
1

Benchmarking Inference Performance of Deep
Learning Models on Analog Devices

Omobayode Fagbohungbe, Student Member, IEEE, Lijun Qian, Senior Member, IEEE

Abstract—Analog hardware implemented deep learning models
are promising for computation and energy constrained systems
such as edge computing devices. However, the analog nature
of the device and the associated many noise sources will cause
changes to the value of the weights in the trained deep learning
models deployed on such devices. In this study, systematic
evaluation of the inference performance of trained popular deep
learning models for image classification deployed on analog
devices has been carried out, where additive white Gaussian noise
has been added to the weights of the trained models during
inference. It is observed that deeper models and models with
more redundancy in design such as VGG are more robust to the
noise in general. However, the performance is also affected by
the design philosophy of the model, the detailed structure of the
model, the exact machine learning task, as well as the datasets.

Index Terms—Deep Learning, Hardware Implemented Neural
Network, Analog Device, Additive Noise

I. INTRODUCTION

Deep Learning (DL) has enjoyed and continues to enjoy
renewed interest from researchers due to their ability to
achieve or even surpass human-level performance for many
cognitive applications. The resurgence can be attributed to
large scale dataset, high-performance hardware, new activation
functions and more sophisticated optimization methods [1].
These factors have led to an advancement in the field of
deep learning favoring the design of deep, large, and very
complex models. Despite their unprecedented level of per-
formance and improvement in their design in recent years,
DL models require high computational and energy resources
during training and inference [2], [3]. The high computational
resource requirement is because of the intense fundamental
operations by these models, such as dot product of vector and
matrix, and multiplications of matrices, during training and
inference [4], [5]. This is further complicated by the large
increase in the quantity of these operations with the increase
in the size of the models. The high energy requirement can be
attributed to the data intensive nature of the models and the
huge memory and memory bandwidth requirement of the deep
and large models. As a result, typical CPU and GPU on edge
devices do not have enough memory resource to process these
models efficiently as the CMOS technology is approaching
its limit and making it a performance bottleneck [2], [4].
Hence, models are stored in the off-chip memory leading to
the presence of a memory wall, a physical separation between
the processing unit and the memory [4]. This separation means

The authors are with the CREDIT Center and the Department of Electrical
and Computer Engineering, Prairie View A&M University, Texas A&M
University System, Prairie View, TX 77446, USA. Corresponding author:
Omobayode Fagbohungbe e-mail: ofagbohungbe@student.pvamu.edu

there is a need for constant shuttling for data access between
the processing unit and the off-chip memory that leads to high
energy consumption and high latency [6].

Figure 1: Noise induced performance degradation of hardware
implemented deep learning models

At the same time, there has been increasing demand for
high performance and energy efficient computing in recent
years. This demand has been further fueled by the desire
to deploy DL models on Internet-of-Things (IoT) and edge
devices which operate within a tight computational resource
and power envelope [7]. This tight requirement and the desire
to fix compute and memory transfer bottlenecks in current
set of hardware has led to a significant interest in analog
specialized hardware for DL, as they have the potential to
deliver at least 2X better performance than the conventional
digital hardware in both speed and energy efficiency [8], [9].
In fact, they can deliver at projected throughput of multiple
tera-operations (TOPs) per seconds and also achieve femto-
joule energy budgets per multiply-and-accumulate (MAC)
operation [5], [10]–[12]. The improvement can be attributed
to the use of non-volatile memory cross bar arrays to encode
DL model weights and biases, a form of computing known as
in-memory computing. The arrays have a multi-level storage
capability and also allow a single time step matrix-vector
multiplication based on Kirchhoff’s circuit laws [4], [6], [7],
[13]. Despite these advantages, analog accelerators do not have
the bit-exact precision enjoyed by digital hardware and suffer
from noise [7], as shown in Figure 1. This can be attributed to
many factors such as thermal noise, quantization noise, circuit
non-linearity, and device failure [2]. These disadvantages can
affect the reliability of DL models in the form of performance
degradation depending on the prevailing factors. Although
there are some studies on the robustness of DL models to label
noise [14], very little is known on the inference behavior of

ar
X

iv
:2

01
1.

11
84

0v
2 

 [
cs

.L
G

] 
 1

6 
D

ec
 2

02
0



2

Table I: The details of the DL models and dataset used in the experiments. The baseline inference accuracy is obtained by
performing inference on the test set of the dataset when noise has NOT been added to the weights of the models.

Model Name Dataset Number of Classes Model Input Dimension Baseline Inference Accuracy (%)
ResNet_18 Imagenet 1000 224*224*3 89.50%
ResNet_34 Imagenet 1000 224*224*3 91.44%
ResNet_50 Imagenet 1000 224*224*3 93.15%

ResNet_50SE Imagenet 1000 224*224*3 93.76%
Shufflenet_V2_1.0X Imagenet 1000 224*224*3 88.69%
Shufflenet_V2_0.5X Imagenet 1000 224*224*3 82.37%

VGG_16 Imagenet 1000 224*224*3 90.17%
ResNet_20 CIFAR10 10 32*32*3 89.50%
ResNet_32 CIFAR10 10 32*32*3 91.44%
ResNet_56 CIFAR10 10 32*32*3 93.15%

trained DL models when the weights are subject to analog
noises.

