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Abstract—Existing methods for distillation do not efficiently
utilize the training data. This work presents a novel approach
to perform distillation using only a subset of the training data,
making it more data-efficient. For this purpose, the training of
the teacher model is modified to include self-regulation wherein a
sample in the training set is used for updating model parameters
in the backward pass either if it is misclassified or the model is not
confident enough in its prediction. This modification restricts the
participation of samples, unlike the conventional training method.
The number of times a sample participates in the self-regulated
training process is a measure of its significance towards the
model’s knowledge. The significance values are used to weigh the
losses incurred on the corresponding samples in the distillation
process. This method is named significance-based distillation.
Two other methods are proposed for comparison where the
student model learns by distillation and incorporating self-
regulation as the teacher model, either utilizing the significance
information computed during the teacher’s training or not.
These methods are named hybrid and regulated distillations,
respectively. Experiments on benchmark datasets show that the
proposed methods achieve similar performance as other state-
of-the-art methods for knowledge distillation while utilizing a
significantly less number of samples.

I. INTRODUCTION

Deep learning models have shown remarkable performance
in several fields such as image classification [1], object detec-
tion [2], etc. However, deploying them on edge devices such as
mobile phones and an on-board computer is not feasible due to
their larger memory footprint. Therefore several methods have
been proposed in the literature to address model compression
without compromising generalization performance. Based on
their assumption about knowledge representation, the methods
can be divided into model compression-based methods [3]-[7]
and knowledge distillation based methods [8]-[11].

Model compression-based methods assume that knowledge
is contained in the model’s weights and reduce the redun-
dancies present in deep models. Neural network pruning
was introduced by LeCun in [12]. Various other methods
for compressing neural networks have been proposed in the
literature [3]-[7]. Model compression-based methods involve
iterative pruning and fine-tuning of networks and are often
time-consuming processes.

On the other hand, knowledge distillation based methods
assume that the knowledge of a model is captured in its inter-
mediate activations and outputs. Hence, smaller models known
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as students receive supervision from larger models called
teachers and the ground truths. The probabilities assigned by
the teacher to the incorrect classes constitute *dark knowledge,’
and it has been shown to improve the generalization ability of
student models [8]. Based on the type of knowledge being
transferred, knowledge distillation methods fall into one of
two families - response-based and feature-based. Response
based methods [8]-[11] transfer the knowledge from the
teacher to the student by matching the outputs of their last
layers, whereas feature-based methods [13]-[15] supervise
the students by matching the activations of the intermediate
layers of the teacher and the student models. The original
training data is used to perform distillation in [8]. Methods to
construct synthetic samples for distillation are proposed in [9]-
[11], [16]. These methods are based on the conventional way
of training models where all the samples participate equally
in learning the input-output mapping. Due to their inability
to discriminate between samples based on their importance
towards learning, these methods are very inefficient in terms
of data usage and require large amounts of data.

However, in machine learning literature, it has been shown
that metacognitive neural network acheieve better generaliza-
tion by employing self-regulation to select appropriate training
samples for learning from stream-of-training data [17]-[19].
The heuristic strategies help in accounting for the different
levels of knowledge present in different samples resulting in
improved overall generalization and data-efficiency.

This work address the data-efficiency issue of current state-
of-the-art distillation methods by employing self-regulation.
The teacher network uses an adaptive threshold to maximize
the inter-class posterior probability difference during training.
In this process, the samples on which it learns faster get
filtered out from further training. The participation of each
sample in training is monitored and is used to compute its
significance value, which is a measure of its contribution to
the teacher model’s knowledge. During knowledge transfer, the
student model’s learning is driven by applying the computed
sample significance information (sample significance based
distillation), or by self-regulation alone (regulated distillation),
or by a combination of both (hybrid distillation). The proposed
methods (summarized in Figure 1) are data-efficient as they
utilize significantly fewer training samples than other methods



for knowledge distillation. The proposed distillation methods
are evaluated on three benchmark data sets - MNIST, Fashion-
MNIST, and CIFAR10. The results establish the data efficacy
of the proposed distillation methods and their competitive
performance with current state-of-the-art results reported in
the literature.

