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Abstract—There is no doubt that the use of machine learning
is increasing every day. Its applications include self-driving cars,
malware detection, recommendation systems and many other
fields. Although the broad scope of this technology highlights
the importance of its reliability, it has been shown that machine
learning models can be vulnerable to adversarial attacks. In this
paper, we study a property of these attacks called transferability
across different architectures and models, measuring how these
attacks transfer based on a specific number of parameters among
three adversarial attacks: Fast Gradient Sign Method, Projected
Gradient Descent and HopSkipJumpAttack.

Index Terms—Deep Learning, Adversarial Attacks, Convolu-
tional Neural Networks

I. INTRODUCTION

Deep Neural Networks have revolutionized the field of ar-
tificial intelligence and its application to numerous tasks such
as speech recognition [1], natural language processing [2],
malware detection [3] or image classification [4], among
others. Hardware and software have evolved significantly, ac-
celerating AI research, and allowing to train deeper networks.
Also, new architectures, such as VGG [5], GoogLeNet [6],
ResNet [7] or EfficienNet [8], have achieved great success in
large-scale image classification. Despite the great success of
these architectures, it has been shown that there are small,
non-randomly selected imperceptible perturbations that can
cause the misclassification of input examples and, even worse,
these perturbations can be generalized across different models.
Szegedy et al. [9] discovered in 2013 that some machine
learning models are vulnerable to these perturbations called
adversarial examples. In this paper, we study the generaliza-
tion of these perturbations, called the transferability property
in the literature, performing non-targeted attacks, such as
Fast Gradient Method [10], Projected Gradient Descent [11]
and HopSkipJumpAttack [12], on different models. We then
measure the classification rate across the generated images and
models with the aim of observing how transferability behaves
across deep neural networks.

The rest of the paper is structured as follows. First, an
introduction to adversarial attacks and their types can be found
in Section II. Then, Section III, describes the study conducted
in this research. Next, we discuss the results we have obtained
in Section IV. Finally, Section V states some conclusions and
future research directions.

II. ADVERSARIAL ATTACKS

Machine learning models represent a mapping function of
an input x to an output y in the form of F : X → Y and
define a solution space that is determined by the training
dataset. In the context of image classification, we can define
an adversarial example as:

x̃ = x+ η

where x is the original input and η is the generated perturba-
tion. Once the adversarial example is created, it can be used
to deceive the model:

f(x) 6= f(x̃) ⇒
(
Y 6= Ỹ

)
Since Szegedy et al. [9] described the Box-constrained

L-BFGS optimization problem as a technique to craft ad-
versarial examples, new attacks have been developed over
the years like Fast Gradient Method [10], DeepFool [13],
Jacobian Saliency Maps [14], Carlini and Wagner [15],
Pixel Attack [16], Projected Gradient Descent [11], Hop-
SkipJump [12], and many others.

Adversarial attacks can be categorized in several ways, con-
sidering knowledge of the targeted model (white-box or black-
box), misclassification precision (targeted or non-targeted),
and input domain (digital or physical):
• White-box: assumes that the adversary has partial or

complete knowledge of the targeted model including
weights, activation functions, architecture and hyper-
parameters. Commonly, these attacks are based on the
model gradients [10], [11], [13]–[16].

• Black-box: in this case, the adversary only has access to
the output of the targeted model and, usually, with certain
querying limits. Generally, these attacks are evaluated
based on the number of model requests [12], [17], [18].

• Non-targeted: a non-targeted attack generates adversarial
examples without targeting a specific model output class,
the main objective being that the predicted label does not
correspond to that of the original input. Usually, these
attacks are easier to perform due to the high dimensional
space of the possible classes.

• Targeted: the aim of these attacks is to force the model to
predict a specific output label that does not correspond to
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Fig. 1. Fast Gradient Sign Method attack with a progression of epsilons.

the original input, i.e. the original input image represents
an apple and an attacker generates an adversarial image
that forces the model to precisely predict a rifle and
not simply cause a generic misclassification. Most of the
mentioned attacks have targeted versions also.

