i− 2)).

4. Neural Network Models
Figure 5 shows the architectures that we used in our ex-

periments. To showcase the applicability of the rotation in-
variant layers, we used diverging architectures. As an ex-
ample, the first model (Figure 5 a)) is a small model with
batch normalization and the second model (Figure 5 b)) a
ResNet-34. The first model was developed to evaluate the
applicability of our layers to batch normalization. The sec-
ond model was developed to show that the layers can also be
used with modern residual networks. In addition, we used
a small classical neural network (Figure 5 c)). We used this
to show the impact of different rotation invariant layers on
models without batch normalization. The last model (Fig-
ure 5 d), is a fully convolutional neural network [53] with
additional connections between resolution stages. Those
models are called U-Nets [62] and the interconnections im-
prove the semantic segmentation result. This network was
only used with the VOC2012 [10] data set and the seman-
tic segmentation task. For training and evaluation, we used
the DLIB [46] library for deep neural networks. In the li-
brary, we have also integrated our rotation invariant layers
and the state of the art approaches by which we compare
our proposed approach.

As exhibited in all models, the last layer is always a pool-
ing stage which reduces the output tensor dimension to one.
This is to achieve the model’s rotation invariance since the
tensor itself also contains spatial information for the fol-
lowing fully connected stages. We will show the difference
empirically in our first evaluation.

5. Data sets
In this section, all the data sets, training parameters and

algorithms for weight initialization utilized in our work are
described. In addition, we provide the parameters and opti-
mization procedures as well as the batch size used per data
set. We used as little data augmentation as possible to en-
sure an easy reproduction of our results and described this
in detail too.

CIFAR10 [48] is a publicly available data set with a to-
tal of 60,000 images. It has ten classes which have to be
estimated for a given image. Each image in this data set has
a resolution of 32×32 and three color channels (red, green,
and blue). The training set consists of 50,000 images with
5,000 images per class. For validation, 10,000 images are
provided with 1,000 images per class.

Training: As optimizer, we used ADAM [47] with a
weight deacay of 5∗10−5, momentum one with 0.9 and mo-
mentum two with 0.999. The batch size was fixed to fifty dur-
ing training. The initial learning rate was set to 10−3 and

9880



Figure 5. All used architectures in our evaluation. (a) is a small neural network model with batch normalization. (b) represents a ResNet-34
with batch normalization and residual blocks [41]. (c) is a small classical neural network model without batch normalization. (d) is a so
called U-Net [62] with residual blocks [41] and fully convolutional [53].

the training was conducted for 300 epochs. After each 50
epochs, the learning rate was reduced by 10−1. The weights
of our models were initialized using formula 16 from [40]
and all bias terms were set to 0 initially. We did not use any
data augmentation during training. For preprocessing, we
used constant mean subtraction (mean-red 122.782, mean-
green 117.001, mean-blue 104.298) and division by 256.0
for the input image. For the evaluation, we evaluated the
rotations 0◦, 90◦, 180◦ and 270◦ separately to show the ro-
tation invariance of the proposed approaches. It has to be
noted that no rotation was used during training.

CIFAR100 [48] is also a public data set, but with one
hundred instead of ten classes. It has the same task as CI-
FAR10, which is selecting a class based on a given image.
The image resolution for CIFAR100 is 32 × 32 with three
color channels (red, green, and blue). The data set contains
60,000 images and is split into a training and a validation
set. The training set contains 50,000 images with 500 ex-
amples per class and the validation set contains 10,000 im-
ages with 100 examples per class. Therefore, CIFAR100 is
a balanced data set with the same number of images as in
CIFAR10.

