
MAIN: Multihead-Attention Imputation Networks
Spyridon Mouselinos∗, Kyriakos Polymenakos∗†, Antonis Nikitakis∗, Konstantinos Kyriakopoulos∗‡

{s.mouselinos, k.polymenakos, a.nikitakis, k.kyriakopoulos}@deepsea.ai
∗DeepSea Technologies, Athens, Greece

† University of Oxford, Department of Engineering Science
‡ University of Cambridge, Department of Engineering

Abstract—The problem of missing data, usually absent in
curated and competition-standard datasets, is an unfortunate
reality for most machine learning models used in industry
applications. Recent work has focused on understanding the
nature and the negative effects of such phenomena, while devising
solutions for optimal imputation of the missing data, using
both discriminative and generative approaches. We propose a
novel mechanism based on multi-head attention which can be
applied effortlessly in any model and achieves better downstream
performance without the introduction of the full dataset in any
part of the modeling pipeline. Our method inductively models
patterns of missingness in the input data in order to increase the
performance of the downstream task. Finally, after evaluating
our method against baselines for a number of datasets, we found
performance gains that tend to be larger in scenarios of high
missingness.

Index Terms—Imputation, Attention, Deep Learning, Encoding

I. INTRODUCTION

Corrupted or missing data often raise the following questions:
If the missing values are imputed, what value is to be
used for "padding"? What is the underlying relation with
the normalization scheme of the input values? How should
categorical inputs be treated? Popular approaches include
replacing the missing values with their mean, in the case
of continuous variables, or the median, in the case of discrete
variables. Other approaches introduce a binary indicator of
missingness that is jointly trained with the rest of the model
parameters.

The simplest, although widely used, method is mean/mode
impute, where missing numerical values are replaced by their
mean (0 in the Zeta Normalized Scale) and categorical values
are replaced by their mode (the most frequent class of the
dataset). One disadvantage of mean/mode impute is that it
can introduce ambiguity: variables that take values close to
the mean or mode, might not be distinguished from variables
whose missing values were imputed with the value of the
mean or median. To resolve this ambiguity, a bitwise indicator
(also referred to as mask) was introduced, that assigns 1 to
missing instances and 0 to non-missing instances. For simplicity,
we refer to this method as Zero Impute (with) Mask Concat
(ZIMC).

A straightforward extension to ZIMC is Sparsity Normaliza-
tion (SN), which creates a per-example (horizontal) scaling by
a constant factor [1], based on the global missingness factor.
This method resolves the Variable Sparsity Problem, but fails

to capture the dependencies in-between the features. In more
detail, no adjustment is made based on what feature is missing
and the values the existing features have.

Since the problem of missing data naturally defines a context
of missing information we are inspired from feature-wise
transformations [2] as methods of context-based processing.
More specifically the Feature Wise Linear Modulation (FiLM),
naturally augments the idea of SN [1] (SN) since it can be seen
as a conditional scaling method. In order to efficiently capture
the missing context we combine both the feature vector (i.e
values) as well as the bitwise missingness indicator mask into
contextual embeddings. In this regard, our method is capable of
producing independent scaling coefficients for each individual
feature, surpassing the SN method on various datasets and
thus confirms that vertical (per-feature) conditioned imputation
surpasses horizontal (per-instance) methods. Furthermore, we
extend the attention mechanism of AimNet [3] into one that
uses a richer key-value embedding representation, capable
of encapsulating position, missingness and value information.
On the contrary, in AimNet, only the missingness context is
captured. That enables our model to continuously improve
the embedding representations with both existing and missing
features.

Our approach, Multihead-Attention Imputation Networks
(MAIN), builds on FiLM as it creates multiple coefficients
for each feature (multiple vertical imputation), based on the
attention mechanism. In this modeling scenario, we create N
sets of N coefficients where N is the number of input features,
with each set representing a conditioned modulation of a feature
based on the value and existence of all features. This learnable
combination mechanism captures both global feature-value and
feature existence effects.

Briefly our method extends the SN method of Yi et al. [1]
in two ways:

1) learning a different weight coefficient for each individual
feature - instead of the whole feature vector, thus dis-
missing the concept of linear covariation as proposed in
SN[1].

2) conditioning the coefficients not only on the existence
vector of the input features but also on their observed
values.

. Also our attention mechanism differs from [3] as we use
multi-head attention and we build embeddings with both the
value and the missing context of all the features.

ar
X

iv
:2

10
2.