The main contributions of the work is summarized below:

o For the first time in distillation literature, the data-
efficiency issue is addressed.

o Self-regulation is proposed as a technique to improve
data-efficiency as it accounts for the different levels of
knowledge present in different samples.

o Three types of data-efficient approaches for knowledge
transfer are proposed - sample significance based, regu-
lated and hybrid. In sample significance based distillation,
the significance information computed during teacher
training is used to guide the student model’s learning.
In regulated distillation, the student model employs self-
regulation to learn from the soft targets produced by the
teacher. In the hybrid strategy, both the above mecha-
nisms are combined to guide the student.

o The proposed distillation schemes are evaluated on the
benchmark datasets - MNIST, Fashion-MNIST, and CI-
FAR10. The proposed methods achieve similar or slightly
better generalization performance than the current state-
of-the-art distillation methods while utilizing much less
data samples in the process.

II. RELATED WORKS

The idea of distillation was proposed in [20] and gained mo-
mentum in [8]. The student model is found to generalize better
if supervised by the soft targets obtained at a high temperature
from a bigger teacher model instead of the conventional way of
training. This provides an easy method for transferring most of
the generalization capacity of larger models to smaller models.
Research in distillation is motivated by this observation. Apart
from model compression, distillation has been successfully
used in other applications as well. Recently, distillation has
been applied in face recognition [21], cross-modal hashing
[22] and collaborative learning [23]. Several methods have
been proposed for distillation and, a comprehensive review
is provided in [24].

A. Knowledge Distillation

The idea of knowledge distillation was popularised by
Hinton in [8]. It proposed to use the original training data
as the transfer set for distillation. In addition to learning from
the ground truths, the student also receives supervision from
the teacher model in the form of soft targets computed at
a high softmax temperature. Subsequently, [9], [11], [16]
proposed methods for knowledge transfer wherein the transfer
set was not available. The softmax space of the teacher
network is modeled by Dirichlet distribution in [9]. Synthetic
data instances are constructed by inverting samples drawn
from this distribution. Using the teacher model as a fixed
discriminator to train a generator for constructing synthetic

samples is proposed in [11]. Constructing synthetic samples
from the activation statistics of the teacher model’s training is
proposed in [16]. The process of distillation is the same as
in [8].

The feature extraction process in students is supervised by
the activations of the intermediate layers of a teacher model
in [13]. In case the output sizes of the layers involved in
the transfer process do not match, a learnable convolutional
regressor network is used to match the sizes. Transfer of
activations of hidden neurons rather than their actual response
values is proposed in [14]. It is shown that the generalization
ability is better encoded by the decision boundaries formed by
the hidden neurons rather than the actual response magnitudes.
Knowledge is transferred from the teacher model to the student
model by matching different types of attentions in [15]. These
are computed at certain layers for the teacher and student
models and are matched by minimizing the L, norm of their
difference.

A method for self-distillation is proposed in [25] wherein
the teacher and the student models are the same. The model
from the previous epoch is used as the teacher. The proposed
work is different from self-distillation methods as teacher
and student models are different networks of different sizes.
Hence, self-distillation methods are not used as baselines for
comparison.

B. Self Regulation

In the conventional deep neural network training and knowl-
edge distillation methods, all the training samples participate
equally in capturing the input-output relationship. However, in
machine learning literature, it has been shown that regulating
the sample participation during training can lead to better
generalization [17]-[19]. The conventional method for training
disregards the relative importance of each sample in the dataset
towards the knowledge of the model. Different samples contain
different levels of knowledge. For example, some portions of
a book are easier to grasp than others. The reader spends more
time on those portions that he finds difficult and less on those
portions that he finds easy. Self-regulation emulates this aspect
of human learning in neural network training. In this way, the
self-regulated learning process is much more efficient in terms
of data usage than the conventional training method.

III. METHODS

In this section, the underlying mathematical and algorithmic
details of the proposed data efficient knowledge distillation
methods are described.

A. Self-Regulated Training and Sample Significance Compu-
tation

1) Self-Regulated Teacher Training: Training is made more
data-efficient by controlling the participation of samples on
which the model is able to learn faster.

While employing self regulation, the model need not learn
on a sample again if it is already too confident on it. So the
model is able to distinguish between easy and hard samples
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Fig. 1. Summary of proposed data-efficient knowledge distillation methods.
In sample significance based distillation, the sample significance information
computed during teacher training is used to guide the student model. In
regulated distillation, the student model learns in the same way as in the
conventional distillation method while using self-regulation. In the hybrid
method, the student employs self-regulation as well as the sample significance
information for learning.

based on an epoch dependent threshold and discards the easy
samples from the process. In this way, the model learns to
focus more on the difficult samples (which contribute more to
its knowledge) than easy ones. The self regulation process is
explained below.

