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Abstract—The HGR is a quite challenging task as its per-
formance is influenced by various aspects such as illumination
variations, cluttered backgrounds, spontaneous capture, etc. The
conventional CNN networks for HGR are following two stage
pipeline to deal with the various challenges: complex signs,
illumination variations, complex and cluttered backgrounds. The
existing approaches needs expert expertise as well as auxiliary
computation at stage 1 to remove the complexities from the input
images. Therefore, in this paper, we proposes an novel end-to-end
compact CNN framework: fine grained feature attentive network
for hand gesture recognition (Fit-Hand) to solve the challenges
as discussed above. The pipeline of the proposed architecture
consists of two main units: FineFeat module and dilated convo-
lutional (Conv) layer. The FineFeat module extracts fine grained
feature maps by employing attention mechanism over multi-
scale receptive fields. The attention mechanism is introduced to
capture effective features by enlarging the average behaviour
of multi-scale responses. Moreover, dilated convolution provides
global features of hand gestures through a larger receptive field.
In addition, integrated layer is also utilized to combine the
features of FineFeat module and dilated layer which enhances
the discriminability of the network by capturing complementary
context information of hand postures. The effectiveness of Fit-
Hand is evaluated by using subject dependent (SD) and subject
independent (SI) validation setup over seven benchmark datasets:
MUGD-I, MUGD-II, MUGD-III, MUGD-IV, MUGD-V, Finger
Spelling and OUHANDS, respectively. Furthermore, to investi-
gate the deep insights of the proposed Fit-Hand framework, we
performed ten ablation study

I. INTRODUCTION

Hand gestures represent specific finger and hand movements
that depict a particular message in non-verbal communication.
Gestures also reinforce verbal communication by conveying
human’s intentions in certain conversations. Hand gesture
recognition is perceptual computing that allows machines
to identify hand gestures and execute the relevant action.
The current situation of coronavirus (COVID19) pandemic
outbreak has caused sudden need of HGR in various domains
such as: consumer electronics market, transit sector, gaming,
touch-less smartphones, defence, home automation, robotics,
automated sign language translation etc. Thus, there is a
need to amalgamate the HGR with Al to design and develop
custom-made touch-less interface to carry out daily activities
while maintaining physical distance. Thus, a robust HGR
system is needed that can work efficiently on memory-limited
devices for real-life applications.
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Fig. 1. Architectural comparison between existing (a) [1], [2] -(b) [3], [4]
two stage network and proposed one for all: an end-to-end solution for
HGR. The visual representation implies the proposed frameworks efficacy
to handle the all kind of challenges: complex signs, illumination variations,
complex and cluttered backgrounds. While existing HGR frameworks aids
extra computation to deal with the complex backgrounds.

The HGR methods can be divided into two broad categories:
sensor and vision-based techniques. Sensor based techniques
[5], [6] used gloves and other electronic devices to measure the
joint angles position of the fingers, position of the hands to ex-
tract the features of hands. Although, glove-based techniques
have sufficient cues to identify hand gestures, but gloves
with wires and sensors are too expensive and makes people
uncomfortable to wear. However, vision-based techniques can
analyze hand gestures in a non-intrusive manner without any
involvement of gloves and electromagnetic devices. Moreover,
vision-based techniques are divided into two categories: 3D
hand and appearance-based model. 3D hand-based models [7],
[8] represent hand structure by defining geometrical shapes of
hands as joint angles of wrist, joints of fingers, space between
fingers etc. In appearance-based methods, texture features are
extracted from visual appearance of hands. Appearance-based
methods further can be split into two groups: pre-designed
and learning based. Pre-designed based models encoded hand
structure by imposing handcrafted feature descriptors. Pre-
designed feature descriptor [9], [10] has got promising results



FineFeat Block

(™)
\w)
_

S
\@y

256x256x3

[C3x3 Conv  (>»)Maximum
I 5X5 Conv (3 Minimum
I 7X7 Conv () Average

C==" Dig':n“‘jd - LRN

® - -

Hnad Gesture Classifis

Fig. 2. Architecture of the proposed Fit-Hand.

in field of computer vision. However, these approaches fail
to derive efficient feature in real time scenarios with variant
challenges as noise, complex background conditions, low
resolution and initial contour sequences. Whereas, learning
based approaches capture specific features of hand gestures
by updating filter weights gradually.

