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Abstract—We propose a novel approach to addressing the van-
ishing (or exploding) gradient problem in deep neural networks.
We construct a new architecture for deep neural networks where
all layers (except the output layer) of the network are a combina-
tion of rotation, permutation, diagonal, and activation sublayers
which are all volume preserving. Our approach replaces the
standard weight matrix of a neural network with a combination
of diagonal, rotational and permutation matrices, all of which are
volume-preserving. We introduce a coupled activation function
allowing us to preserve volume even in the activation function
portion of a neural network layer. This control on the volume
forces the gradient (on average) to maintain equilibrium and not
explode or vanish. To demonstrate our architecture we apply
our volume-preserving neural network model to two standard
datasets.

I. INTRODUCTION

Deep neural networks are characterized by the composition
of a large number of functions (aka layers), each typically
consisting of an affine transformation followed by a non-affine
“activation function”. Each layer is determined by a number
of parameters which are trained on data to approximate some
function. The deepness refers to the number of such functions
composed (or the number of layers). The number of layers
required to be deep is not well-defined, but an overview of
deep learning [1] states that any network with more than three
layers is deep, and any network with more than ten layers is
very deep.

Deep neural networks have been successfully applied to
a number of difficult machine learning problems, such as
image recognition [2], speech recognition [3], and natural
language processing [4]. In deep neural networks trained via
gradient descent methods with backpropagation, the problem
of vanishing gradients [5], [6], [7] makes it difficult to train
the parameters of the network. The backpropagation equations,
via the chain rule, multiply a large number of derivatives in
deep networks. If too many of these derivatives are small, the
gradients vanish, and little learning happens in early layers of
the network. In the standard neural network model, there are
two main contributors to small derivatives: activation functions
which often squash vectors and as such have small derivatives
on a large portion of their domain; and weight matrices which
act compressively on large parts of their domain.

The first author acknowledges the support of NSERC Canada. The third
and fourth author acknowledge the support of NSERC Canada through the
NSERC USRA program.

There have been a number of approaches to address the
vanishing (or exploding gradient) problem. These techniques
include using alternative activation functions (such as ReLU)
[8], clipping gradients [9], long short-term memory (LSTM)
units [10], gated recurrent units (GRU) [4], multi-level hierar-
chies [11] and orthogonal constraints on parameter initializa-
tions [12].

There are a number of approaches that focus on adjustments
to the standard weight matrices of the network such as the use
of orthogonal or unitary constraints [13]–[16]. The approaches
in [15] and [16] enforce the weight matrices within a recurrent
neural network to be unitary and achieve this by parameteriz-
ing the weight matrix as a product of unitary building blocks
(such as a combination of diagonal, permutation and reflection
matrices). Although these approaches are applied to recurrent
neural networks they share similarities with our approach and
especially in their parameterization of the weight matrix to
ensure it is unitary.

Our approach proposes adjustments to the the activation
functions and the weight matrices, by replacing each of them
with mathematical variants which are volume preserving.
Enforcing volume preservation ensures that gradients cannot
universally vanish or explode. We replace the standard weight
matrix with a product of rotation, permutation, and diagonal
matrices, all of which are volume preserving. We replace
the usual entrywise-acting activation functions by coupled
activation functions which act pairwise on entries of an input
vector (rather than entrywise) and allows us to use a wider
selection of activation functions, ones that can “squash” while
still being volume preserving.

The width of a network is the maximum number of inputs
accepted to a layer of the network. If the width w is roughly
constant across a network d layers deep, the number of
parameters required in a standard fully-connected network is
of order w2d. In our VPNN, the number of parameters required
is of order w log2(w) d, yet, despite this significant reduction
in the number of parameters as compared to a fully-connected
network our results are similar in our testing.