05
42

8v
1

 [
cs

.L
G

]
 1

0
Fe

b
20

21

II. RELATED WORK

Imputation methods are often classified as discriminative
and generative, based on the formulation of the missingness
modeling mechanism. In discriminative modeling, missing
features are approximated directly through their conditional
distributions, given the values of the existing features. On the
contrary, in generative modeling, missing features are often
imputed in a two-step fashion: initially, the underlying joint
distribution of all features is modeled, followed by a second
step of conditionally generating the missing features from the
existing information in the feature vector.

Discriminative methods depend on certain assumptions about
the missingness mechanism. Specifically, the data must conform
to the Missing Completely At Random (MCAR) or - at a modest
degree - Missing At Random (MAR) assumption [4, 5]. For
MCAR, the probability of an entry missing is independent
from the values of the other features, while for MAR, that
probability depends on the values of the other features. In both
cases, the probability of a feature missing is assumed to be
independent from the value of that feature.

Generative models focus on the joint probability distribution
of the data instead of the conditional [6, 7]. In [6] the
authors deal with problem of missing data with the use
of deep latent variable models (DLVMs). Their approach
is based on an importance-weighted autoencoder (IWAE)
which maximises a potentially tight lower bound of the log-
likelihood of the observed data. In [7] the authors propose
a general framework implementing VAEs to fit incomplete
heterogenous data. Generative models in general are more
flexible and can effectively capture multimodal distributions,
while discriminative models rely on point estimates. The extra
flexibility of the generative approach allows these models to
deal with strongly MAR scenarios, as well as cases where
the probability of a feature missing is dependent on the value
of that feature (Missing Not At Random, or MNAR). On the
other hand they are difficult to train and specifically, GANs can
suffer from slow convergence and mode collapse problems.

It should be pointed that, joint modeling may excel in sce-
narios where the underlying connections between features are
of spatial and/or auto-regressive nature (e.g image completion)
[5, 8, 9], but in case of tabular data this can be equally
approached by (multiple) conditional modeling, since there
is not such a variety of modalities that can only be approached
by manifold walks.

Furthermore, when the final objective is to build a predictive
task based on specific input (e.g regression, classification) the
flexibility that generative modeling provides is unfit for time-
critical applications. In a scenario of new incoming information,
a generative model will act in a "two-step fashion". Firstly,
it will impute the missing data producing a complete feature
vector and as a second step will apply an auxiliary or different
architecture/model on the downstream task. Discriminative
methods on the other hand can operate both in single and
two-step fashion.

The work by Yi et al. [1] gave an in-depth insight to the first

two questions about data imputation, and re-introduced us with
the phenomenon of Variable Sparsity Problem (VSP), while
making significant progress towards the “one-step” approach.
The VSP problem stresses an undesired phenomenon where
the model’s performance drops as its output significantly varies
due to the rate of missingness in the given input also identified
in [10]. The solution proposed by Yi et al. [1], named Sparsity
Normalization (SN), seems to give a significant boost in the
reconstruction capabilities of existing networks, while also
increasing the robustness of a model’s downstream task when
dealing with missing inputs.

In this work, we opt for a discriminative modeling schema,
supporting the paradigm shift towards “one-step” methods, and
study the effect of query-key-value attention performed in a
multi-head fashion. We propose a custom key representation
encoding, called Positional Encoded Vector (PEV). We show
that even in heavily corrupted data our model incorporates
the best attributes of discriminative and generative modeling,
being an one-step method that is valid for both numeric
and categorical inputs. The contribution of this work can be
summarized around 4 key ideas:

1) Due to its main application in real-time industrial sce-
narios, this work focuses on the performance gains of
the downstream task(s), in contrast with other works that
seem to sacrifice performance in favour of reconstruction
of the full feature vector.

2) We show that our method has the best of both worlds
between discriminative and generative methods as far as
the downstream task performance is concerned. It can
handle both MCAR and MAR assumptions while not
suffering from the limitation of training with complete vec-
tors, that some discriminative and generative approaches
silently imply. After testing its performance against 7
Datasets it shows consistent performance margin, as well
as convergence without any instability issues.

3) We achieve a single-step, missingness-agnostic behaviour:
our scheme can train on missing data directly, exploiting
all the examples (including partially missing ones), and
test on a different set never seen by the model, with com-
pletely untreated data (including missing features). This
is not the case in autoencoder-based (i.e reconstruction)
schemes like AimNet or generative methods [11], where
the model can train only on complete data where the
missingness/reconstruction is artificially induced.

4) The PEV-based attention mechanism models both the
missingness and the value of each individual feature in
relation to the other features on the raw data distribution.
AimNet [3] models only the missing context in a missing-
induced distribution, while in VSP [1] the feature vector
is regularized horizontally, not taking into account each
feature’s individual variation.