Recently, convolutional neural networks (CNN) have shown
tremendous performance in different computer vision fields
like object detection, man pose estimation, anomaly detection,
face verification, emotion recognition and many more. There
are many deep CNN models postulated in literature such as
Inception V3 [11], ResNet [12], ResNet Inc [13], DenseNet
[14], Mobilenet [15], Mobilenet V2 [16] and NasMobileNet
[17] etc. Even in HGR field, CNN based approaches [18],
[19], [20], [21] also have been shown impressive performance.
These CNN based HGR frameworks are followed two-stage
pipeline. Where, in first stage they have utilized handcrafted
techniques to computes optical flow or heat maps. Whereas in
second stage, CNN architectures are used for feature extraction
and classification. Two-stage framework based approaches
have gain impressive attention and successfully resolved the
problem of multi-view, noise, low resolution etc. However, the
performance of the these two stage models is limited by the
pre-design techniques that are strongly dependent on prior ex-
pertise. To overcome the limitation of two-stage frameworks,
advanced CNN based approaches [18], [19], [20] have been
introduced for hand gesture recognition without including any
pre-designed feature extraction method. However, most of the
advanced CNN models are designed to solve specific problems
like [18] works for black and white hand posture images,
[19], [20] color images. Thus above mentioned work is not
proving generic solution for all types of hand gesture images.
Moreover, existing approaches were evaluated over subject
dependent setup and have been gained high accuracy. How-
ever, they perform poorly when evaluated for unseen subjects’
hand gestures (subject independent setup). The existing CNN
networks also need huge computation with large parameters
and incapable to work on handheld and portable devices.

Inspired with the above challenges, in this paper, one
for all: an end-to-end compact network: fine grained feature
attentive network for hand gesture recognition is introduced.
The Fit-Hand model consist of two units: FineFeat module
and dilated Conv layer to extract the effective fine features

and abstract features, respectively. Furthermore, to learn the
complementary information, resultant feature maps of Fine-
Feat and dilated layer are combined by utilizing integrated
layer. Complementary features allows network to learn both
micro and high level features, which makes Fit-Hand a robust
method to deal with black and white (segmented) as well
as color full complex background hand gesture images. The
proposed Fit-Hand also reduce the complexity of the HGR
model by eliminating the need of hand segmentation. The
visual demonstration of the comparison between state-of-the-
art two-stage approaches and proposed one for all: FitHand
framework is presented in Fig. 1. The main contribution of
the proposed network is summarized as follows.

1) We proposed a light weighted end-to-end fine grained
feature attentive network for hand gesture recognition
as one solution for different challenges.

2) A FineFeat module is proposed to extract abstract and
detailed variation of the hand postures by utilizing both
global and local receptive field information.

3) A novel attention mechanism is introduced to preserve
effective edge information by utilizing averaging behav-
ior of multi-scale receptive responses.

4) The dilated Conv layer is used to extract high-level
feature of the hand-posture and improves the discrim-
inability of the Fit-Hand.

5) Effectiveness of proposed Fit-Hand is validated on seven
benchmark datasets: MUGD-I, MUGD-II, MUGD-
I, MUGD-IV, MUGD-V, Finger Spelling (ASL),
OUHANDS, with subject dependent and subject inde-
pendent evaluation strategies.