Since being volume preserving is at the core of the model,
we begin by reminding the reader of the definition. A function
f : Rn → Rn is volume-preserving if vol(f−1(S)) = vol(S)
for all measurable sets S ⊂ Rn (where vol(·) is the usual
(Lebesgue) volume of a set).
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II. THE BASIC VPNN MODEL

The basic L layer VPNN will take nin inputs, process them
through L − 1 volume-preserving layers (the input layer and
the hidden layers) and an output layer to produce nout outputs.
Each volume-preserving layer (for l = 1, 2, . . . , L−1 is of the
form:

x→ A(V (l)x + b(l)) (1)

where V (l) is a volume-preserving linear transformation, b(l)

is a bias vector, and A is a volume-preserving coupled activa-
tion function.

Being volume preserving necessarily implies being dimen-
sion preserving, so in L − 1 volume-preserving layers V (l)

is an nin × nin matrix, b(l) is a vector in Rnin , and A is a
function from Rnin to itself.

The L-th layer (the output layer) is necessarily not volume
preserving as it must downsize to the size of the classifier
space. In the basic VPNN we implement this by a fixed nout×
nin matrix Z so the output layer is just:

x→ Zx. (2)

A. Building the Volume-Preserving Linear Transformations of
a VPNN

We build V , a volume-preserving linear transformation, as
a product of rotation, permutation, and diagonal matrices. We
first describe in detail these matrices and then describe how
we fit them together in the VPNN architecture.

Let:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
(3)

(the matrix that rotates a vector in R2 by θ in the counter-
clockwise direction). Then a rotation matrix R in a VPNN
corresponds to a direct sum of such matrices:

R =

nin/2⊕
i=1

Rθi =


Rθ1 0 0 · · · 0
0 Rθ2 0 · · · 0
0 0 Rθ3
...

...
. . .

0 0 Rθnin/2

 . (4)

There are nin/2 trainable parameters in a rotation matrix, each
parameter is involved in four neuron connections and each
input neuron connects to two output neurons.

A permutation matrix Q in a VPNN corresponds to
a permutation q of {1, 2, 3, . . . , nin} (a bijection from
{1, 2, 3, . . . , nin} to itself) which is chosen randomly before
training begins. So the permutation matrix Q has (q(i), i)
entries (for i = 1, 2, . . . nin) equal to one and all other entries
are zero. There are no trainable parameters in a permutation
matrix, and each input neuron connects to one output neuron.

A diagonal matrix D in a VPNN has diagonal entries which
are positive and have product one. To stay away from possible
“division by zero” problems, we implement this as

D =



f(t1)
f(tnin

)
f(t2)
f(t1)

. . .
f(tnin−1)

f(tnin−2)
f(tnin

)

f(tnin−1)


(5)

where f is a function from R to R+ whose range lies in some
compact interval (and all off-diagonal entries are zero). In our
implementation we choose f(x) = exp(sinx).

There are nin trainable parameters in each diagonal matrix,
each parameter is involved in two neuron connections and each
input neuron connects to one output neuron.

Then the volume-preserving linear transformation V is
implemented as

V =

k/2∏
j=1

RjQj

D

 k∏
j=k/2+1

RjQj

 (6)

with each RjQj connecting two input neurons to two “ran-
dom” output neurons, using dlog2(nin)e such RjQj along
with a diagonal matrix should achieve almost total neuronal
interaction in each volume-preserving affine layer. However,
testing showed there is a slight improvement in accuracy
when we add additional RjQj to gain some redundant neural
connections. So, in the basic VPNN model we set k (the
number of rotations or permutations used in any layer) to be:

k = 2 dlog2(nin)e . (7)

This also ensures k is even and so allows us to have the
same number of rotations and permutations on each side of the
diagonal (this is not strictly necessary). Not surprisingly, the
more layers in the VPNN, the less pronounced is the effect
of adding redundant rotations/permutations in any layer. In
very deep networks, taking k closer to dlog2(nin)e is probably
optimal.

B. Building the Coupled Activation Functions of a VPNN

A coupled activation function corresponds to a non-affine
function C from R2 to R2 which is area preserving. Instead
of the usual activation functions, which act entrywise on the
entries of a vector, a coupled activation function A acts on a
vector x (with an even number of entries) by grouping them in
pairs and applying C to them pairwise. So a coupled activation
sublayer performs:

x =



x1
x2
...
...

xn−1
xn


A−→



C

([
x1
x2

])
...
...