Given a dataset D containing labeled samples (z,y) and
a model M, the following quantities are monitored for all
samples in all epochs (N):

o The predicted label, §:
g = argmax M(x)

e The difference between the maximum and the second
maximum predicted probabilities, §:
0 = max M(z) — max{s|s € M(z), s # maxM(z)}

As the model learns to classify properly, the difference §
gradually increases with the number of epochs n. A sample
is included used in the backward pass for parameter updates
if the predicted class is incorrect or if 4 is less than an epoch
dependent adaptive threshold, n. § will increase faster for
easy samples compared to difficult samples. The purpose of
the epoch dependent threshold function f(n) is to filter out
such samples from further training. Since § is the difference
between the maximum and the second maximum probabilities,
it is in the range [0, 1]. So the function f(n) : N — [0, 1] must
be an increasing function of n. So f(n) = 1 — exp(—an) is
chosen as threshold predictor, where « is a hyperparameter. It
maximizes the difference in the predicted posterior probabil-
ities by allowing samples with a smaller growth rate of J to
participate more in training. Figure 2 summarizes the method.

2) Computation of Sample Significance: As explained ear-
lier, all the samples in the dataset will not contribute equally
to the knowledge of the model. The training process must
distinguish samples accordingly to enhance generalization
ability of the model. Self-regulation introduced in the previous
subsection is a method of doing this. In the conventional train-
ing scheme, all the samples present in the dataset D participate

not included in
training

n=f(n) =1— exp(—an)
n=0,1,2,...,N-1

use for parameter
update in backward
pass

network
(forward pass)

Fig. 2. Self Regulated Training Algorithm: A sample is used for parameter
update in the backward pass if it is predicted incorrectly by the model, or
if the difference between the maximum and the second maximum predicted
probabilities (J) is less than an epoch dependent threshold (7).

equally. That is, if the model is trained for N epochs, then each
sample participates exactly /N times in the training. However,
with self-regulation, each sample participates < N times in
the process, with the difficult ones participating more often
than the easy ones. In such a scheme, the number of times a
sample participates in the training process can be seen as a
measure of its contribution to the knowledge of the model.

The significance of a sample is defined its class-wise min-
max normalized participation. It is a number between O and
1. Let the significance of a sample be denoted by © and the
number of times it participates in the training be v. Let S;
denote the subset of samples in the dataset D that belong to
the class ¢ out of a total of C' classes. That is,

S; ={z|(z,y) €D, and y =14, i € {0,1,...,C = 1}} (1)
For a given sample (z,y), the significance ¢ is defined by:

v — Mingeg, v

2

v maxzegs, v — Milgeg, v

The sample significance information v is computed after
the self-regulated training of the teacher model as it requires
the sample participation data v that is recorded during the
teacher’s training. It serves as a measure of the importance
of the sample to the teacher’s knowledge and is used during
distillation to transfer the different levels of knowledge present
in the different samples. The self regulated teacher training and
the sample significance computation processes are described
in algorithms 1 and 2, respectively.

B. Data Efficient Distillation Methods

1) Sample Significance Based Knowledge Distillation: In
conventional knowledge distillation, the soft targets computed
from the teacher model at a temperature 7 are used. Given a
teacher network 7" parametrized by 67 and a student network
S parametrized by 6g, distillation minimizes the following
objective over all samples (z,y) in the transfer set D:

L= Z LKD(S(SU,95,T>7T(.Z',9T7T)>+>\LCE(:&S,Q)
(z,y)€ED

3
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Algorithm 1 Teacher model training with self-regulation

Input Teacher network T, with parameters 61 (without output
softmax), dataset D = {(z;,v;)}!_;, epochs N, parameter «
for self-regulation

QOutput Parameters of trained Teacher network 67, array of
sample participations v, size of v is same as |[D| = ¢

1: Initialize participations v
2: for k in range(t) do
3 vl[k]=0
4: end for
5: Train teacher and record participations
6: for n in range(N): do
7. n=1—exp(an)
8. for j, (z,y) € enumerate(D): do
9: zr = T(x)
10: yr = softmax(zr)
11: 7 = arg max yr
12: compute § from yp
13: if y #y or (y ==y and § < n): then
14: L= LCE(y, ZJT)
15: update teacher’s parameters: 0/, = 0p — Vg, L
16: 0r = 9/T
17: vjjl=v[j]+1
18: else
19: continue
20: end if
21:  end for
22: end for

23: return O, v

Algorithm 2 Computation of Sample Significance

Input Sample Participation Statistics recorded during teacher
training v, The Dataset D = {(z;,y;)};_, for which the
participation is recorded. Dataset D has a total of C' classes
labeled as 0,1,...,C — 1.