II. RELATED WORK

With recent advent of technologies CNN based approaches
has gained good achievements in hand gesture recognition.
Jose et al. [22] designed two different CNN frameworks
based on LeNET architecture [23] to extract the prominent
features of hand gesture structures. Further, Oyebade et al.
[2] applied CNN network with auto-encoder to represents
the features of hand gestures. Sérgio et al. [24] designed a
feature fusion-based convolutional neural network (FFCNN)
that incorporated auxiliary features extracted by gabor with
CNN network. Moreover, Dadashzadeh et al. [25] proposed
a two stage fusion network named as HGR Net. Where, in



first stage, hand regions are detected by applying pixel-level
semantic segmentation and second-stage network comprises
two-stream CNN to determine the label of hand gesture.
Furthermore, multi-task information sharing based approaches
[26], [27] has been introduced for hand pose estimation. They
extract the features of hands by decomposing them into sub-
task through 2D and 3D- heat maps. Mohanty et al. [20]
proposed a deep learning model named as DeepGestures for
static hand gesture recognition. The DeepGestures model have
been designed to handle the various challenges like variation
in hand sizes, spatial location variations in the image and
complex clutter background. Neethu et al. [28] introduced a
CNN based hand gesture detection and recognition framework.
Where, first they utilized mask images for hand region extrac-
tion and then segment fingers of images from the image though
CNN. Further, the adaptive histogram equalization technique
is used for image enhancement. Finally, the segmented fingers
are fed to CNN model for hand gesture classification. Zhan
et al. [18] introduced a CNN model to solve the black and
white hand gestures. Furthermore Islam et al. [29] utilized
augmentation techniques and increase the hand gesture data
sample to enhance the performance of CNN network. Adithya
et al. [19] introduce a CNN model for static hand gesture
recognition without including any segmentation technique.

III. PROPOSED METHOD

Various researchers have exploit the learning capabilities
of the pre-trained models [30], [31] for HGR. Some of the
existing approaches [32], [33] have taken advantages of pre-
designed feature descriptors and aid in CNN models to boost
their performance. While, some of the CNN networks have
been deigned to learn the features for specific hand postures.
Furthermore, some other HGR approaches have achieve good
results, but require huge computation cost. All above explained
aspects limit the performance of HGR in practical scenarios.
This motivated us to design a generic and portable end-to-end
CNN model for HGR which does not have dependency on
neither pre-designed descriptors nor pre-trained weights. The
detailed architecture of the proposed network is demonstrating
in Fig. 2.

Primarily network employ two consecutive Conv layers with
3 x 3 sized filters to extract variation patterns of hand poses.
Let I (I,m) be an input image and 7% (0) represents Conv
function, where S implies for stride, d is depth, u and v
represent the size of filter. Then response features [2y of first
two layers are calculated by Eq 1.

Ry = ™ {3 {1 (1, m)}} 1)

Further resultant feature maps are simultaneously forwarded
to fine feature extraction (FineFeat) module and dilated Conv
layer to preserve contextual information of hand postures.

1) Fine Feature Extraction Module: The aim of designing
FineFeat module is to preserve fine grained edge information
for discriminative feature representation of hand postures. The
FineFeat module mainly comprises of three laterally connected
multi-scale Conv of size 3 x 3, 5 x 5 and 7 x 7 with minimal

parameters as show in Fig. 2. The multi-scale filters are liable
to capture scale invariant features with multi-scale receptive
fields. Further, attention block is employed to fetch only
effective edges and neglects others by establishing averaging
concept over response multi-receptive fields. Response of

FineFeat <I mL}) module is calculated by using Eq. 2.

Im? :6{,’7'17><7><d (Rf)’n?XSXd (Rf)’n§><3><d (Rf)} (2)

where, d represents depth of the Conv. Filters. attention
block 0 (0) is calculated by using Eq. (3 — 5).

8 (f1, f2, f3) = @ (f1, fa, f3) + min (v (f1, f2, f3))  (3)

’Y(flaf27f3):|(10(f1af27f3)7(f17f27f3)| (4)

()O(flaf27f3) = %(max (f17f27f3) + min (f17f27f3)) (5)

where, f1, fo, f3 are implies Conv layer holding multi-scale
filters of size 3 x 3, 5 x 5 and 7 X 7 respectively.