• Digital: the result of these attacks remains in the dig-
ital domain. The adversarial images generated are sent
directly to the model as digital input.

• Physical: these attacks use physical modifications to fool
the target models, e.g. Sharif et al. [19] printed a pair of
eyeglass frames to force misclassifications on a state-of-
the-art face-recognition algorithm.

Black-box techniques pose, perhaps, a greater threat because
they have been shown to be feasible in real world scenarios.
Many of these techniques take advantage of transferable
examples to perform the attacks. A good example would be an
attack targeting an autonomous car guidance system in which
the adversary has no information regarding the classification
model but is capable of crafting an image that looks like a stop
sign to human eyes while being identified as a speed limit sign
by the classifier. Goodfellow [10] argued that the reason why
transferability works is because the perturbations are aligned
with the weight vector. However, Lui & Chen demonstrated
that this hypothesis was not valid in the case of large datasets
like Imagenet [20] and showed that “the gradient directions
of different models are orthogonal to each other” [21].

III. STUDY DESCRIPTION

Our study tries to shed more light on the transferability
property between different prediction models. We have se-
lected seven models with different architectures, randomly
chosen one hundred images from the Imagenet dataset (all
of them correctly classified by the selected models) and tested
three different attacks, being two of them white-box and the
remaining one black-box.

Among the architectures selected for the study, there are
five types of families:
• Residual Networks (ResNet): deep residual networks

address the degradation problem (regarding training ac-

curacy), that occurs when network depth is increased,
through the addition of identity mappings (a new neural
layer called Residual Block). Basically, these are connec-
tion layers that sum the output of previous layers, feeding
the result into the following layers.

• Very Deep Convolutional Networks (VGG): VGG net-
works use small convolution filters, 16-19 layers, small
stride for the first convolution layer and other improve-
ments in order to increase accuracy [5].

• Inverted Residuals (MobileNetV2): specifically de-
signed for mobile devices or those with limited compu-
tational capability, they reduce the number of operations
and memory required [22].

• EfficientNet: Mingxing Tan [8] proposed a new tech-
nique to scale up neural networks using resolution, width
and depth dimensions and scaling each of them with
a constant ratio. Based on this work, new EfficienNet
baseline models were created.

• Densely Connected Conv. Networks (DenseNet): these
networks connect each layer to every other layer so that
the model ends up with L(L + 1)/2 direct connections
between them. The goal of this design is to reduce the
number of parameters, alleviate the vanishing-gradient
problem, encourage feature reuse, and strengthen feature
propagation [23].

The architectures under study are VGG16, VGG19,
EfficientB0, ResNet50, ResNet152V2, MobileNetV2, and
DenseNet201 from the Keras1 API. These are loaded with
default Imagenet pre-trained weights with an average of 75%
in Top-1 accuracy.

The chosen attacks are Fast Gradient Sign Method [10],
Projected Gradient Descent [11], and HopSkipJump [12]. To
carry out the attacks we have used the Adversarial Robustness
Toolbox (ART)2 tool written in python, that implements sup-
port for many types of attacks and defenses [24]. We briefly
describe these attacks in the following sections.

1https://keras.io/api/applications/
2https://github.com/Trusted-AI/adversarial-robustness-toolbox



TABLE I
FAST GRADIENT SIGN METHOD ATTACK ACCURACY

VGG16 VGG19 ResNet50 ResNet152V2 MobileNetV2 EfficientNetB0 DenseNet201

VGG16 0.06% 0.15% 0.52% 0.72% 0.47% 0.61% 0.55%

VGG19 0.14% 0.06% 0.51% 0.73% 0.46% 0.62% 0.59%

ResNet50 0.78% 0.77% 0.12% 0.82% 0.66% 0.82% 0.74%

ResNet152V2 0.69% 0.65% 0.64% 0.39% 0.60% 0.75% 0.74%

MobileNetV2 0.71% 0.69% 0.68% 0.85% 0.19% 0.72% 0.91%

EfficientNetB0 0.71% 0.70% 0.69% 0.76% 0.53% 0.28% 0.79%

DenseNet201 0.97% 0.94% 0.95% 0.98% 0.96% 1.00% 0.13%

A. Fast Gradient Sign Method

The fast gradient sign method (FGSM) [10] is a single-step
white-box attack that uses the gradients of the loss function
with respect to the input image to determine the direction in
which to modify the pixels:

x̃ = x+ ε · sign(∇xJ(θ, x, y))

where ε is the perturbation multiplier (intended to be small),
θ the parameters of the model and J the loss function.