C

([
xn−1
xn

])


. (8)



Such functions can be created in many ways, but for our basic
VPNN model we use what we refer to as coupled Chebyshev
functions.

These functions are most easily described in polar coordi-
nates. Given a point (x, y) in the plane, if r is the distance
from that point to (0, 0) and −π < θ ≤ π is the angle the
ray from (0, 0) to (x, y) makes with the positive x axis, then

r =
√
x2 + y2 and θ = sgn(y) cos−1

(
x√
x2+y2

)
are the

polar coordinates of (x, y). We introduce a contractive factor
M and define:

CM (r, θ) =

(
r√
M
,Mθ

)
(9)

so the radius r is contracted by
√
M and the angle θ is

increased by a factor of M . The area unit for polar coordinates
is dA = r dr dθ so:

d(CM (A)) =
r√
M

∂CM
∂r

∂CM
∂θ

dr dθ (10)

=
r√
M

1√
M
M dr dθ = r dr dθ. (11)

Converting to Cartesian coordinates,

CM

([
x
y

])
=


√
x2+y2√
M

cos

(
M cos−1

(
x√
x2+y2

))
√
x2+y2√
M

sgn(y) sin

(
M cos−1

(
x√
x2+y2

))
 .

(12)

This is the formula we will be using in our coupled activation
function, typically with a value of M in the range (1, 2].
Just for interest we mention that, in the case where M is
an even integer, these are related to the famous Chebyshev
polynomials:

CM

([
x
y

])
=


√
x2+y2√
M

TM

(
x√
x2+y2

)
|y|√
M
UM−1

(
x√
x2+y2

)
 (13)

where Tn is Chebyshev polynomial of the first kind (Tn(x) =
cos(n cos−1(x))), and Un is Chebyshev polynomial of the
second kind (Un(x) = cos(n sin−1(x))

sin(cos−1(x)) ). In the case M = 2
these have particularly nice form:

C2

([
x
y

])
=
[

x2−y2√
2
√
x2+y2

,
√
2x|y|√
x2+y2

]
. (14)

C. Building the Output Layer of a VPNN

Since volume-preserving layers cannot downsize (reduce di-
mension) we need some method to map down to the dimension
of our classification space. We could use a fully-connected
layer, but in the testing that follows we want to demonstrate
that the learning is happening in the volume-preserving layers,
so our output layer will have no trainable parameters.

We implement this as simply as possible. We use no bias on
this layer and fix a “random” matrix Z of size nout×nin with
ZZT = 1 and with most entries non-zero and of roughly equal

magnitude. (This is chosen to preserve length and connect
every output neuron in this layer to every input neuron with
roughly the same weight). Then the output layer performs:

x→ Zx. (15)

So, roughly, we are just choosing a random initialization of
a weight matrix Z, but not allowing the weights to train in
this final layer.

We generate the downsizer matrix Z by randomly choosing
entries of an nout × nin matrix A from the interval [−1, 1],
then applying the reduced Singular Value Decomposition to
A, we obtain so A = UΣV T where Z = U has the desired
properties.

III. DISCUSSION OF THE VPNN MODEL

The key feature of our neural network is that it is volume
preserving in all layers except the output layer. Rotations,
permutations, and translations are rigid maps on Rn and
so leave volume unchanged. The determinant one condition
ensures the diagonal layer is also volume preserving, and the
coupled activation maps are also volume preserving. Because
of the volume-preserving property, if vectors on the unit ball
are sent through a layer, some will be shortened and some
lengthened. When composing through multiple hidden layers,
we would expect “on average” that a vector will be shortened
at some layers and lengthened at others and generally not have
its length vanish or explode, thus giving some management of
the gradient.

Once being volume preserving was identified as a control
mechanism for the gradient, we needed volume-preserving
activation functions. Since activation functions are necessarily
non-affine, they cannot be constructed as functions of one
input variable only. So we had to allow coupled activation
functions which take two (or more) inputs.