2) Dilated Convolution layer: The dilated Conv layer [34]
is embedded in FitHand network to extract global spatial
features of hand gestures by refining inputs in high resolution.
Dilated Conv layer allows to conserve more comprehensive
context knowledge from input with reducing trainable param-
eters. Kernel size of dilated Conv is calculated by using Eq.
6.

Ri=i+(i—1)(D—1) (6)

Where, ¢ is the kernel size and D represent the dilation
rate. For Fit-Hand, we have used the 2 dilation. Moreover,
Fit-Hand utilized the integrated layer [12] to accumulate
preserved feature maps of FineFeat module and dilated Conv
layer. Integrated layer captures distinctive edge features and
enhances robustness of Fit-Hand to define the disparities
between different types of hand gestures problems. Final out-
come of Fit-Hand can be computed by using Eq. (7 — 9).

Hf — FC [nSX3X128 (LRN {Im?cﬁ (Xl) + Ding3X96 (Xl)})]
(7
x1 = LRN {Im§* (x2) + Dil3"**** (x2)} (8

X2 = LRN {Im¥ (Ry) + Dil3***** (Ry)} )

where, Ding”Xd dilated convolution function, where S
implies for stride, d is depth, u and v represent the size of
filter. LRN and FC implies for local response normalization
and fully connected layer.

Since resultant responses are carrying different scale infor-
mation, local response normalization (LRN) and L2 normaliza-
tion is used to normalize them. Therefore, these normalization
techniques help to reduce the over-fitting and improve the
prediction of the network.



TABLE I
RECOGNITION ACCURACY ON MUGD, FINGER SPELLING, OUHANDS IN SD AND SI SETUPS.Here, Fing. Spell, IncV3 and ResNet Inc, stands for finger
spelling, inception V3 and resnet inception, respectively.

SD ST

Method : I M}JI?D - y— Fing. Spell. [ MIIJIGD v— Fing. Spell. | OUHANDS
TncV3 [11] CVPR (2016) 80 | 235 | 115 | 150 | 120 315 805 | 880 | 338 755 38
ResNet30 [12] CVPR (2016) 8§28 | 892 | 786 | 832 | 702 95.0 662 | 758 | 377 98 634
DeepGestures [20] CVIP (2016) | 693 | 83.0 | 81.8 | 80.6 | 364 872 550 | 750 | 372 65 363
ResNetlnc [13] AAAT (2017) 450 | 506 | 392 | 400 | 362 9.6 367 | 336 | 333 73 352
Densel21 [14] CVPR(2017) 820 | 875 | 720 | 775 | 721 95.0 647 | 692 | 338 557 649
MobileNet [15] (2017) 726 | 814 | 660 | 698 | 634 948 362 [ 677 | 394 510 359.0
DeepHand [20] Neu. Comp. (2017) | WA | WA | NA | NA | NA 9133 NA | NA | N/A N/A N/A
MobileV2 [16] CVPR (2018) 506 | 522 | 382 | 328 | 426 %48 389 [ 372 | 200 354 530
NASMob [17] CVPR (2018) 315 | 215 [ 185 | 195 | 155 685 333 [ 360 | 227 378 379
HandShape [4] ICCCV (2018) NA | NA | NA | NA | N/A 90.60 NA | NA | N/A N/A N/A
HandGes [18] IRT (2019) 62 | 64 | 30 | 34 | 32 3475 100 | 120 | 60 74 730
DeepConv [19] PCS-Elsevier (2020) | 712 | 804 | 748 | 864 | 634 6.0 547 | 69.0 | 35. 135 360
DDaNet [3] TEEE-Acc. (2020) NA | NA | NA | NA | N/A 94.10 NA | NA | N/A N/A N/A
Fit-Hand 852 | 91.6 | 986 | 988 | 722 958 67.0 | 792 | 40.0 588 650