III. PROBLEM FORMULATION

A. Preliminaries
Following the formulation of VSP [1], let x ∈ Rl and

y ∈ Rd represent a training input/output pair instance of a

model with D tasks. Without loss of generality we will set
|D| = 1 for the rest of our analysis.

To formulate missingness, we introduce m ∈ {0, 1}l, as
the binary mask indicating missing values in x. Hence, we
define xmiss = x�m, where � denotes the Hadamard product
(element-wise multiplication) of two vectors, as the corrupted
input the model observes after the effect of the missingness
mechanism. Finally, for the model let’s assume a N -layer feed
forward network, with convex, non-decreasing non-linearities
σ in each layer but the last. Each layer i contains ni units, and
we use Wi ∈ Rni×ni−1 to denote the weight matrix, bi ∈ Rni

to denote the bias, and hi ∈ Rni for the post-activation output
vector. The calculation executed at each layer can then be
written as hi = σi(Wihi−1 + bi).1

B. Modeling Assumptions

Our method works under the following two assumptions:

1) Each element mk of the binary mask m is MAR, meaning
it may not depend on the other mask elements or the value
of the element xk, but it does depend on the values of the
original input vector xi, i 6= k, as described in [4]. We
will denote the means of the mask vector as µm and the
means of the input vector as µmissing.

2) The coordinates of bi and the elements of Wi are mutually
independent and follow the same distribution with means
µi
b and µi

w respectively, as in [1, 12, 13].

C. Methods

Theorem 1. The expected value of the output layer of
an N-Layer FFN with l-dimensional input and convex, non-
decreasing, non-linearities under the MCAR assumption is
bounded by: E[hN] ≥ fN ◦ fN−1 ◦ · · · ◦ f1(µmµx), where
fi(x) = σ(Wi · xi−1 + bi).

Proof of 1. Proof is result of [1].
In Theorem 2 we extend the result of Theorem, for the more

general MAR case.

Theorem 2. The expected value of the first layer of an
N-Layer FFN of Theorem 1, under the MAR assumption, is
bounded by: E[h1] ≥ σ(n0µ1

wµmµx + µ1
b) + T1, where T1 =

σ(n0µ
1
wCov(x

1,m1)).

Proof of 2. For the output activation vector of the first layer
h1 it holds that:
h1 = σ(W1 × xmissing + b) = σ(W1 × x�m+ b).

Then, by taking the expected value of both sides:
E[h1] = E[σ(W1 × x�m+ b)],

And due to non-decreasing convexity of σ:
E[h1] ≥ σ(E[W1 × x�m+ b]).

1Throughout the paper we use uppercase and bold notation for matrices,
lower and bold notation for vectors and lower and italic notation for elements.
Superscripts without parentheses as hi are used to denote a quantity at layer
i, and superscripts in parentheses, as h(i) to denote the ith element of h.

For the second part of the inequality it holds that:
σ(E[W1 × x �m + b]) = σ(E[W1] × E[x �m] + E[b]]),
based on assumption 2.

Focusing on elements of E[x�m] we have that:

E[x�m] = [E[x(1)m(1)], . . . , E[x(n0)m(n0)]]T =

= [µ(1)
m µ(1)

x + cov(x(1),m(1)), . . .

. . . , µ(n0)
m µ(n0)

x + cov(x(n0),m(n0))]T

where x(i),m(i) refers to the ith component of the vector x
and m respectively.

For the conditional probabilities p(xi|mi), and p(xi) we
have under:

MCAR: p(xi|mi, x1, . . . xi−1, xi+1, . . . , xl) =

p(xi|mi) = p(xi)

MAR: p(xi|x1, . . . , xi−1, xi+1, . . . , xl) =

p(xi|mi, x1, . . . , xi−1, xi+1, . . . , xl)

but

p(xi|mi) 6= p(xi)

Recall that under the MCAR assumption cov(x(i),m(i)) = 0,
as x,m are independent. Under the MAR assumption we
are working with, x(i),m(i) are conditionally independent,
conditioned on the values of the rest of the features x(j), i 6= j,
and in this case cov(x(i),m(i)) is not necessarily 0.

In that fashion the elementwise calculations lead to:

σ(E[W1]× E[x�m] + E[b]) = σ(E[w(1), . . . ,w(n1)]

[µ(1)
m µ(1)

x + cov(x(1),m(1)), . . . , µ(n0)
m µ(n0)

x +

+ cov(x(n0),m(n0))]T + E[b(1), . . . , b(n0)])

Finally for elements i, j with j = 0, . . . , n0 and w(i) ∈ Rn0 :

σ(E[(w(i))(µ(j)
m µ(j)

x + cov(x(j),m(j))) + E[b(j)])

≥ σ(n0µ1
wµmµx + µ1

b) + σ(n0µ
1
wcov(x

(j),m(j)))

Now let T1 = σ(n0µ
1
wCov(x

1,m1)), where Cov(a, b)
denotes the vector of element-wise covariances between items
of a and b then:

E[h1] ≥ σ(n0µ1
wµmµx + µ1

b) + T1.