Next we needed finer control on the weights layer. Our con-
struction is motivated by the Singular Value Decomposition,
which states that any square matrix can be written as UDV
where U and V are orthonormal (i.e. real unitary) and D is
diagonal with non-negative diagonal entries. Any real unitary
matrix (of determinant 1) can be written as a product of Givens
rotations. Every Givens rotation is of the form QRQ−1 for
some permutation matrix and some choice of parameters θi
(all but one chosen to be zero). Thus it is reasonable that
we should be able to replace a general weight matrix W by
a volume-preserving matrix V of the above form with little
impact on ability to approximate.

The number of trainable parameters in each of the first L−1
layers of a basic VPNN is nin(dlog2 nine + 2) where nin is
the number of entries in the input vector to the neural network
( nindlog2 nine from rotations, nin from diagonals, and nin
from biases). Contrast this to n2in + nin in a standard neural
network (or even greater if there was upsizing).

In [17], they illustrate the superior performance of ReLU
compared to other activation functions in deep neural net-
works. One possible explanation for this superior performance,
as mentioned in the paper, is the fact that ReLU introduces



Diagonal Permutation Rotation Activation

Fig. 1. A simplified VPNN layer

sparsity. Certain neuronal connections are pruned by virtue of
having negative inputs into ReLU. In a VPNN, this sparsity is
incorporated by a different mechanic, not by pruning but by
building fewer neuronal connections as part of the architecture.

We scale our input vectors so that their length is within the
same order of magnitude of the output vectors (which should
have length 1, if the network is learning correctly). In practice
we preprocess our inputs by scaling entries so that they lie in
some interval (say [0, 1]) and then divide each entry by

√
nin

where nin is the number of entries, so that the length of an
input vector is reasonably close to 1. This is often done in
neural network models but is particularly important for VPNNs
since any stretching or compressing in the basic VPNN must
be done in diagonal and activation layers, and we do not want
to impose extra work on these layers to scale vectors up or
down beyond what is needed for approximation.

The VPNN must also act on vectors with an even number of
entries, as the rotational layers and coupled activation layers
require an even number of inputs. If we had an odd number
of inputs the simplest solution would be to add one new input
which was always zero.

IV. BACKPROPAGATION EQUATIONS

Let θ
(l)
p,i denote the ith rotational parameter (i =

1, 2, . . . nin/2) in the pth rotation matrix (p = 1, 2, . . . , k) in
the lth layer (l = 1, 2, . . . , L − 1) and let t(l)j denote the jth

diagonal parameter in the diagonal matrix D(l) in the lth layer
(l = 1, 2, . . . , L−1), and let b(l)j denote the jth bias parameter
in the bias vector b(l) in the lth layer (l = 1, 2, . . . , L− 1)

For a given error function (or cost function) E, we need to
compute: for all bias sublayers: ∂E

∂b
(l)
j

for l = 1, 2, · · · , L− 1,

for all rotational sublayers: ∂E

∂θ
(l)
p,i

for l = 1, 2, · · · , L− 1, and

for all diagonal sublayers: ∂E

∂t
(l)
j

for l = 1, 2, · · · , L− 1.

For a single xin = a(0) sent through the network generating
output yout = a(L), we use the following terminology for

partially forward-computed terms:

V
(l)

left =

k/2∏
j=1

R
(l)
j Q

(l)
j , (16)

V
(l)

right =

k∏
j=k/2+1

R
(l)
j Q

(l)
j , (17)

V (l) = V
(l)

left D
(l)V

(l)
right (18)

z(l) = V (l)a(l−1) + b(l) for l = 1, 2, . . . , L− 1 (19)

a(l) = A(z(l)) for l = 1, 2, . . . , L− 1 (20)

a(L) = Za(L−1). (21)
(22)

Define (for l = 1, 2, . . . , L− 1)

δ(l) =
∂E

∂z(l)
=


∂E

∂z
(l)
1

∂E

∂z
(l)
2

...
∂E

∂z
(l)
nin

 . (23)