Training: As an optimizer we used SGD [3] with first
momentum 0.9. Weight deacay was set to 5 ∗ 10−4 and
we used a fixed batch size of 50 during the training. The
initial learning rate was set to 10−1 and we trained for a
total of 300 epochs. After each round of 50 epochs, we re-
duced the learning rate by 10−1. We did not use any data
augmentation, but, instead, used image preprocessing. This
preprocessing was a constant mean subtraction (mean-red
122.782, mean-green 117.001, mean-blue 104.298) and di-

vision by 256.0 for the input image. For weight initializa-
tion, we used formula 16 from [40] and all bias terms were
set to 0. For the evaluation, we evaluated the rotations 0◦,
90◦, 180◦, and 270◦ separately to show the rotation invari-
ance of the proposed approaches. It has to be noted that no
rotation was used during training.

VOC2012 [10] is a publicly available data set. It con-
tains annotations for object detection, classification and se-
mantic segmentation. We used the annotations for semantic
segmentation only. In semantic segmentation, the task is
to classify each pixel in an image regarding its class affil-
iation. Overall, the VOC2012 data set has twenty classes
and the background class. Each image can contain multiple
objects, but not all twenty objects have to be present. It is
also possible that the same object class is present multiple
times. The training set consists of 3,507 segmented objects
on 1,464 images and the validation set has 3,422 segmented
objects on 1,449 images. Additionally, there is a third im-
age set without any annotations. This set can be used for
initializing weights using unsupervised training similar to
an autoencoder. In our training and evaluation, we did not
use the third set. In addition, the data set is unbalanced,
making it even more difficult to use.

Training: We used a fixed batch size of ten during train-
ing. The initial learning rate was set to 10−1. The en-
tire training procedure contained 800 epochs, whereby after
each round of 200 epochs the learning rate was reduced by
10−1. As an optimizer we used SGD with momentum [60]
set to 0.9 and a weight decay of 1 ∗ 10−4. For weight ini-
tialization, we used formula 16 from [40] and all bias terms
were set to 0. For data augmentation, we used a cropping of

9881



227×227 regions out of each input image. Additionally, we
used random color offsets during training. As preprocessing
of the images, we used constant mean subtraction (mean-
red 122.782, mean-green 117.001, mean-blue 104.298) and
divided each value by 256.0. For the evaluation, we eval-
uated the rotations 0◦, 90◦, 180◦, and 270◦ separately to
show the rotation invariance of the proposed approaches. It
has to be noted that no rotation was used during training.

6. Evaluation
In general, it should be noted here that rotationally in-

variant features always perform worse when compared to
rotationally sensitive features if evaluated for only one
rotation. This is due to the fact that, for some tasks,
rotation sensitive features contain more general informa-
tion [12, 66, 56, 57]. However, on average across all ro-
tations, rotationally invariant traits performed more effec-
tively. Since our models were trained without additional
data manipulation and rotation, we limited the evaluation to
four simple rotations, (0◦, 90◦, 180◦, and270◦), which can
be calculated without interpolation. In all tables, we share
the results for each rotation to show that the trained features
are rotation invariant when compared to conventional con-
volutions.

For comparison, we consistently replaced all convolu-
tion layers with rotationally invariant layers, with the ex-
ception of rotational pooling (RP) [12]. Here, the authors
have shown that the process works best if only the first
layer is used. Therefore, in our evaluation, we only used
the rotational pooling in the first layer together with the ro-
tational invariant layer when &RP was specified. For the
RIC [12] approach, we only used filters with a size 3 × 3,
since no construction rule was specified for larger filters.
For ORN [66], we used all rotations every time, where
the number was specified with −XY each. To make the
ORN [66] approach rotationally invariant, we used the OR-
Pooling [66] outlined by the authors.