This term is propagated through all the network layers,
adding bias to the model’s output. (Full proof in the Appendix).
A straightforward way to tackle the issue would be altering
the model’s input, by a subtraction debias:

xnew = x− [cov(x(1),m(1)), . . . , cov(x(n),m(n))]T

thus alleviating the MAR-derived effect (T1 term). Subse-
quently, one could apply sparsity normalisation, as proposed
by Yi et al. [1]. This way, the mean of the network’s output
is not explicitly dependent on the the missingness rate over
all data instances. However, that term is intractable since it
requires the full features x(i) to be known. Instead, we propose
a simple mechanism that takes into account both the input

feature values and their missingness pattern, and evaluates the
similarity between data instances with the same, or similar,
structure.

Core Idea: Latent factors conditioned on the value and
missingness vector, including the covariance between each
input feature and the respective missingness indicator can
be approximated through transformer-like similarity scores
between non-linear embedding projections under the MAR
assumption.

Instead of the transformation :

xnew = (x− β)/α

where β is the per-feature covariance term and α the per-
instance sparsity normalization scaling, we opt for an em-
bedding mechanism. The mechanism is conditioned on the
fused value-existence input vectors (x�m,m), and creates
a common representation embedding space K ⊂ Remb for the
input instances. Multihead self-attention is employed towards
that goal, since, it can use the per-instance available context
to retrieve the appropriate non-affine transformations from the
embedding space (trans ∈ K) and apply them to the provided
input. In this way both the per-instance context (similar to α),
and the global context (similar to β) are incorporated in the
final solution:

lookup(x) = trans

xnew = transform(x, trans)

where the lookup function, lookup : RN → Remb is
implemented with multihead self-attention, and the transform
function, transform : R(N+emb) → RN by non-linear feed-
forward components.

IV. MAIN ALGORITHM

The MAIN algorithms consists of two complementary
steps: The Positional Encoded Vector (PEV) creation, and
the multihead attention step with opacity gating. Let x ∈ RN

denote an input vector of N features, and x1, x2, . . . , xN the
scalar values representing the value of each specific feature in
x. PEV encoding augments the initial feature vector in order
to:

1) Differentiate between the case of a "filled value", in case of
a missing feature, i.e zero in zeta normalization scenarios,
and the existing equivalent of that feature value in a feature
vector - zero because the feature in that specific instance
is equal to the mean of the distribution that generates it.

2) Create an orthogonal basis of feature existence. From
this perspective, the original feature vector is treated as
a linear combination of inter-changeable vectors whose
direction is denoted by the feature position and magnitude
by their respective feature’s value.

Here, for the specified input length N , the minimum number
of bits required to describe all available positions, bw is first
calculated. Then, for each training example x the following
components are calculated:

a) A binary mask, indicating the existence of each feature
in x.

b) A binary positional encoding mask, marking the position
of each feature in x.

Finally, we concatenate a),b) feature-wise with the original
input. That results to a 2D input matrix for each training
example xaugmented ∈ RN×log2(N+1). In that way, we provide
a simple way for the model to capture the similarity between
data instances based on both their values and their missingness
patterns. The aforementioned PEV procedure is described in
Algorithm 1.

Algorithm 1 PEV creation

1: function PEVMASKGENERATOR(x)
2: bw ← dlog2 ne
3: for i← 1 to n do
4: bini ← binbw(i)
5: mi ← 0 if x[i] = ∅ else 1
6: pevi ← [mi|bini]
7: pev ← [pev1, pev2, ...pevn]
8: m← [m1,m2, ...,mn]
9: return pev,m

Fig. 1 Creation of PEV encoding Matrix.

Fig. 2 Creation of Query Projections.

Algorithm 2 Opaque Multi Head Attention

1: while convergence is not achieved do
2: for batch in X do
3: for (x, y) in batch do
4: pev,m← PevMaskGenerator(x)
5: query ← projn(dq([x : pev]))
6: key ← projk(dk([x : pev]))
7: value← projn(dv([x : pev]))
8: imputedx ← mha(query, key, value)
9: x̂← γ · imputedx + (1− γ) · query

10: for dsmj in Model Tasks do
11: ŷj ← dsmj(x̂)

12: ŷ ← [ŷ0 : ŷ1 :, . . . , : ŷl]
13: loss← e(y, ŷ)

14: batch loss←
∑
loss

15: backprop(batch loss)

16: return

Fig. 3 Creation of Key Projections.