Then we have the following backpropagation equations to
backpropagate completely through a layer. For any coupled
activation function as described above:
For l = 1, 2, 3, . . . , L− 1:
If j is odd:

δ
(l)
j =

(
V (l)T δ(l+1)

)
j

∂C1

∂x

∣∣∣∣∣ x = z
(l)
j

y = z
(l)
j+1

+

(
V (l)T δ(l+1)

)
j+1

∂C2

∂x

∣∣∣∣∣ x = z
(l)
j

y = z
(l)
j+1


(24)

If j is even:

δ
(l)
j =

(
V (l)T δ(l+1)

)
j−1

∂C1

∂y

∣∣∣∣∣x = z
(l)
j−1

y = z
(l)
j

+

(
V (l)T δ(l+1)

)
j

∂C2

∂y

∣∣∣∣∣x = z
(l)
j−1

y = z
(l)
j

 (25)

(where C1(x, y) is the first component of the coupled activa-
tion function and C2(x, y) is the second component).



In the case of the coupled Chebyshev activation function,
these partials simplify quite nicely in terms of previously
computed quantities.

∂C1

∂x
=

1

x2 + y2
[
x My

]
C

([
x
y

])
∂C2

∂x
=

1

x2 + y2
[
−My x

]
C

([
x
y

])
∂C1

∂y
=

1

x2 + y2
[
y −Mx

]
C

([
x
y

])
∂C2

∂y
=

1

x2 + y2
[
Mx y

]
C

([
x
y

])
.

The following equations allow us to backpropagate through
sublayers of a layer. In all (non-output) layers l = 1, 2, . . . , L−
1 the bias parameters have partials:

∂E

∂b
(l)
j

= δ
(l)
j . (26)

In the (non-output) layers l = 1, 2, . . . , L − 1 the diagonal
parameters have partials:

∂E

∂t
(l)
j

= δ(l)
T
(
V

(l)
left F

(l)
j V

(l)
right

)
a(l−1), (27)

where F (l)
j is a diagonal matrix (of same size as D(l)) whose

j-th diagonal entry is f ′(t(l)j ) and whose j + 1-th diagonal

entry (modulo nin) is − f(t
(l)
j+1)

f(t
(l)
j )2

f ′(t
(l)
j ) and all other diagonal

entries are zero. In the layers l = 1, 2, . . . , L−1, the rotational
parameters have partials, for p = 1, 2, . . . k/2 then:

∂E

∂θ
(l)
p,i

=

δ(l)
T

p−1∏
j=1

R
(l)
j Q

(l)
j

Zi

k/2∏
j=p

R
(l)
j Q

(l)
j

D(l)V
(l)

righta
(l−1).

(28)

For p = k/2 + 1, . . . k then:

∂E

∂θ
(l)
p

=

δ(l)
T
V

(l)
left D

(l)

 p−1∏
j=k/2+1

R
(l)
j Q

(l)
j

Zi

 k∏
j=p

R
(l)
j Q

(l)
j

 a(l−1)

(29)

where Zi is the matrix with a 1 in the (2i− 1, 2i) entry, a −1
in the (2i, 2i − 1) entry and all other entries are zero. (Note
this is equivalent to inserting into the formula for V (l), before
the location of rotation p, a new matrix which has a 2 × 2
rotation matrix Rπ/2 in the block corresponding to parameter
θp,i and zeroes elsewhere.)

A. Variant: Trainable parameters in Coupled Activation Sub-
layers

It is not much more costly to allow the parameters M
in Coupled Activation Sublayers using coupled Chebyshev
functions to be trainable. In fact we could implement the
Coupled Activation Layer as:

x =



x1
x2
...
...

xn−1
xn


A−→



CM1

([
x1
x2

])
...
...