Table 3 shows the results on CIFAR10 using the model
c) from Figure 5. Global pooling has been removed for this
evaluation. As you can see, when comparing the entries
without rotational pooling [12], the invariant features are
not sufficient to make the entire network invariant to a ro-
tation on the input data. One approach to make the entire
network invariant is to use rotational pooling [12]. Here,
for each different rotation of the filter, the output is rotated
as well. In the case of back propagation, the error is also ro-
tated. This makes the nets rotationally invariant as seen in
Table 3 for the entries with RP. We have used RP together
with the invariant features only in the first layer because
the authors in [12] have shown that is where it works the
best. If you compare the results with RP from Table 3 and
the results with global pooling from Table 4, you can see
that all nets together with the rotation invariant features are

Table 3. Shows the accuracy on CIFAR10 with the global pooling
removed. RP refers to the rotational pooling of [12]. Only the first
convolution is replaced by the rotational invariant filters and the
rotational pooling is applied subsequently. For all evaluations we
used model c) from Figure 5.
Method 0◦ 90◦ 180◦ 270◦

CNN 3× 3 79.71% 28.62% 33.65% 29.04%
CNN 5× 5 [11] 81.36% 30.25% 36.08% 29.42%
RIC 3× 3 [11] 69.74% 29.98% 31.11% 28.59%
RIC & RP 3× 3 [11] 53.21% 53.21% 53.21% 53.21%
ORN-8 3× 3 [66] 72.89% 34.66% 34.36% 33.65%
ORN-16 5× 5 [66] 76.31% 36.21% 37.59% 36.41%
ORN-8 & RP 3× 3 [66] 58.17% 58.17% 58.17% 58.17%
ORN-16 & RP 5× 5 [66] 61.48% 61.48% 61.48% 61.48%
RAD 2 (ours) 65.05% 29.14% 30.99% 29.85%
RAD 3 (ours) 68.92% 25.61% 34.68% 32.76%
RAD 2 & RP (ours) 50.26% 50.26% 50.26% 50.26%
RAD 3 & RP (ours) 57.35% 57.35% 57.35% 57.35%
RSDW 2 (ours) 62.21% 26.43% 29.87% 27.39%
RSDW 3 (ours) 66.71% 26.41% 31.35% 29.18%
RSDW 2 & RP (ours) 48.01% 48.01% 48.01% 48.01%
RSDW 3 & RP (ours) 55.76% 55.76% 55.76% 55.76%
RING 3× 3 (ours) 72.89% 34.66% 34.36% 33.65%
RING 5× 5 (ours) 79.58% 37.93% 39.90% 38.59%
RING & RP 3× 3 (ours) 58.17% 58.17% 58.17% 58.17%
RING & RP 5× 5 (ours) 62.90% 62.90%62.90%62.90%

rotation invariant. Global pooling also allows for high accu-
racy. Consequently, we will use global pooling for the fol-
lowing evaluations instead of RP. Another observation that
stands out in the tables 3, 4 and 5 is that RING 3 × 3 and
ORN-8 3 × 3 [66] always achieve the same results. This is
because the RING method only rotates one ring and there
are eight filter rotations of ORN-8 [66]. Thus, for the in-
put 3 × 3, both approaches are identical in our evaluation.
For ORN [66], we used all rotations of the outermost filter
ring. For ORN [66], the complete filter was always rotated,
making a difference in the filter size of 5× 5.

In Tables 4 and 5, the results can be observed on CI-
FAR10 and CIFAR100 for the models a), b), and c) with
global pooling. All rotationally invariant layers and ap-
proaches show the rotational invariance clearly in compar-
ison to ordinary convolutions because they offer the same
results for each rotation. The least expensive and least pa-
rameterized method in our evaluation is RSDW, which uses
the approach of depth wise convolutions [] together with ra-
dial convolutions (RAD). RSDW also has the worst results
of all rotation invariants, but still maintains a better record,
on average, than conventional convolutions when compared
to all rotations. The RAD approach significantly improves
the results and has both lower calculation costs and param-
eters compared to RIC [12]. On the other hand, RIC, with a
radius of 2 for model b), is always significantly better than

9882



Table 4. Shows the accuracy on CIFAR10 where the letters a),
b), and c) denote the models in Figure 5. Where possible, each
method was evaluated with different filter sizes X ×X .
Method 0◦ 90◦ 180◦ 270◦