A. Comparative Study with Existing Approaches

The existing CNN networks: VGGNet [35] and ResNet
[12] gain impressive results by using the sequential coupling
behavior of Conv layers. However, in a deep dense network,
linearly connected Conv layers may drop some salient features
due to recurrence of cross-correlation, which has an important
role to define a gesture class. Moreover, deep networks are
failing to achieve good performance over smaller sized datasets
[36]. To resolve this problem, we proposed a light-weighted
end—to-end shallow network which is more appropriate in
HGR systems. In addition, most of the challenging hand
gesture datasets are captured with complex and cluttered
backgrounds. Existing approaches needs hand segmentation
to remove the complex background. Although, in literature
various hand segmentation techniques like hand shape, skin,
color segmentation etc. were proposed for hand segmentation.
However, the same segmentation technique is not work with
all types of backgrounds and limits the practical usability of
the HGR. The proposed Fit-Hand utilized the integration layer
to collect the complementary context features from FineFeat
module and dilated Conv layer. FineFeat module provides fine
grained features with the help of attention mechanism, which
is able to capture effective edge information. While, dilated
Conv layer generates global representation of hand gestures.
Therefore, complementary features of FineFeat and dilated
layer boosts the robustness of Fit-Hand to extract edges of
hand postures and surpass the background information. Thus,
the proposed Fit-Hand does not need hand segmentation. Also,
Fit-Hand can easily learn the features from segmented or black
and white hand gesture images. There, we conclude that Fit-
Hand is a generic HGR framework that is capable to learn
features in practical scenarios.

Fit-Hand incorporated a novel attention block, which has
capability to extract only effective edges from the multi-scaled
feature responses. Whereas, existing module inception layer
[13] simply concatenates previously extracted scale variant
feature maps and let the neural network to learn relevant
weights at the time of training. Thus, inception layer increases

MUGD

Fing. Spell.

OUHANDS

Fig. 3. Sample images of different challenges as complex finger gestures,
cluttered backgrounds, segmented gestures etc. in datasets: (a) MUGD, (b)
Finger Spelling (ASL) and (c) OUHANDS, respectively.

the complexity of network. Furthermore, Fit-Hand exploits
the effectiveness of the dilated Conv layer and preserved the
global context features of hand gestures. Moreover, Fit-Hand
embedded Conv layer with stride 2, to down-sample input size
instead max pooling to preserve minute variation information.
Max pooling executed max function to scale down the input
size, which eliminates the minute edge features. Sometimes,
small variations in a gesture may change the interpretation of
its class, thus micro level edge variation representation is also
playing a significant role to define a gesture. In literature some
studies [37], [38] have validated that Conv with stride instead
of pooling adds inter-feature dependencies and improves the
learnability of neurons.

IV. EXPERIMENTAL SETUP AND ANALYSIS

In this section, we examined the proposed network for HGR
on seven benchmark databasesdatasets: massey university ges-
ture dataset part-I (MUGD-I), MUGD-II, MUGD-III, MUGD-
IV, MUGD-V [39], Finger Spelling (American Sign Language)
[40] and OUHANDs [41]. The quantitative and graphical re-
sults in terms of recognition accuracy and F1-Score is verified
with the state-of-the-art methods for HGR. The qualitative
results are demonstrated to visualise the effectiveness of Fit-
Hand as compare to existing HGR approaches. Further, ten
supplementary experiments are conducted for ablation study
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Fig. 4. The graphical plot representing the comparative analysis between existing: IncV3, ResNet50, DeepGestures, ResNetInc, Densel21, MobileNet,
MobileV2, NASMob, HandGes, DeepConv and proposed: Fit-Hand in-terms of F1-Score over (a) MUGD-I, (b) MUGD-II, (c) MUGD-III, (d) MUGD-1V, (e)
OUHANDS, (f) MUGD-V and (g) Finger Spelling (ASL) datasets for SD and SI experimental settings, respectively.

to validate the effectiveness of each module in the proposed
method on OUHANDS. Furthermore, complexity analysis
between proposed and state-of-the art models is represented
to validate the potability of the Fit-Hand.