CMn/2

([
xn−1
xn

])


(30)

where M1,M2, . . . ,Mn/2 are n/2 trainable parameters.
The derivatives with respect to Mi to be used in the modified

backpropagation equations are:

d

dMi
CMi

([
x
y

])
=

[
− 1

2Mi
−θ(x,y)

θ(x,y) − 1
2Mi

]
CMi

([
x
y

])
(31)

where:

θ(x,y) = sgn(y) cos−1

(
x√

x2 + y2

)
. (32)

V. TESTING

To demonstrate the utility of VPNN, we compare its perfor-
mance in terms of accuracy, training time, and size of gradients
throughout the layers on two standard classification datasets:

1) Image data. The MNIST Dataset [18] consisting of
images (28 × 28 pixel greyscale) of 70,000 hand-
written digits (60,000 for training and 10,000 for
testing). The object is to determine the digit (from
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) from the image. So the input
vector has nin = 282 = 784 entries, and the output
vector has nout = 10 entries.

2) Text data. The IMDB Dataset [19] consisting of 25,000
movie reviews for training and the same number for test-
ing. The object is to determine the sentiment (positive
or negative) from the text. We use preprocessed bag-of-
words format provided with the database and remove
stopwords (like: an, a, the, this, that, etc) found in the
Natural Language Toolkit’s corpus, and then use the
4000 most frequently used remaining words in our bag-
of-words. So the input vector has nin = 4000 and the
output vector has nout = 2.

We consider 6 neural network models: three VPNN variants,
one standard model for a control, and two mixed models using
features of both:

1) VPNN The first L−1 layers are volume preserving and
made up of rotation, permutation, diagonal, and coupled
Chebyshev activation sublayers as described in Section
II, with the number of rotations in each layer equal to
2dlog2(nin)e and the Chebyshev parameter set to M =
2.
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2) VPNN1.3 The first L− 1 layers are volume preserving
and made up of rotation, permutation, diagonal, and
coupled Chebyshev activation sublayers as described in
Section II, with the number of rotations in each layer
equal to 2dlog2(nin)e and the Chebyshev parameter set
to M = 1.3.

3) VPNNt The first L−1 layers are volume preserving and
made up of rotation, permutation, diagonal, and coupled
Chebyshev activation sublayers as described in Section
II, with the number of rotations in each layer equal to
2dlog2(nin)e but the Chebyshev parameters are trainable
as described in Subsection IV-A.

4) S-ReLU The first L − 1 layers use a standard affine
sublayer, x→ Wx + b followed by a ReLU activation
function. (We considered also testing this model with
a sigmoid activation function, however training was
problematic due to vanishing gradients.)

5) Mixed1 The first L − 1 layers use a standard affine
sublayer, x → Wx + b but use coupled Chebyshev
activation sublayers with M = 1.3.

6) Mixed2 The first L−1 layers are volume preserving and
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made up of rotation, permutation and diagonal sublayers
as described in Section II, with the number of rotations
in each layer equal to 2dlog2(nin)e, but the activation
function is ReLU.

Some specifics of the implementation of the testing are:
1) Method: We use Stochastic Gradient Descent with mo-

mentum set to 0.9 and with a batch size of 100 in all
training.

2) Layers: For ease of comparison, all the models we
consider have L − 1 layers of the same type which
preserve dimension (so the number of neurons in each
of the first L layers is equal to nin, the number of input
neurons) followed by a fixed downsizer matrix Z as in
the basic VPNN model. For testing accuracy we take
L = 4 and for testing learning throughout the layers we
take L = 10.

3) Learning Rate: The surface of the error function seems
to be smoother, and generally less steep for VPNN
models than for standard models. This allows us to
take larger step sizes (learning rates) at the start of
training but causes slower convergence (for the same



Model MNIST IMDB
Training
Time Accuracy

Training
Time Accuracy

VPNN 29 s/epoch 98.06 % 27 s/epoch 86.89%
VPNN1.3 29 s/epoch 97.21 % 27 s/epoch 87.46%
VPNNt 29 s/epoch 97.38 % 27 s/epoch 83.89%
S-ReLU 6 s/epoch 97.42 % 14 s/epoch 86.35%
Mixed1 7 s/epoch 98.40 % 15 s/epoch 87.16%
Mixed2 27 s/epoch 96.00 % 25 s/epoch 83.90%

TABLE I
TRAINING TIME AND ACCURACY

learning rate) later in training. When testing for accuracy
(L = 4), to accommodate for this and speed up training,
we perform a variation of adaptive learning methods: we
perform some preliminary runs (with a small number of
batches) with larger learning rates to determine stability,
and choose initial learning rate of 1/10 of the limit where
training seems stable. So for the first half of the training,
the learning rates are in the range of 0.1 to 1.0 and then
as we have supposedly zeroed in on the minimum, the
learning rate is set to 0.01 for all models. When testing
for learning throughout the layers (L = 10), we hold the
learning rate at 0.01 for all models.