QOutput Sample significance vector V. The sizes of ¥, v and
D are the same.

1: for ¢ in range(t) do

% (z,y) = D[i

3 v =vli

4:  compute v from equation (2)
5. V[i]=10

6: end for

7: return v

where, L p is the distillation loss which is minimized
at a temperature 7. It can be the cross entropy loss for
classification or the Ly loss for regression. Lo is the cross
entropy loss which is minimized at a temperature of 1. gg is
the prediction of the student network on the sample = and A
is a hyperparameter to balance the two losses.

In sample significance based distillation, the sample signifi-
cance information computed above is used to direct the student
model’s learning along with the soft targets. The loss function
thus becomes sample specific and accounts for the different
levels of knowledge to be transferred from the teacher model
for the different samples in the dataset. The loss incurred on
each sample is scaled by its significance computed during
teacher training. For sample significance based distillation, the
sample significance © is also included as a part of the dataset.
The loss function is given by:

Lnew = Z @LKD(S(Z‘veSvT)aT(xyHTaT))+
(z,y,0)€D

MLcg(fs,y) 4

In this distillation process, the student receives maximum
guidance from the teacher - in the form of soft targets and the
sample significance information. As the teacher model is of
larger capacity than the student model, it is expected that the
samples which were difficult for the teacher will be difficult
for the student model as well. So the student must put more
focus on such samples during the knowledge transfer process.

2) Regulated Knowledge Distillation: The student model is
trained by using the self-regulation strategy proposed in the
first subsection but it does not use the sample significance in-
formation. In this scheme, the student model is given freedom
to discriminate between the samples on its own through self-
regulation just like the teacher model. The student model may
find a different set of easy and difficult samples compared to
the teacher model. The teacher is used to supervise the student
through soft targets just like in conventional distillation [8].

3) Hybrid Knowledge Distillation: The student model is
trained by using the sample significance information as well as
by using the proposed self-regulation strategy. In this scheme,
two effects are taking place simultaneously. The student model
is trying to learn independently through self-regulation and
at the same time it receives additional guidance in the form
of sample significance information to focus more on the
samples that the teacher model found tough during its training.
Algorithm 3 shows the implementation of these distillation
methods. The distillation methods are summarized in Figure
1.

IV. EXPERIMENTS

This section describes the implementation of the proposed
algorithms. The generalization performance and sample effi-
ciency of the proposed methods are evaluated. The MNIST,
FashionMNIST, and the CIFAR10 datasets are used for the
experiments. The batch size is set to 512, the distillation
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Algorithm 3 Distillation Algorithms

Input Pre-trained Teacher network 7', Student network
S with parameters g (without output softmax), dataset
D = {(x;,y:) }i_;, epochs N, parameter « for self-regulation,
temperature 7 for distillation, hyperparameter A, distillation
mode - significance, regulated, hybrid, sample significance
information (in case of significance based distillation) ¥
Output Parameters of trained Student network 6g

1: for n in range(V): do

22 n=1—exp(an)

3. for j, (x,y) € enumerate(D): do

4 zr, zs = T(x), S(x)

5: yr, Yys = softmax(zp/7), softmax(zs/T)
6: ys = softmax(zs)

7 7 = arg max ys

8 compute § from yg

9

o o=9[j]
10: if mode == regulated: then
11: if § # y or (y ==y and J < n): then
12: L= Lkp(yr,ys) + ALce(y,ys)
13: update student’s parameters:

0y =05 — VoL
14: 93 = 9{3
15: else
16: continue
17: end if
18: end if
19: if mode == significance: then
20: L =9Lkp(yr,ys) + XLce(y,ys)
21: update student’s parameters:
s =05 — VgL
22: 0s =0
23: end if
24: if mode == hybrid: then
25: if § # y or (y ==y and J < n): then
26: L =9Lkp(yr,ys) + MLcEe(y, ys)
27: update student’s parameters:
s =05 — VgL