Fig. 4 Creation of Value Projections.

The next step is a Luong-style [14] attention mechanism of
each individual augmented feature over the total augmented
feature vector, effectively serving as self-attention. Note that the
attention function is considered a mapping procedure between
a Query and a set of Key-Value pairs [15]. In that fashion, we
project the augmented input (PEV + features) into 3 embedding
vector spaces, Query, Key and Value, using trainable projections.
Here, the PEV augmentation will act as a mechanism capable
to guide the focus of the self-attention heads into retrieving
saliency from the existence-position prespective. The example
of Query projections creation is depicted in Figure 1, and the
Keys and Values are created similarly (Figures 3, 2). That
of course, could not be possible without the projection of all
features to a common embedding space. This is enabled through
the use of PEV embeddings, that transform each feature from
a mere scalar to a querable vector. This is the key link with
the TN bound of Theorem 2. The correlation between each

feature value and the fact that it is missing, is conditioned on
the values of the other features in the original measurement.
That is in the end composed out of the each feature’s value,
and whether it exists or not in the specific instance.

As a next step, we perform multi-head attention over each
augmented feature, noted as mha in Algorithm 2, resulting in
the imputed feature vector imputedx.

Finally, we employ a trainable gating mechanism called
opacity gate, γ(·). The gate acts as a "trainable sigmoid knob"
between the original input of the model, and the imputed input
produced by the MAIN mechanism. The gate is unconditioned
on the input features, and initialized at 0.5, giving equal
importance to both inputs. During training, the gate is left
free to decide through backprop whether our method provides
an input more "salient" towards minimizing the downstream
loss (Gate ' 0) or if the original input is better (Gate ' 1).
Furthermore, the gate acts in a twofold manner, providing
an abstraction buffer towards the next layers. During the first
iterations, the next layers will try to adapt towards an unoptimal
solution to the task, based on the original inputs while the
MAIN mechanism is still in early training stage. This is not
permanent however, since the gate will shift towards the MAIN
inputs, "fine-tuning" the rest of the model into the optimal
solution.

The algorithm finishes with collecting all the opacity
weighted feature vectors, x̂ and feeding them to an arbitrary
number of downstream models, noted as dsm in Algorithm 2.
They are jointly trained with the MAIN component to perform
the required predictive tasks, and during this analysis are all
considered to be 1, since no-multitask dataset was used.

V. EXPERIMENTS

Our method was evaluated on 7 Tabular datasets, 6 of which
come from the UCI Dataset Repository and 1 maritime dataset
related to vessel’s performance which is property of DeepSea
Technologies (i.e DeepSea V9). For all experiments, in order to
be comparable with other methods that simulate missingness,
binary sampling was performed per feature using the same
technique as in [1] and [11]. Our method though is not bound to
this restriction and can work directly on missing data, exploiting
the full capacity of the dataset. The downstream task in the
UCI datasets was binary classification with imbalanced classes,
while in the maritime dataset was regression. It is noteworthy
to outline here that out of the 6 datasets, Breast, Credit, Spam
and Heart are injected with MCAR missingness at 4 different
levels: [20%, 40%, 60%, 80%], while Pima, Mammographic
and DeepSea V9 have instrinsic MAR missingess at levels:
[12.2%, 3.35%, 7.28%]. In order for all the experiments to
be compared at a common basis, the full rows of those
datasets were polluted so that the total missing rate matched the
[20%, 40%, 60%, 80%] scale, as a mixture of MCAR + MAR
missingness.

It is important to outline that the scope of the experiments
is towards to a single-step end-to-end training scheme. We
found that the comparison with classical two-step, methods
that first-impute then train/test formulations (i.e KNN, MICE,

Fig. 5 An overview of MAIN’s architecture. It is comprised of three basic modules: a) PEV creation, b) Opaque Multi-head
Attention, c) Downstream Tasks/Models

MCMC) is not only less relevant to the scope of this work
but also unfair to them since they don’t optimize for a specific
task and give inferior results. For the sake of completeness
however, we opt to compare with the two-step tabular method,
GAIN [11], since its authors shared our common interest of
optimizing towards a downstream task. We also compared with
SN [1] as our method builds on the same ideas and can be seen
as an extension to theirs. ZIMC (i.e zero imputation with mask
concat) is serving as a baseline and FiLM [2] although not
an imputation method, since it also inspired our work can be
seen as an intermediate step between SN and our work MAIN.
We choose not to compare with AimNet [3], as there was no
official codebase, making it very difficult to repliate results.
Furthermore,it was a DataBase-Oriented imputation method for
the project HoloClean, not a general purpose Machine Learning
Solution like the other compared methods.