A. Implementation details

All experiments of Fit-Hand are conducted using Keras
open-source deep-learning library with the Tensor flow in the
backend. The cross-entropy is used as the cost function and
the SGD optimizer is used for optimization. The Fit-Hand
is trained with learning rate 0.0001 for all experiments. The
input image size has been fixed with 256 x 256 for training
and inference of the model. The Nvidia GeForce RTX 2080
GPU with Xeon processor, 16-core CPU, and 11 GB RAM
under Cuda 10.0. on Tensorflow-GPU 2.0.0 is used for the
experiments.

Moreover, to examine the effectiveness of the proposed
Framework, we have compared our results with other state-
of-the-art approaches. The researchers have took up various
dataset selection procedures and experimental settings. There-
fore, it is hard to make valid comparison between the various
published results. To ensure fair comparison of HGR networks:

DeepGestures, DeepConv and HandGes, we have implemented
the all of them according to our experimental setups. In addi-
tion for general networks: Inception V3, ResNet50, ResNet-
Inception, DenseNet, MobileNdet, MobileNetV2, NASMo-
bileNet, we have fine tuned pre-trained weights with our
experimental hyper-parameters over 10 epochs. As all versions
of MUGD datatses are limited in number, and deep Convo-
lutional neural networks require a large database to learn the
most significant features, the datasets are augmented offline
to enhance the generalization of the model and prevent over-
fitting. The following transformations are applied for data
augmentation: rotation in between [—45°, 45°] with increment
of 15°, horizontal flip and histogram equalization. Finally, one
image instance is converted into 10 images.

B. Experimental Setup

In literature most of the researchers utilized N-fold cross
validation scheme for evaluation. In N-fold cross validation,
datasets are divided into random N folds, Where N-1 folds are
used for training purpose and one fold is used for inference.
The same procedure is followed for each fold and average
of all folds are considered as final results. However, N-fold
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Fig. 5. The qualitative comparison between the feature maps generated
by state-of-the-art HGR network: DeepGestures, HandGes, DeepConv and
proposed Fit-Hand, over six different gestures.

cross validation strategy is a subject dependent evaluation due
to random division of folds and not ensure the performance
of models for unseen data. Therefore, these approaches have
been gained high accuracy for seen data samples. However,
they perform poorly when evaluated for unseen subjects’
hand gestures (subject independent setup) and not suitable
for real time data validation. Thus, for fair performance
of the Fit-Hand we have adopted two validation schemes:
subject- dependent and -independent. In subject dependent
(SD), datasets are randomly partitioned into 80:20 ration such
that 80% dataset is processed for training and 20% for testing
set. While, in subject independent (SI), three subjects’ hand
gestures are used in training and remaining hand gestures are
used for inference for MUGD-I, MUGD-II and Finger Spelling
datasets. For MUGD-V hand gesture, one subject is included
in training set and other one used for testing purpose. The data
division for SI is done purely in mutually exclusive manner.
Moreover, OUHANDS dataset contains two parts: training and
testing set with 2000 and 1000 images, respectively.

C. Quantitative Analysis

This section demonstrates the effectiveness of proposed
network over all datasets: MUGD, Finger Spelling and
OUHANDS, in terms of recognition accuracy over two exper-
imental setups: SD and SI respectively. Comparative analysis
of existing and Fit-Hand is tabulated in Table I. Specifically,
Fit-Hand achieved 15.9%, 8.6%, 16.8%, 18.2%, 15.8% and
14%, 11.2%, 23.8%, 12.4%, 8.8% more accuracy as compared
to DeepGestures and DeepConv HGR models over MUGD
dataset for part I-V in SD setup, respectively. Similarly, in SI
setup, Fit-Hand gained 13%, 4.2%, 2.8%, 12.3%, 18.7% and
12.3%, 10.2%, 4.9%, 15.3%, 9% more accuracy as compare to

Fig. 6. Different structures of FineFeat module for ablation study a)
FineFeat with concatenation (FineFeat_Cat), b) FineFeat with concatenation
and Sigmoid (fineFeat_CatSig), c¢) FineFeat with average (FineFeat_Avg) and
d) FineFeat with deep median (FineFeat_DpMed).