28: Os = 0%
29: else
30: continue
31 end if
32 end if
33:  end for
34: end for

35: return fg

TABLE I
TEST ACCURACY OF TEACHER MODEL TRAINED USING SELF REGULATION
FOR DIFFERENT VALUES OF a.

o MNIST | FMNIST | CIFAR10
0.006 0.9899 0.9016 0.8273
0.008 0.9911 0.8994 0.8313
0.01 0.9912 0.9006 0.8301
0.02 0.9897 0.9045 0.8281
0.04 0.9902 0.9042 0.8310
0.08 0.9903 0.9018 0.8272
iy 0.9914 0.8992 0.8325
(normal)
TABLE II
DETAILS OF DATASETS AND OTHER HYPERPARAMETERS
MNIST FMNIST CIFAR10
Training Set Size 60000 60000 50000
Testing Set Size 10000 10000 10000
Sample Details 28x28 28x28 32)}32
grayscale grayscale RGB images
LeNet-5 [27] LeNet-5 [27] AlexNet [1]

Teacher model (~62K params)

LeNet-5 Half
(~36K params)

(~62K params)
LeNet-5 Half
(~36K params)

(~1.66M params)
AlexNet Half

Student model (~0.4M params)

Epochs 200 200 1000
Teacher LR 0.001 0.001 0.001
Distillation LR 0.01 0.01 0.001
o 0.02 0.04 0.04

temperature 7 is set to 20, the normal temperature is set to
1, the hyperparameter \ is set to 0.3. The Adam optimizer
[26] is used to train the models. Models are evaluated at the
normal temperature. The algorithms are evaluated based on
their accuracy on the test set. All implementations are done
in pytorch. Two NVIDIA GeForce RTX 2080Ti cards are
used for the experiments. The following sections describe the
experiments and the results.

A. Self-Regulated Teacher Training and Data Efficient Distil-
lations

1) Training Teacher Model with Self-Regulation: First, the
teacher models are trained. The results are shown in Table
1. Conventionally training the models is equivalent to setting
a = oo in algorithm 1. It is observed that the self-regulated
training performs comparably to the conventional method of
training for MNIST and CIFARI10 datasets. In the Fashion-
MNIST case, it performs better than the conventional training
method for all values of o considered.

2) Distillation Results: The details of the datasets, the
teacher and student model sizes and some of the hyperpa-
rameters are shown in table 2. The number of epochs is kept
the same across teacher training and distillation processes.

Tables 3-5 compare the test accuracies of the proposed
methods against those of other response-based knowledge
distillation methods available in the literature for the MNIST,
Fashion-MNIST, and CIFAR10 datasets.

On simpler datasets such as MNIST, there isn’t much
difference in performance across the distillation methods. On
more realistic datasets like CIFAR10, hybrid distillation might
perform slightly better than others. Regulated and hybrid
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TABLE III
RESULTS ON THE MNIST DATASET

Method Test Accuracy
Conventional [8] 0.9925
Few Shot KD [10] | 0.8670
Meta Data [16] 0.9247
Data Free KD [11] | 0.9820
Zero Shot KD [9] 0.9877
Ours

Significance based | 0.9870
Regulated 0.9859
Hybrid 0.9804

TABLE IV

RESULTS ON THE FASHIONMNIST DATASET

Method Test Accuracy
Conventional [8] 0.8966

Few Shot KD [10] | 0.7250

Zero Shot KD [9] 0.7962

Ours

Significance based | 0.8737
Regulated 0.8892

Hybrid 0.8642

distillations are expected to perform better on realistic sce-
narios because the student model is given the freedom to
discriminate between the samples from the dataset through
self-regulation. In this way, it can learn in a better way. The
proposed methods perform better than most of the state-of-the-
art methods (Tables 3-5). However, [8] performs better than
the proposed methods because it uses all the samples available
in the dataset. The advantage of the proposed methods is that
they do not use all the samples. They are highly efficient in
terms of data usage, as explained in the next section.

B. Evaluation of Sample Efficiency

To establish the data efficiency of the proposed self-
regulated training method, the sample significance ¥ extracted
during teacher training is visualized as a histogram for each
class. Figures 3-5 show these. These numbers are used as
weights in the ’significance based distillation’ and the “hybrid
distillation” processes.