CNN 3× 3(a)) 77.85% 35.84% 47.38% 35.61%
CNN 5× 5(a)) 78.20% 35.20% 43.80% 35.96%
RIC 3× 3(a)) [11] 66.73% 66.73% 66.73% 66.73%
ORN-8 3× 3(a)) [66] 74.88% 74.88% 74.88% 74.88%
ORN-16 5× 5(ab)) [66] 75.15% 75.15% 75.15% 75.15%
RAD 2(ours) (a)) 64.41% 64.41% 64.41% 64.41%
RAD 3(ours) (a)) 67.17% 67.17% 67.17% 67.17%
RSDW 2(ours) (a)) 60.56% 60.56% 60.56% 60.56%
RSDW 3(ours) (a)) 62.75% 62.75% 62.75% 62.75%
RING 3× 3(ours) (a)) 74.88% 74.88% 74.88% 74.88%
RING 5× 5(ours) (a)) 76.10% 76.10%76.10%76.10%
CNN 3× 3(b)) 81.93% 30.61% 34.82% 31.79%
CNN 5× 5(b)) 87.78% 33.56% 37.34% 30.39%
RIC 3× 3(b)) [11] 70.74% 70.74% 70.74% 70.74%
ORN-8 3× 3(b)) [66] 77.63% 77.63% 77.63% 77.63%
ORN-16 5× 5(b)) [66] 79.03% 79.03% 79.03% 79.03%
RAD 2(ours) (b)) 67.06% 67.06% 67.06% 67.06%
RAD 3(ours) (b)) 69.83% 69.83% 69.83% 69.83%
RSDW 2(ours) (b)) 64.45% 64.45% 64.45% 64.45%
RSDW 3(ours) (b)) 65.82% 65.82% 65.82% 65.82%
RING 3× 3(ours) (b)) 77.63% 77.63% 77.63% 77.63%
RING 5× 5(ours) (b)) 79.96% 79.96%79.96%79.96%
CNN 3× 3(c)) 81.01% 31.61% 39.12% 32.06%
CNN 5× 5(c)) 84.36% 32.25% 38.08% 26.42%
RIC 3× 3(c)) [11] 66.31% 66.31% 66.31% 66.31%
ORN-8 3× 3(c)) [66] 74.27% 74.27% 74.27% 74.27%
ORN-16 5× 5(c)) [66] 75.68% 75.68% 75.68% 75.68%
RAD 2(ours) (c)) 65.70% 65.70% 65.70% 65.70%
RAD 3(ours) (c)) 66.84% 66.84% 66.84% 66.84%
RSDW 2(ours) (c)) 61.40% 61.40% 61.40% 61.40%
RSDW 3(ours) (c)) 64.25% 64.25% 64.25% 64.25%
RING 3× 3(ours) (c)) 74.27% 74.27% 74.27% 74.27%
RING 5× 5(ours) (c)) 76.83% 76.83%76.83%76.83%

RAD, which had a radius of 3 for model b). If RIC [12]
is compared directly with RAD, the calculation costs for
RIC [12] are four times higher and the number of parame-
ters, in the case of RAD with a radius of 2, are almost three
times higher.

Likewise, it can be seen in Tables 4 and 5 that, for the
orientation 0◦, the CNN with a filter size of 5 × 5 always
performs best. This is also the orientation of the training
data. For all other orientations, RING with a filter size of
5 × 5 is best. The second best is ORN-16 with a filter size
of 5 × 5. ORN-16 only needs 2/3 of the run time when
compared to RING.