The experimental design is similar to [1] and [3], reporting
the test AUROC (UCI) and MSE (DeepSea V9) score of 5 runs.
In order to keep the comparison fair, the GAIN [11] method
was trained and tested on different splits of the dataset unlike
the original implementation where training and evaluation was
in the same set. The Breast, Spam, Credit and DeepSea V9
datasets were normalized in the range of [0,1], while Heart,
Pima were normalized in the range [-1,1] as in [1], [11].

We used no explicit prepossessing for categorical values in
the above datasets since our scheme: a) creates automatically
trainable embeddings for both scalar and categorical/ordinal
variables and b) we don’t reconstruct the missing feature and
thus we don’t have to map reconstructed logits to corresponding
classes as in [11].

Regarding train/validation/test splits, in most imputation-
only approaches the RMSE reconstruction metric is usually
reported on a single dataset without any splits. Since no official
splits exist in any UCI datasets, instead of the 70-20-10 split
used in [1] we opt for a 70-30 split with 10-fold stratified
cross-validation.

Models Setup: In order to produce comparable results in

UCI and test the performance gains of our imputation method
as a base layer, we tried to keep the total number of layers
(imputation + downstream) of our scheme close to what
proposed in [16] as the most appropriate for the UCI and also
used in [1]; namely 4 Hidden layers @ 256 units and Adam
Optimizer. The same principle applied to all the compared
schemes where we had: imputation method + 4 layers dedicated
to the downstream task.

Due to class imbalance, in our training scheme we pre-
calculate the class weights of the target classes and use
them into a weighted binary crossentropy loss, penalizing
misclassification on the minority class more heavily that
misclassifications on the majority class. Finally, the reported
metric is the AUROC curve interpolated at 200 points with
Riemann summation method.

TABLE I : UCI Breast-Wisconsin

MR 20% 40% 60% 80%

ZIMC 0.9501 ± 0.005 0.9485 ± 0.007 0.9182 ± 0.010 0.8470 ± 0.012

GAIN? 0.9872 ± 0.008 0.9475 ± 0.011 0.9171 ± 0.035 0.8443 ± 0.017

SN 0.9683 ± 0.007 0.9341 ± 0.009 0.8593 ± 0.029 0.8640 ± 0.027

FiLM 0.9818 ± 0.003 0.9513 ± 0.005 0.9263 ± 0.008 0.8757 ± 0.015

MAIN 0.9821 ± 0.003 0.9786 ± 0.005 0.9693 ± 0.013 0.9241 ± 0.014

TABLE II : UCI Credit Dataset

MR 20% 40% 60% 80%

ZIMC 0.7297 ± 0.008 0.7051 ± 0.007 0.6833 ± 0.010 0.6349 ± 0.013

GAIN? 0.7412 ± 0.008 0.7173 ± 0.013 0.6849 ± 0.008 0.6019 ± 0.032

SN 0.7396 ± 0.005 0.7145 ± 0.007 0.6826 ± 0.003 0.6332 ± 0.012

FiLM 0.7443 ± 0.005 0.7187 ± 0.007 0.7025 ± 0.005 0.6528 ± 0.011

MAIN 0.7456 ± 0.004 0.7209 ± 0.006 0.7032 ± 0.004 0.6577 ± 0.009

As Tables I-IV show, both GAIN and SN provide a far better
alternative to the ZIMC baseline in every dataset and missing
rate. While FiLM is of subpar performance towards both the
generative GAIN and the discriminative SN in most cases, it is

Fig. 6 An illustrated example of a training example with missing features. (feat.value/missing)

Fig. 7 An illustrated example of the methods under test.