Most samples are insignificant towards learning as indicated
by the large frequency bars in the 0.0-0.25 bin on each plot.
This is because the teacher model learns fast on these samples,
so they participate less often in training. For the Fashion-
MNIST dataset, classes 0, 2, 4, and 6 have a similar shape
of the sample significance histograms. These class indices
correspond to T-Shirt, Coat, Pullover, and Shirt classes. Since

TABLE V
RESULTS ON THE CIFAR10 DATASET

Method Test Accuracy
Conventional [8] 0.8008

Zero Shot KD [9] 0.6956

Ours

Significance based | 0.7079
Regulated 0.7234

Hybrid 0.7266

TABLE VI

SAMPLE EFFICIENCY ¢ OF PROPOSED DISTILLATIONS.

Dataset Regulated Distillation | Hybrid Distillation
e T S 1
FMNIST (1 zfili?sﬁjé %)ooooo (239167?276273?00000
CIFAR10 ?5593.?33%)000000 ?2%5;]6;1(/73;)000000

these objects have similar appearances, the model needs to see
them more often to be able to classify them properly.
Mathematically, the sample efficiency ( is defined as:

Sl vl
Nt

&)

where v is the array of sample participations used in
Algorithms 1 and 2.

Since the ’significance based distillation’ process is similar
to the conventional distillation process [8], its data efficiency is
not evaluated. The total sample participation across all epochs
for the ’regulated distillation’ and the ’hybrid distillation’
processes are reported. It is also reported as a percentage of all
samples available for distillation across all epochs. This helps
to compare the data efficiency of the proposed methods relative
to the conventional distillation process [8]. The results are
tabulated in Table 6. The first number denotes the total sample
participation in the distillation process across all epochs. The
second number denotes all the samples available for distillation
across all epochs. The number in the parentheses is the first
number expressed as a percentage of the second number. For
example, the total sample participation across all epochs is
85528 for the MNIST dataset in the ’regulated distillation’
process. However, distillation is performed for 200 epochs and
60000 samples are available for it in every epoch, making a
total of 12000000 samples. This would be the total sample
participation across all epochs for a normal distillation process
[8]. So, 85528 is reported as a percentage of 12000000. This
is the sample efficiency (.

Sample participation is relatively higher for the hybrid
method. This is because the student model learns through self-
regulation while using the sample significance data (0, used
as weights) obtained during teacher training.

In addition to being data-efficient, the proposed methods
perform comparable to other state-of-the-art data-free methods
(as shown in Tables 3-5) for distillation. The original training
data is used as the transfer set and the sample participation
shows that the proposed methods use much less data (<
20%) for distillation and training in general while achieving
similar or better performance compared to other state-of-the-
art methods.

V. CONCLUSIONS

Data efficiency is a significant drawback of the existing
distillation methods. Data efficiency improves by incorporating
self-regulation in the training process. With self-regulated
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Fig. 3. MNIST: Classwise sample significance extracted during teacher training with self regulation at o = 0.02. x axis denotes the sample significance ©

and y axis denotes the frequency.
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and y axis denotes the frequency.
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training, models can achieve similar generalization levels as
if they were trained conventionally, with fewer samples. This
finding shows that all the samples present in the training set
are not equally important towards learning. This modification
also improves the distillation performance in general as student
models reach similar or better levels of generalization as
other state-of-the-art methods, with fewer samples. The signif-
icance values obtained from the teacher model’s self-regulated
training help the students to generalize better. Regulated and
hybrid variants of distillation are better suited to the knowledge
transfer process in more realistic scenarios as the student
has the freedom to learn on its own through self-regulation.
Experiments on benchmark datasets establish the data efficacy
of the proposed distillation methods (these use < 20% of
the training data during distillation) and their competitive
performance with other state-of-the-art distillation methods.
The proposed methods do not indicate the minimum num-
ber of samples sufficient for transferring a certain level of
generalization ability from the teacher to the student. In this
direction, more studies will be conducted to determine how
many samples from the training set are sufficient to represent
the knowledge of a network to a given extent. Furthermore,
the extension of the self-regulation approach to generative
models will also be explored so that significant samples
can be constructed from a given pre-trained model. This
will make the proposed approaches data-free by constructing
significant samples in a zero-shot fashion. The sensitivity of
the significance values to the order in which the samples are
presented for training will also be investigated. Finally, instead
of employing a heuristic function to implement self-regulation,
another network can be used to identify the significant samples
along with the training process in an end-to-end manner.
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