DeepGestures and DeepConv models for MUGD-I, MUGD-II,
MUGD-V, Finger Spelling and OUHANDS datasets. More-
over, performance of Fit-Hand in terms of F1-Score are
graphically demonstrated in Fig. 4. From the Table I and
Fig. 4 results it is clear that all HGR methods: proposed
as well as state-of-the-art generates high results in subject
dependent setup as compare to subject independent. Moreover,
the proposed FitHand outperformed the two-stage networks;
DeepHand, HandShape and DDaNet with 4.45%, 5.2% and
1.7% high accuracy over ASL finger spelling dataset. From
the results, it is validated that proposed framework is robust
to all kind of challenges presents in the HGR, which reflect
the efficacy of the model to real-life applications. Also from
the results, it is proven that subject independent validation
strategy is more significant as compare to subject dependent
to examined the performance of any CNN model. In addition
some methods like Inception V3, NasMobile and HandGes are
under-fitted and not suitable for small size datasets.

D. Qualitative Analysis

This section elaborates the effectiveness of Fit-Hand
through the visual representation of neurons. Fig. 5 depicted
response maps of two different gestures captured at first Conv
layer of ResNet-50, ResNet-Inc, MobileNet, MobileNet V2
and Fit-Hand. To represent the significance of all response
maps, we have calculated mean response for each network.
From the figure it is clear that Fit-Hand extracts more fine edge
variations and highlighted regions like figure lines, palm lines,



TABLE II
ABLATION RESULTS IN TERMS OF ACCURACY AND COMPLEXITY.Here,
Param, Acc, M, S and MB stands for parameters, accuracy, millions,
seconds and megabytes.

#Param | #Mem. .

Method Acc. (M) (MB) #Time (S)
Fit-Hand_WImp 61.7 0.5 33 1.08
Fit-Hand_WDil 60.9 1.4 11.9 2.32
Fit-Hand_WL 47.3 1.8 12.9 3.26

Fit-Hand_2Stack 51.7 1.0 6.5 .82

Fit-Hand_4Stack 62.0 34 27.1 5.07
Fit-Hand_Kul 61.7 1.8 12.9 2.75
FineFeat_Cat 57.9 1.6 13.3 2.58
FineFeat_CatSig 60.1 1.6 13.3 2.66
FineFeat_Avg 58.6 1.5 12.9 2.63
FineFeat_DpMed | 58.3 1.6 16.0 30.8
Fit-Hand 65.0 1.8 12.9 4.00

thumb articulates etc, which plays a significant role to define
distinctiveness between hand postures. From above, it is clear
that Fit-Hand has capability to preserve prominent features
of hand gestures. Therefore, we can conclude that Fit-Hand
has preserved more relevant feature responses to outperform
the existing CNN based networks ResNet50, Res-Net-Inc,
MobileNet and MobileNet V2 for different hand postures.

E. Ablation Study

In order to investigate the deep insights of Fit-HandeNet,
we have conducted ten more ablation experiments for detail
study as represented in Table II over OUHANDS Dataset.
This section fully explores the contribution of each mod-
ule (FineFeat module, dilation layer, L2-Normalization, loss
function and attention block) of the net-work in terms of
performance and network complexity. Specifically, to validate
the importance of FineFeat module and dilated layer in Fit-
Hand, we have evaluated results for Fit-Hand without FineFeat
module (Fit-Hand_WImp) and Fit-Hand without dilated layer
(Fit-Hand_WDil). From the Table II, it is clear that both
FineFeat module and dilated layer play a significant role in
Fit-Hand and improve the performance of the network. To
analyze the role of L2 normalization, results are evaluated by
dropping L2 normalization (Fit-Hand_WL). Evaluated results
in Table II, validated the effect of L2 normalization with high
performance.