As can be observed in Table 6, the rotation invariant fil-
ters also work for semantic segmentation. Note that we also
scaled the validation data to 227 × 227 to achieve a one-

Table 5. Shows the accuracy on CIFAR100 where the letters a),
b), and c) denote the models in Figure 5. Where possible, each
method was evaluated with different filter sizes X ×X .
Method 0◦ 90◦ 180◦ 270◦

CNN 3× 3(a)) 48.97% 23.30% 30.75% 24.05%
CNN 5× 5(a)) 49.83% 24.41% 32.99% 25.50%
RIC 3× 3(a)) [11] 39.10% 39.10% 39.10% 39.10%
ORN-8 3× 3(a)) [66] 47.41% 47.41% 47.41% 47.41%
ORN-16 5× 5(a)) [66] 48.50% 48.50% 48.50% 48.50%
RAD 2(ours) (a)) 37.66% 37.66% 37.66% 37.66%
RAD 3(ours) (a)) 39.51% 39.51% 39.51% 39.51%
RSDW 2(ours) (a)) 33.56% 33.56% 33.56% 33.56%
RSDW 3(ours) (a)) 34.20% 34.20% 34.20% 34.20%
RING 3× 3(ours) (a)) 47.41% 47.41% 47.41% 47.41%
RING 5× 5(ours) (a)) 49.03% 49.03%49.03%49.03%
CNN 3× 3(b)) 67.31% 20.29% 21.16% 19.92%
CNN 5× 5(b)) 71.20% 19.39% 22.73% 18.90%
RIC 3× 3(b)) [11] 49.12% 49.12% 49.12% 49.12%
ORN-8 3× 3(b)) [66] 57.43% 57.43% 57.43% 57.43%
ORN-16 5× 5(b)) [66] 60.39% 60.39% 60.39% 60.39%
RAD 2(ours) (b)) 45.20% 45.20% 45.20% 45.20%
RAD 3(ours) (b)) 48.33% 48.33% 48.33% 48.33%
RSDW 2(ours) (b)) 34.82% 34.82% 34.82% 34.82%
RSDW 3(ours) (b)) 36.91% 36.91% 36.91% 36.91%
RING 3× 3(ours) (b)) 57.43% 57.43% 57.43% 57.43%
RING 5× 5(ours) (b)) 62.40% 62.40%62.40%62.40%
CNN 3× 3(c)) 48.53% 18.37% 22.29% 18.14%
CNN 5× 5(c)) 50.30% 19.81% 25.01% 18.92%
RIC 3× 3(c)) [11] 36.01% 36.01% 36.01% 36.01%
ORN-8 3× 3(c)) [66] 43.86% 43.86% 43.86% 43.86%
ORN-16 5× 5(c)) [66] 45.72% 45.72% 45.72% 45.72%
RAD 2(ours) (c)) 35.06% 35.06% 35.06% 35.06%
RAD 3(ours) (c)) 37.95% 37.95% 37.95% 37.95%
RSDW 2(ours) (c)) 30.19% 30.19% 30.19% 30.19%
RSDW 3(ours) (c)) 32.73% 32.73% 32.73% 32.73%
RING 3× 3(ours) (c)) 43.86% 43.86% 43.86% 43.86%
RING 5× 5(ours) (c)) 46.89% 46.89%46.89%46.89%

Table 6. Shows the pixel wise accuracy on VOC2012. The model
for all evaluations is d) from Figure 5.
Method 0◦ 90◦ 180◦ 270◦

CNN 3× 3(d)) 84.65% 62.85% 73.66% 53.78%
RAD 3(ours) (d)) 71.25% 71.28% 71.81% 72.02%
RING 3× 3(ours) (d)) 79.93% 79.16% 79.85% 80.12%

dimensional vector in the central part of the network. As
you can see, the resource-saving method RAD is already
better than the conventional convolution while the more ex-
pensive RING method improves results significantly.

7. Conclusion
In this work, we have shown several new approaches for

rotationally invariant feature extraction in deep neural net-

9883



works. We compared our approaches with the state of the art
on CIFAR10 and CIFAR100. Different models were trained
and no rotation was applied to the training data. As the eval-
uation with four rotations reveals, our approaches are also
rotation invariant. Futhermore, we tested our approaches in
fully convolutional neural networks for semantic segmenta-
tion on the VOC2012 data set. In addition to the description
and evaluation, we provide the CUDA implementations of
our approaches as well as a description of how they can be
integrated into existing frameworks. Future work will fo-
cus on head mounted eye trackers [13], since eye cameras
can be shifted and rotated. Through this effort, we would
like to further show the advantages of rotation invariant ap-
proaches also for scan path classification [15, 18] as well as
eye movement detection [30, 37, 16, 17, 25, 30]. In partic-
ular, we will look at the transfer between training on syn-
thetic data and the use of genuine human data. In addition,
rotation invariant features could improve saliency predic-
tion as well [39, 29].