TABLE III : UCI Spam Dataset

MR 20% 40% 60% 80%

ZIMC 0.9740 ± 0.005 0.9519 ± 0.007 0.9243 ± 0.008 0.8675 ± 0.011

GAIN? 0.9645 ± 0.004 0.9451 ± 0.008 0.9213 ± 0.001 0.8623 ± 0.010

SN 0.9798 ± 0.002 0.9568 ± 0.002 0.9270 ± 0.002 0.8707 ± 0.005

FiLM 0.9735 ± 0.005 0.9571 ± 0.006 0.9276 ± 0.007 0.8725 ± 0.012

MAIN 0.9817 ± 0.005 0.9589 ± 0.007 0.9298 ± 0.008 0.8732 ± 0.011

TABLE IV : UCI PIMA DATASET

MR 20% 40% 60% 80%

ZIMC 0.8131 ± 0.016 0.7864 ± 0.014 0.7585 ± 0.015 0.7001 ± 0.015

GAIN? 0.8074 ± 0.017 0.7861 ± 0.020 0.7503 ± 0.023 0.6987 ± 0.022

SN 0.8121 ± 0.013 0.7851 ± 0.021 0.7589 ± 0.017 0.7006 ± 0.015

FiLM 0.8017 ± 0.017 0.7725 ± 0.015 0.7475 ± 0.016 0.6913 ± 0.010

MAIN 0.8442 ± 0.009 0.7981 ± 0.007 0.7628 ± 0.011 0.7183 ± 0.012

TABLE V : UCI Heart Dataset

MR 20% 40% 60% 80%

ZIMC 0.8256 ± 0.009 0.8002 ± 0.012 0.6752 ± 0.028 0.6702 ± 0.033

GAIN? 0.8419 ± 0.039 0.7586 ± 0.065 0.6399 ± 0.102 0.6357 ± 0.094

SN 0.8533 ± 0.007 0.7974 ± 0.012 0.7570 ± 0.007 0.6619 ± 0.014

FiLM 0.8530 ± 0.007 0.7915 ± 0.014 0.7516 ± 0.009 0.6422 ± 0.017

MAIN 0.8702 ± 0.008 0.8371 ± 0.007 0.7851 ± 0.008 0.6802 ± 0.011

TABLE VI : UCI Mammographic Dataset

MR 20% 40% 60% 80%

ZIMC 0.7851 ± 0.014 0.7433 ± 0.027 0.6712 ± 0.026 0.6049 ± 0.026

GAIN? 0.8010 ± 0.024 0.7501 ± 0.036 0.7126 ± 0.028 0.6448 ± 0.057

SN 0.7794 ± 0.011 0.7367 ± 0.021 0.6753 ± 0.014 0.6063 ± 0.019

FiLM 0.8198 ± 0.012 0.7472 ± 0.023 0.6860 ± 0.042 0.6350 ± 0.032

MAIN 0.8807 ± 0.005 0.8535 ± 0.009 0.7998 ± 0.012 0.7682 ± 0.014

noteworthy, that in the case of the heavy MAR dataset (Pima),
FiLM gives worse results to SN, while with none of the current

TABLE VII : DeepSea V9

MR 20% 40% 60% 80%

ZIMC 0.0013 ± 0.0005 0.0030 ± 0.0006 0.0124 ± 0.0010 0.0280 ± 0.0013

GAIN? 0.0009 ± 0.0002 0.0027 ± 0.0002 0.0086 ± 0.0001 0.0267 ± 0.0004

SN 0.0012 ± 0.0002 0.0048 ± 0.0003 0.0116 ± 0.0005 0.0310 ± 0.0009

FiLM 0.0010 ± 0.0004 0.0035 ± 0.0005 0.0091 ± 0.0005 0.0270 ± 0.0009

MAIN 0.0009 ± 0.0003 0.0027 ± 0.0002 0.0085 ± 0.0002 0.0261 ± 0.0008

state-of-the-art methods solving explicitly the MAR case.
On the contrary, the MAIN method seems to be vastly

outperforming other methods, especially in the case of high
missing rates, where it maintains considerably higher scores
than its counterparts. In the case of the DeepSea V9 regression
task, GAIN and MAIN have the least test MSE and perform
equally in the low missing scenarios, while MAIN slightly
outperforms GAIN in the high missing scenarios.

VI. DISCUSSION

In this section we will give an illustrated example of a
partially missing feature vector in order to provide more insights
on how our method works compared to other well-known
methods. The setup is the following: in figure 6, we present
a z-normalized 4D feature vector that will be provided as an
input to the different methods that were compared against our
final solution, MAIN.

The 4D input vector consists of 3 non-missing features:
[x1, x3, x4] with corresponding values [0.35, 0.52, 0.00], and
one missing feature: x2. The respective existence bitmask of
the input is depicted with a binary indicator after the "slash"
symbol (’/’) of each feature, where ’1’ means missing feature,
thus the corresponding mask is m = [0, 1, 0, 0].

In figure 7 we break-down how the input information is
potentially transformed (i.e Feature Transformation) by 4

different approaches, leading to a the Processed Vector on
the right in the same figure. The processed vector can be
seen as the result of a learnable scaling factor (for the most
algorithms) which forms the input to the following-up machine
learning method (e.g downstream model). The actual numbers
are figurative just to illustrate the underlying mechanics of
each method.