To investigate that how three stacks of FineFeat modules
help to learn the adequate information in Fit-Hand, we have
performed two supplementary experiments with 2 FineFeat
module (2 stacked) and Fit-Hand with 4 FineFeat module
(4 Stacked). From the results tabulated in Table II, it is
concluded that, proposed Fit-Hand outperforms other dept
combinations of FineFeat module. Moreover, to validate the
effectiveness of cross-entropy loss function, we have computed
results for Fit-Hand by replacing cross-entropy by Kullback
Leibler Divergence Loss (Fit-Hand_Kul). Computed results
confirmed that cross-entropy loss function is most suitable for
hand gestures classification in Fit-Hand.

Furthermore, to examine the performance of attention
block, we have implemented four different FineFeat modules
by replacing pivot with a) concatenation (FineFeat_Cat), b)

TABLE III
COMPLEXITY ANALYSIS COMPARISON BETWEEN EXISTING AND
PROPOSED FIT-HAND NETWORK.Here, M, K, MB, KB and S represents
millions, thousands, megabytes, kilobytes and seconds, respectively.

Method #Param #Mem. #Time (S)
IncV3 [11] 22M 179.3MB 17.64
ResNet50 [12] 31M 208.4MB 18.17
DeepGestures [20] 10K 128KB 0.48
ResNetInc [13] 1M 40.5MB 60.93
Densel21 [14] 7.5M 61.3MB 24.34
Mobile [15] M 36.5MB 8.26
MobileV2 [16] 3.5M 24.4MB 15.26
NASMob [17] 4.7 41.7MB 45.65
HandGes [18] 16K 252KB 0.67
DeepConv [19] 1M 1.32MB 1.00
Fit-Hand 1.8M 12.9MB 4.00

concatenation with sigmoid (FineFeat_CatSig) , c) average
(FineFeat_Avg) and d) deep median (FineFeat_DpMed), as
shown in Fig. 6. From Table II, it is evident that proposed
FineFeat module with attention block outperforms all other
combinations of the FineFeat module.

F. Complexity Analysis

This section provides a comparative analysis of the com-
putational complexity between the existing and proposed
network. The total number of parameters, memory space
and testing time involved in each network are tabulated in
Table III. The proposed Fit-Hand has very lesser number of
parameters 1.8M as compared to other state-of-the-art models
like: Inception V3: 22M, ResNet50: 31M, ResNetlnception:
4M, DenseNet 121: 7.5M, MobileNet: 5M, MobileNet V2:
3.5M and NASNet Mobile: 4.7M. Moreover, Fit-Hand train-
able model captures smaller memory storage as compared
to others. Fit-Hand query response time is also very less as
compare to existing approaches. However, from the Table III,
it is also observable that complexity of some existing HGR
models [[19][20][18]] is less as compared to proposed Fit-
Hand. However, it is clear from Table I that, these approaches
are not providing generic solution as they failed to maintain
good performance for all datasets. Therefore, on the basis
of experimental and computational complexity results, we
conclude that the proposed FitHand framework is a portable
and generic solution for the different hand gestures.

V. CONCLUSION

We proposed an one for all: end-to-end compact solution
named as Fit-Hand: fine grained feature attentive network
for HGR, which is responsible to identify distinct classes of
hand gestures. Fit-Hand contains two main blocks: FineFeat
module and dilated Conv layer. FineFeat module conserves
features of minute as well as major edge variation regions and
further employ a attention block that has ability to fetch only
pertinent features. Similarly, dilated layer is incorporated to
capture global features. Further, Integrated layer added feature
map of both blocks and enhance the learnability of Fit-Hand.
Cohesively both layers allow Fit-Hand to learn the imperative
features of hand postures and define disparities between them.



Furthermore, variants of Fit-Hand were evaluated to verify the
effectiveness of proposed Fit-Hand.
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