B. Projected Gradient Descent

Projected Gradient Descent (PGD) [11] is an improvement
of the Basic Iterative Method (BIM) proposed in [25], with
the only change of starting from a random point within the ε
norm ball [26].

At the same time, BIM is an iterative extension of FGSM
where, in each iteration, a small step size is applied, and the
intermediate pixels are clipped to guarantee that they are in
the ε-neighborhood of the original input:

X̃0 = X

X̃N+1 = ClipX,ε{X̃N + αsign(∇XJ(X̃N , y))}

C. HopSkipJumpAttack

HopSkipJumpAttack [12] is a query-efficient decision-based
(using the predicted labels of the targeted model) black-box
attack. It is based on the Boundary Attack [27], in which
the gradient direction, step-size and boundary search are
calculated for each iteration via binary search.

IV. RESULTS AND DISCUSSION

The attacks implemented in the ART library accept mul-
tiple configuration parameters. In the case of FGSM, we
have chosen an arbitrary scale of eps values (with the ep-
silon parameter we decide the magnitude of the perturba-
tion of the final adversarial example) that include the val-
ues (0.1, 0.2, 0.3, 0.5, 0.8, 1, 3, 5, 10, 15, 20, 30) and combined
them with L∞, L1, L2 norms, which represent the perturbation
constraint type; the rest of the parameters were left as default.

The source images are pre-processed before the attack and
in some cases we scaled the eps values accordingly to the
input pixel range of the target network, e.g. DenseNet201 pixel
range is x/255 and the eps values used to the attack were
(0.0003, 0.0007, 0.0011) for the first three values.

The effect of progressively increasing eps values on the
original image can be seen in Fig. 1. Therefore, for each of
the seven models, 100 images of each combination of eps and
norm have been generated, making a total of 3600 images for
each classifier; then, we have classified all generated images
through all models and have measured the ratio of successful
classifications.

A. Fast Gradient Sign Method

We have observed that all families are vulnerable to the
FGSM attack but some more than others. For the VGG16
network, the attack starts to be effective with a very low eps
of around 0.3, dropping the precision of correct classifica-
tions from 100% to approximately 50%, while the VGG19
network holds up to 0.5 eps and drops to 60% eps with
VGG16’s adversarial examples. The transferability between
VGG models is high as we can see in Fig. 2a and 2b, when
the value eps reaches 5 the precision of the networks drops to
0.3 approximately. This attack transfers to the other networks
with a similar slope, being the MobileNetV2 network the most
affected.

The EfficientNetB0 network is vulnerable to low values of
eps. However, it stabilizes starting from a value of 5. The
generated examples are transferred with similar success to
VGG (see Fig. 2c), being MobileNetV2 the most affected,
as before.

In the ResNet family, the ResNet50 network appears to be
very sensible as well to low eps values and drops to 10%
precision with a value of approximately 0.3 (see Fig. 2d).
The generated images transfer well to the other networks,
although for larger eps values (see Fig. 2e). The attack for
ResNet152V2 succeeds with similar results as ResNet50. In
this case, the transferability between these two networks is low,
being possible that the different pixel range of both models is
the reason for these results.

MobileNetV2 precision drops to 70% with very low values
and to 25% with an eps of 0.02; however, the transferability is
not as pronounced (see Fig. 2f). DenseNet201 precision drops
to 30% with an eps of 0.02 and the transferability is similar
to MobileNetV2 (see Fig. 2g).