4) Error Function: We use the cross-entropy loss function

E(y, ŷ) = −
∑
i

ŷi log(yi) (33)

(where y is the predicted output for input x and ŷ is
the actual output) for the error function.

A. Testing Accuracy and Training Times on a Four-Layer
Neural Network

Using a four layer network and running 30 epochs for
MNIST and 40 epochs for IMDB, we obtain the training times
and accuracy rates as shown in Table I.

Fig. 2 and Fig. 3 (for MNIST) and Fig. 4 and Fig. 5 (for
IMDB) show the progression of the accuracy throughout the
training.

Some comments on accuracy:
• All the models perform comparably well, and very close

to the state of the art for these classication tasks (ap-
proximately 99% for MNIST, and approximately 88%
for IMDB using the best bag-of-words approach). The
training times are also comparable, which may be a bit
surprising considering all the trigonometric evaluations in
the VPNN model.

• The swings in accuracy early in the training are due to
the large learning rate. This could obviously be smoothed
with a smaller learning rate (and thus more epochs).

• VPNN seems to be the superior volume-preserving neu-
ral net, with VPNNt being the least accurate. This is
somewhat surprising as there is more “freedom” due to
additional parameters in the VPNNt model. It may have
something to do with the different types of parameters
(rotational, bias, diagonal and Chebychev). This seems
to cause slow training of the Chebychev parameters in
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Fig. 7. Error Function: IMDB

particular. The VPNNt accuracy is still trending upwards
after most other models have levelled off. Running signif-
icantly more epochs does improve VPNNt performance.

• The best model overall for accuracy is Mixed1. This
model incorporates some of the best features from both
models: the significantly increased parameter space of the
standard model, and the gradient control of the coupled
Chebychev activation functions of VPNN models.

As Figures 6 and 7 show, all models also show similar
performance in terms of minimizing the error function as
well. Once again, VPNNt is lagging behind but still trending
downwards and improves with additional training.

One factor that should be taken into consideration is the
number of parameters in the various models. Fully-connected
layer models (like S-ReLU) use w(w+1) parameters per layer
of width w, versus w (dlog2(w)e+ 2) parameters per layer
VPNN2 and VPNN1.3 (or w (dlog2(w)e+ 5/2) for VPNNt).

For our models w = nin, and Table II shows the number
of parameters per layer for the different models:

Especially for datasets where each datapoint has a large
number of entries, the number of parameters is dramatically



Model MNIST IMDB
VPNN 9.4× 103 5.6× 104

VPNN1.3 9.4× 103 5.6× 104

VPNNt 9.8× 103 5.8× 104

S-ReLU 6.2× 105 1.6× 107

Mixed1 6.2× 105 1.6× 107

Mixed2 9.4× 103 5.6× 104

TABLE II
PARAMETERS PER LAYER

lower for VPNNs than for standard neural networks.

B. Testing Learning Throughout the Layers on a Ten-Layer
Neural Network

We consider the amount of learning throughout the layers
for the various models. This will show how well the VPNNs
control the gradient in deep neural networks and allow for
learning in all layers roughly equally. The magnitude of the
vectors δ(l) are a measure this, as they indicate how well the
parameter updating has propagated back to the l-th layer. If
we have vanishing gradients, we would expect ‖δ(l)‖ to be
small for early layers (l close to 1) compared to later ‖δ(l)‖
(l close to L) as the training progresses. If we have exploding
gradient we expect the reverse. If all are comparable in size,
we have ideal backpropagation.