References
[1] Mohamed Abd El Aziz, IM Selim, and Shengwu Xiong. Au-

tomatic detection of galaxy type from datasets of galaxies
image based on image retrieval approach. Scientific Reports,
7(1):1–9, 2017.

[2] Vincent Andrearczyk, Julien Fageot, Valentin Oreiller,
Xavier Montet, and Adrien Depeursinge. Local rotation in-
variance in 3d cnns. arXiv preprint arXiv:2003.08890, 2020.

[3] Léon Bottou. Stochastic gradient learning in neural net-
works. Proceedings of Neuro-Nımes, 91(8):12, 1991.

[4] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-
column deep neural networks for image classification. In
2012 IEEE conference on computer vision and pattern
recognition, pages 3642–3649. IEEE, 2012.

[5] Taco Cohen and Max Welling. Group equivariant convo-
lutional networks. In International conference on machine
learning, pages 2990–2999, 2016.

[6] Taco S Cohen and Max Welling. Steerable cnns. arXiv
preprint arXiv:1612.08498, 2016.

[7] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE international confer-
ence on computer vision, pages 764–773, 2017.

[8] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-
vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price,
and Michael Wray. Scaling egocentric vision: The epic-
kitchens dataset. In European Conference on Computer Vi-
sion (ECCV), 2018.

[9] Sander Dieleman, Kyle W Willett, and Joni Dambre.
Rotation-invariant convolutional neural networks for galaxy
morphology prediction. Monthly notices of the royal astro-
nomical society, 450(2):1441–1459, 2015.

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[11] Patrick Follmann and Tobias Bottger. A rotationally-
invariant convolution module by feature map back-rotation.
In 2018 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 784–792. IEEE, 2018.

[12] Patrick Follmann and Tobias Bottger. A rotationally-
invariant convolution module by feature map back-rotation.
In 2018 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 784–792. IEEE, 2018.

[13] W. Fuhl. Image-based extraction of eye features for robust
eye tracking. PhD thesis, University of Tübingen, 04 2019.

[14] Wolfgang Fuhl. From perception to action using observed
actions to learn gestures. User Modeling and User-Adapted
Interaction, pages 1–18, 08 2020.

[15] Wolfgang Fuhl, Efe Bozkir, Benedikt Hosp, Nora Castner,
David Geisler, Thiago C Santini, and Enkelejda Kasneci. En-
codji: encoding gaze data into emoji space for an amusing
scanpath classification approach. In Proceedings of the 11th
ACM Symposium on Eye Tracking Research & Applications,
pages 1–4, 2019.

[16] W. Fuhl, N. Castner, and E. Kasneci. Histogram of ori-
ented velocities for eye movement detection. In International
Conference on Multimodal Interaction Workshops, ICMIW,
2018.

[17] W. Fuhl, N. Castner, and E. Kasneci. Rule based learning for
eye movement type detection. In International Conference
on Multimodal Interaction Workshops, ICMIW, 2018.

[18] W. Fuhl, N. Castner, T. C. Kübler, A. Lotz, W. Rosenstiel,
and E. Kasneci. Ferns for area of interest free scanpath clas-
sification. In Proceedings of the 2019 ACM Symposium on
Eye Tracking Research & Applications (ETRA), 06 2019.

[19] W. Fuhl, N. Castner, L. Zhuang, M. Holzer, W. Rosenstiel,
and E. Kasneci. Mam: Transfer learning for fully automatic
video annotation and specialized detector creation. In In-
ternational Conference on Computer Vision Workshops, IC-
CVW, 2018.