The transferability for the FGSM attack is more significant
in cases where the eps values have not been adapted to
the input pixel range of the network. The VGG family,



(a) VGG16 (b) VGG19 (c) EfficientNetB0

(d) ResNet50 (e) ResNet152V2 (f) MobileNetV2

(g) DenseNet201

Fig. 2. Fast Gradient Sign Method attack transferability

EfficientNetB0 and ResNet50 inputs are in [0, 255] range,
x/255 for DenseNet201 and x/127.5 for MobileNetV2 and
ResNet152V2. We can hypothesize that the generated adver-
sarial examples from networks with an input pixel range of
[0, 255] are more transferable due to the eps values being
larger and, therefore, causing steeper gradients. The attacks
performed with L1, L2 norms have not been successful, pos-
sibly because they represent more restricted boundaries.

Table I shows the accuracy percentages of the models
for images generated by the FGSM attack with an eps of
10 for EfficientNetB0, VGG16/19 and ResNet50 networks.
For DenseNet201, a scaled eps of 0.0392 and 0.0784 for
ResNet152V2 and MobileNetV2 networks. As an example, in
the first row we can see how the attack reduces the accuracy
of VGG16 to 0.06% and how the adversary examples transfer
to the other networks, being ResNet152V2 the least affected
with a 0.72% of accuracy.

B. Projected Gradient Descent

For the PGD method we only perform the attack for the L∞
norm with the same values of eps used in FGSM and 1200
iterations. In this case, we have observed that the transferabil-
ity between the two networks of the VGG family is similar as
with the FGSM attack, while the others networks have barely
been affected, see Fig. 3a and 3b. For the EfficientNetB0 (see
Fig. 3c) the attack succeeds with all 100 images at an eps
of 0.5 and is only transferable to MobileNetV2, reducing its
precision to 60%. In the case of the ResNet50, ResNet152V2,
MobileNetV2, and DenseNet201 networks transferability is
insignificant (see Fig. 3d, 3e, 3f, and 3g).

In general, the attack was successful in all networks but
transferability was lower than in the case of the FGSM attack.
This may be because the perturbations obtained with the PGD
attack are more adjusted to the decision boundary of target
network.



(a) VGG16 (b) VGG19 (c) EfficientNetB0

(d) ResNet50 (e) ResNet152V2 (f) MobileNetV2

(g) DenseNet201

Fig. 3. Projected Gradient Descent attack transferability

C. HopSkipJumpAttack

Finally, the HopSkipJump attack was performed using 30
maximum iterations and 20000 evaluations (see Fig. 4). The
attack almost succeeds completely for the EfficientB0 and
ResNet152V2 networks, decreasing precision to 0.01 and
0.10, respectively. For the MobileNetV2, VGG16 and VGG16
networks the results were worse than in the previous case, but
still considerably effective with precisions of 0.28, 0.4, and
0.48, respectively. ResNet50 and DenseNet201 were the most
resistant networks to the HopSkipJump attack with these pa-
rameters. Despite the effectiveness of the attack, transferability
was negligible in all cases.

V. CONCLUSIONS

In this work, we show that even modern state-of-the-art
networks with many layers and parameters are vulnerable to
a simple one-step attack, and that the transferability property
works well between similar architectures and different clas-

Fig. 4. HopSkipJump attack success

sification models in some cases. For the deeper networks,
only the images created with high values of eps have been
transferred between networks, but with the drawback that the
images are easily detectable and very different to the originals.



The adversarial images generated with the Fast Gradient Sign
Method and Projective Gradient Descent attacks for the VGG
networks transfer well within the same family, but not in the
case of the other networks. We observed that transferability
depends both on the eps scale and the pixel input range of the
networks: the eps values are higher for networks with a pixel
range of x/255, and the perturbations are more obvious on
the generated images.

Regarding the HopSkipJump attack, the transferability was
practically non-existent. This black-box method is not reliant
on the gradient, this could be a possible explanation for
the poor transferability among networks in this case. Future
research will involve more black-box attacks and further
transferability studies.
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