We observe that in the case of ZIMC as is the most naive
method features are not explicitly affected since it is a mere
zero imputation technique. It must be noted here, that the mask
concatenation in ZIMC, potentially provides to the underline
model with joint knowledge of missingness but that could
happen in a deeper layer interactions in the case of neural nets.
The even simpler zero-imputation couldn’t discriminate at all,
between a missing feature from a feature placed at the mode
of the distribution in the z-scaled space.

In SN, the inverse L1 norm of the bitmask scales all the
non-zero features, by multiplying by their number + 1 (K)
which is an improvement over zero-fill. On the other hand
the scaling of existing features at the mode of the distribution
(i.e zero-mean like x4) are affected in the same way as the
missing ones (i.e x2), re-scaling only the rest of them in
order to alleviate the VSP problem[1]. In FiLM, since all the
features are subject to affine transformation conditioned in the
missing context (feature + mask), the missing x2 and non-
missing x4 zero-valued features are treated differently. Thus
we claim that FiLM can be seen as a feature-wise rescaling
extension of the SN which learns how to condition missing
context to independent feature scalers. Following this logic and
going one step further, if we explicitly define the conditioning
mechanism (i.e attention) we have MAIN which offers even
more expressivity to learn the underline mechanics of the
missing distribution.

VII. CONCLUSION

In this work, we proposed MAIN a novel method based on
multi-head attention to deal with missing data in continuous
or discrete datasets. Our method works in a single step by
implicitly imputing missing data and is optimized directly on
the downstream task, offering an end-to-end trainable system.
We demonstrate that MAIN significantly outperforms state-
of-the-art methods in a variety of open dataset and also in a
proprietary one.

REFERENCES

[1] Joonyoung Yi, Juhyuk Lee, Kwang Joon Kim, Sung Ju
Hwang, and Eunho Yang. Why not to use zero imputation?
correcting sparsity bias in training neural networks. In 7th
International Conference on Learning Representations,
2020.

[2] Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian
Strub, Harm de Vries, Aaron Courville, and Yoshua
Bengio. Feature-wise transformations. Distill, 2018.

[3] Richard Wu, Aoqian Zhang, Ihab Ilyas, and Theodoros
Rekatsinas. Attention-based learning for missing data
imputation in holoclean. 2020.

[4] Roderick JA Little and Donald B Rubin. Statistical
analysis with missing data. John Wiley & Sons, 2014.

[5] Steven Cheng-Xian Li, Bo Jiang, and Benjamin M. Marlin.
Misgan: Learning from incomplete data with generative
adversarial networks. In 7th International Conference on
Learning Representations, 2019.

[6] Pierre-Alexandre Mattei and Jes Frellsen. MIWAE: Deep
generative modelling and imputation of incomplete data
sets. In Proceedings of the 36th International Conference
on Machine Learning, Proceedings of Machine Learning
Research, pages 4413–4423, Long Beach, California,
USA, 09–15 Jun 2019. PMLR.

[7] Alfredo Nazábal, Pablo M. Olmos, Zoubin Ghahramani,
and Isabel Valera. Handling incomplete heterogeneous
data using vaes. CoRR, 2018.

[8] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor
Darrell, and Alexei A. Efros. Context encoders: Feature
learning by inpainting. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[9] Ashish Bora, E. Price, and A. Dimakis. Ambientgan:
Generative models from lossy measurements. In ICLR,
2018.

[10] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:
A regularization method for convolutional networks. In
Advances in Neural Information Processing Systems 31,
pages 10727–10737. 2018.

[11] Jinsung Yoon, James Jordon, and Mihaela van der
Schaar. Gain: Missing data imputation using generative
adversarial nets. In 6th International Conference on
Learning Representations, 2018.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings
of the 2015 IEEE International Conference on Computer
Vision (ICCV), 2015.

[13] Marek Śmieja, Ł ukasz Struski, Jacek Tabor, Bartosz
Zieliński, and Przemysł aw Spurek. Processing of
missing data by neural networks. In Advances in Neural
Information Processing Systems 31, pages 2719–2729.
2018.

[14] Thang Luong, Hieu Pham, and Christopher D. Manning.
Effective approaches to attention-based neural machine
translation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing,
Lisbon, Portugal, 2015.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems 30.
2017.

[16] Günter Klambauer, Thomas Unterthiner, Andreas Mayr,
and Sepp Hochreiter. Self-normalizing neural networks.
In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing
Systems 2017, Long Beach, CA, USA, 2017.

	I Introduction
	II Related Work
	III Problem Formulation
	III-A Preliminaries
	III-B Modeling Assumptions
	III-C Methods

	IV MAIN Algorithm
	V Experiments
	VI Discussion
	VII Conclusion