[20] W. Fuhl, S. Eivazi, B. Hosp, A. Eivazi, W. Rosenstiel, and E.
Kasneci. Bore: Boosted-oriented edge optimization for ro-
bust, real time remote pupil center detection. In Eye Tracking
Research and Applications, ETRA, 2018.

[21] W. Fuhl, H. Gao, and E. Kasneci. Neural networks for opti-
cal vector and eye ball parameter estimation. In ACM Sympo-
sium on Eye Tracking Research & Applications, ETRA 2020.
ACM, 01 2020.

[22] W. Fuhl, H. Gao, and E. Kasneci. Tiny convolution, decision
tree, and binary neuronal networks for robust and real time
pupil outline estimation. In ACM Symposium on Eye Track-
ing Research & Applications, ETRA 2020. ACM, 01 2020.

[23] W. Fuhl, D. Geisler, W. Rosenstiel, and E. Kasneci. The ap-
plicability of cycle gans for pupil and eyelid segmentation,
data generation and image refinement. In International Con-
ference on Computer Vision Workshops, ICCVW, 11 2019.

[24] W. Fuhl, D. Geisler, T. Santini, T. Appel, W. Rosenstiel,
and E. Kasneci. Cbf:circular binary features for robust and
real-time pupil center detection. In ACM Symposium on Eye
Tracking Research & Applications, 06 2018.

9884



[25] W. Fuhl and E. Kasneci. Eye movement velocity and gaze
data generator for evaluation, robustness testing and assess
of eye tracking software and visualization tools. In Poster
at Egocentric Perception, Interaction and Computing, EPIC,
2018.

[26] W. Fuhl and E. Kasneci. Learning to validate the quality of
detected landmarks. In International Conference on Machine
Vision, ICMV, 11 2019.

[27] W. Fuhl, G. Kasneci, W. Rosenstiel, and E. Kasneci. Train-
ing decision trees as replacement for convolution layers. In
Conference on Artificial Intelligence, AAAI, 02 2020.

[28] W. Fuhl, T. C. Kübler, D. Hospach, O. Bringmann, W.
Rosenstiel, and E. Kasneci. Ways of improving the preci-
sion of eye tracking data: Controlling the influence of dirt
and dust on pupil detection. Journal of Eye Movement Re-
search, 10(3), 05 2017.

[29] Wolfgang Fuhl, Thomas C Kübler, Thiago Santini, and
Enkelejda Kasneci. Automatic generation of saliency-based
areas of interest for the visualization and analysis of eye-
tracking data. In VMV, pages 47–54, 2018.

[30] Wolfgang Fuhl, Yao Rong, and Kasneci Enkelejda. Fully
convolutional neural networks for raw eye tracking data seg-
mentation, generation, and reconstruction. In Proceedings of
the International Conference on Pattern Recognition, pages
0–0, 2020.

[31] Wolfgang Fuhl, Yao Rong, Thomas Motz, Michael Scheidt,
Andreas Hartel, Andreas Koch, and Enkelejda Kasneci. Ex-
plainable online validation of machine learning models for
practical applications. In Proceedings of the International
Conference on Pattern Recognition, pages 0–0, 2020.

[32] W. Fuhl, W. Rosenstiel, and E. Kasneci. 500,000 images
closer to eyelid and pupil segmentation. In Computer Anal-
ysis of Images and Patterns, CAIP, 11 2019.

[33] W. Fuhl, T. Santini, D. Geisler, T. C. Kübler, and E. Kas-
neci. Eyelad: Remote eye tracking image labeling tool.
In 12th Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP
2017), 02 2017.

[34] W. Fuhl, T. Santini, D. Geisler, T. C. Kübler, W. Rosenstiel,
and E. Kasneci. Eyes wide open? eyelid location and eye
aperture estimation for pervasive eye tracking in real-world
scenarios. In ACM International Joint Conference on Perva-
sive and Ubiquitous Computing: Adjunct publication – PET-
MEI 2016, 09 2016.