For testing learning throughout the layers we use deeper
neural networks. We set L = 10 layers so there are 9 layers of
volume-preserving or standard type, followed by a fixed matrix
downsizer output layer. Since we aren’t testing the accuracy
here, we run 3 epochs only and collect the norms of the vectors
δ(l) at this stage.

As it is the comparison of the order of magnitude (rather
than the exact value) of the gradients across the layers which
is relevant, we consider the log10 of the learning amount in
each layer compared to log10 of the learning amount in the
final layer for each of the models, so we are plotting

y = log10

(
‖δ(l)‖
‖δ(L)‖

)
= log10

(
‖δ(l)‖

)
− log10

(
‖δ(L)‖

)
(34)

for l = 1, 2, 3, . . . , L. (So, for a given l, 10 raised to the
corresponding value of y gives the percentage more (or less)
of learning in that layer as compared to layer L.

Figures 8 (for MNIST) and 9 (for IMDB) display the data
from these runs.

In Figures 8 and 9, a positive slope indicates vanishing
gradients. More precisely, a slope of m on these graphs
indicates that learning decreases (when m is positive) or
increases (when m is negative) by a factor of 10−m for each
layer deeper we go into the neural network. For S-ReLU in
both Figure 8 and Figure 9, the slope is approximately 0.4
so for every layer retreat into the network, the gradients (and
hence the amount of learning) decrease by (approximately)
a factor of 10−0.40 = 0.40. So in layer 1, there is roughly
(0.40)9 ≈ 2.6×10−4 as much learning as in layer 10. Almost
all the learning is in the late layers. Contrast this with VPNN
models, where learning is comparable across the layers, and in
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Fig. 8. Learning in the Layers: MNIST
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Fig. 9. Learning in the Layers: IMDB

fact there is slightly more learning in early layers than in late
layers. (The learning throughout the layers for VPNN seems
to be missing in Figure 9, in fact it is basically identical to that
for VPNNt, and is obscured by that line.) The mixed models
show learning throughout the layers superior to S-ReLU but
inferior to the VPNN models.

The VPNN variants show clearly superior learning through-
out the layers, with no vanishing gradient as compared to
standard neural networks.

While we were not testing accuracy in the ten-layer network,
we will mention for interest’s sake that the ten-layer VPNNs
do train relatively accurately if training is allowed to continue.
Since the corresponding four-layer neural networks train close
to the standard in both the MNIST and IMDB cases, and we
are adding additional complexity, it is perhaps not surprising
that accuracy does drop by 5% to 10% from the four-layer
to ten-layer VPNN in these cases. While VPNN was the
most accurate in the four-layer network, VPNN1.3 is the most
accurate in the ten-layer case. This is perhaps due to the fact
that with additional layers, less “squashing” must be done in
any particular layer.



VI. CONCLUSIONS

We presented a new neural network architecture wherein
all layers of the network are volume preserving, this includes
a coupled activation layer, however on classification tasks
we require a downsizing layer as the last layer. This last
layer cannot therefore be volume preserving. We tested the
network on two standard classification tasks and while the use
of a fully volume-preserving network for classification tasks
is unlikely to be the eventual application of this architecture
we do showcase the ability of our architecture to both learn
and preserve gradients. Demonstrating the preservation of
gradients is our main goal in tackling these classification
tasks as there are architectures such as convolutional neural
networks that perform extremely well on these tasks and
especially image classification tasks in general [20], [21].

The basic VPNN model here was stripped down to its
essentials for the purposes of demonstrating the efficacy of
the model. In practice it should be another tool in the machine
learning toolbox, used in conjunction with other approaches
and techniques to achieve best results. That is one of our main
goals for future work. Now that we have the basic model, we
plan to consider variations to tackle different applications. Of
particular interest for future work will be developing VPNNs
into feasible models to handle problems with sequential data
with long-term dependencies and generative models. We also
note the model may have applications where small memory
footprints or smaller numbers of trainable parameters are
required or to augment existing architectures.

A. Accessing the code

The code for the VPNN architecture is accessible in Github
repository ( [22]).
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