[35] W. Fuhl, T. Santini, and E. Kasneci. Fast and robust eyelid
outline and aperture detection in real-world scenarios. In
IEEE Winter Conference on Applications of Computer Vision
(WACV 2017), 03 2017.

[36] W. Fuhl, T. Santini, and E. Kasneci. Fast camera focus esti-
mation for gaze-based focus control. In CoRR, 2017.

[37] W. Fuhl, T. Santini, T. Kuebler, N. Castner, W. Rosenstiel,
and E. Kasneci. Eye movement simulation and detector
creation to reduce laborious parameter adjustments. arXiv
preprint arXiv:1804.00970, 2018.

[38] W. Fuhl, T. Santini, C. Reichert, D. Claus, A. Herkommer, H.
Bahmani, K. Rifai, S. Wahl, and E. Kasneci. Non-intrusive
practitioner pupil detection for unmodified microscope ocu-

lars. Elsevier Computers in Biology and Medicine, 79:36–44,
12 2016.

[39] D. Geisler, W. Fuhl, T. Santini, and E. Kasneci. Saliency
sandbox: Bottom-up saliency framework. In 12th Joint Con-
ference on Computer Vision, Imaging and Computer Graph-
ics Theory and Applications (VISIGRAPP 2017), 02 2017.

[40] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[42] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang.
Transforming auto-encoders. In International conference on
artificial neural networks, pages 44–51. Springer, 2011.

[43] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[44] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[45] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in neural infor-
mation processing systems, pages 2017–2025, 2015.

[46] Davis E King. Dlib-ml: A machine learning toolkit. Journal
of Machine Learning Research, 10(Jul):1755–1758, 2009.

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[48] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[50] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and
Marc Pollefeys. Ti-pooling: transformation-invariant pool-
ing for feature learning in convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 289–297, 2016.

[51] Yann LeCun, Yoshua Bengio, et al. Convolutional networks
for images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995.

[52] Rongjian Li, Tao Zeng, Hanchuan Peng, and Shuiwang Ji.
Deep learning segmentation of optical microscopy images
improves 3-d neuron reconstruction. IEEE transactions on
medical imaging, 36(7):1533–1541, 2017.

[53] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015.

[54] Alessandra Lumini and Loris Nanni. Deep learning and
transfer learning features for plankton classification. Eco-
logical informatics, 51:33–43, 2019.

9885



[55] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[56] Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis
Tuia. Rotation equivariant vector field networks. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 5048–5057, 2017.

[57] Diego Marcos, Michele Volpi, and Devis Tuia. Learning ro-
tation invariant convolutional filters for texture classification.
In 2016 23rd International Conference on Pattern Recogni-
tion (ICPR), pages 2012–2017. IEEE, 2016.

[58] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and Antonio
Torralba. Recipe1m+: A dataset for learning cross-modal
embeddings for cooking recipes and food images. IEEE
transactions on pattern analysis and machine intelligence,
2019.

[59] Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park,
and Abhinav Gupta. The curious robot: Learning visual rep-
resentations via physical interactions. In European Confer-
ence on Computer Vision, pages 3–18. Springer, 2016.

[60] Ning Qian. On the momentum term in gradient descent
learning algorithms. Neural networks, 12(1):145–151, 1999.

[61] Rosemberg Rodriguez, Eva Dokladalova, and Petr Dokládal.
Rotation invariant cnn using scattering transform for image
classification. In 2019 IEEE International Conference on
Image Processing (ICIP), pages 654–658. IEEE, 2019.

[62] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[63] Rosemberg Rodriguez Salas, Petr Dokládal, and Eva Dok-
ladalova. Red-nn: Rotation-equivariant deep neural network
for classification and prediction of rotation. 2019.

[64] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-
betov, and Gabriel J Brostow. Harmonic networks: Deep
translation and rotation equivariance. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5028–5037, 2017.

[65] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018.

[66] Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao.
Oriented response networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 519–528, 2017.

9886