The objective of this paper is to systematically study the
effect of additive noise on the performance of trained DL
models implemented in analog accelerators. Specifically, we
try to establish the benchmark of performance degradation
and provide observations on the detailed behavior of some
popular computer vision DL models for image classification
task in the presence of analog noise induced weight changes,
as illustrated in Figure 1. The noise is modeled as additive
white noise to the weights of trained DL models implemented
in analog accelerators. We vary the strength of the noise
and the impact of the noise on each layer of the model
is investigated. The remainder of this paper is organized as
follows: The methodology used for this work is discussed
in Section II. Experimental results and analysis are given in
Section III. Further discussions and related works are reviewed
in Section IV. Section V concludes the paper.

II. METHODOLOGY

The effect of additive white noise on the performance of pre-
trained DL models for computer vision task during inferencing
is investigated. The DL models used for this work are selected
models used for image classification task. The performance
metrics under observation is the percentage of classification
accuracy (100% - error) of the model on the test data.

The noise was modeled as a white Gaussian noise of
zero mean and a standard deviation of σnoise. The standard
deviation of a white noise can be interpreted as the energy
of the noise. The value of σnoise was decided using a term
known as the signal to noise ratio (SNR). The SNR in this
context is defined as the ratio of the standard deviation of the
weights in a layer σw, to the standard deviation of the noise
added to that layer σnoise. This is defined mathematically as:

SNR =
σw

σnoise
(1)

A Gaussian noise of zero mean and standard deviations
equivalent to 1%, 10%, 20%, 40%, 60% and 100% of the
standard deviation of the weights of a particular layer σw, is
added to the same layer. This is equivalent to the SNR of 100,
10, 5, 2.5, 1.67 and 1, respectively.

The pre-trained model of interest was put in inference mode
and performance measurement on the test data is taken to
establish the baseline. Thereafter, the effect of the additive

noise was investigated by adding Gaussian noise of the desired
standard deviation or energy to the first layer of the model.
The model was then set to inference mode and the performance
measurement was taken. This was done multiple times and the
average of the testing accuracy was obtained. This process was
then repeated for the rest of the layers and the testing accuracy
was recorded. The classification accuracy due to the present
of noise ai in the model is then normalized with the baseline
classification accuracy ao, that is given by:

Ai =
ai
ao

(2)

where Ai is the normalized classification accuracy due to the
present of noise in layer i.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

A series of experiments have been conducted where the
CIFAR10 and the Imagenet datasets were used. The overview
of the experiments carried out is stated in Table II. The
details of the dataset used such as size of the images and
the number of classes are given in Table I. The CIFAR10
dataset are tiny images which are mutually exclusive and has
no semantic overlaps between images of different classes. The
Imagenet dataset, which is bigger than the CIFAR10 dataset
in dimension and size, is originally part of the ILSVRC 2012
dataset. It contains classes which are either internal or leaf
nodes but do not overlap.

The details of the DL models used for this work is provided
in Table I. The pre-trained models used in this work were
chosen based on popularity and also because the models
obtained good baseline results on the classification tasks.
The baseline results of each of the models are also shown
in Table I. The DL models tested on the Imagenet dataset
were obtained from the tensorpack model zoo. Tensorpack
is a neural network interface based on Tensorflow [15]. The
models are ResNet models [16], [17], Shufflenet models [18]
and VGG16 model [19]. The models tested on the CIFAR10
dataset were trained and tested following the algorithm in [20].
The models are modified version of ResNet models suited for
the CIFAR10 dataset. This was done in Keras deep learning
framework using Tensorflow backend. All the experiments
were conducted using a NVIDIA Tesla V100-DGXS-32GB
GPU.



3

Table II: The detailed overview of the experiment design for this work.

Experiment Design Aim of Experiment Model and dataset Used

1
To establish the performance degradation (i) VGG16, ShuffleNet_V2_R1 and ResNet50

suffered by deep learning models due to analog noise models using Imagenet dataset
in all their layers

2

(i) To establish general performance degradation trends (i) ResNet50 on Imagenet dataset
by deep learning models due to analog noise in a single layer

(ii) To establish general performance degradation trends (ii) ResNet50 on Imagenet dataset
by deep learning models due to analog noise in some layers

3
To investigate the effect of model depth (i) ResNet 18,34 and 50 on Imagenet dataset

on the degradation of deep learning models due to presence of (ii) Modified ResNet 20,32 and 56 on CIFAR10 dataset
analog noise in a single layer

4
To investigate the effect of model design philosophy (i)VGG16 vs ShuffleNet_V2_R1 vs ResNet50

on the degradation of deep learning models due to presence of on Imagenet dataset
analog noise in a single layer (ii) ResNet50 vs Resnet50-SE on Imagenet dataset

5
To investigate the effect of model compression (i)ShuffleNet_V2_R1 vs ShuffleNet_V2_R0.5

on the degradation of deep learning models due to presence of on Imagenet dataset
analog noise in a single layer

B. Results Analysis With additive Noise on All the Weights of
the Deep Learning Model

In this section, the effect of additive noise on three pop-
ular deep learning models for image classification, namely,
VGG16, ResNet50, and Shufflenet, has been evaluated. Specif-
ically, the three models are pre-trained on Imagenet dataset.
Then their inference performance on the test dataset is mea-
sured when additive white Gaussian noise with certain energy
level (1%, 2%, 5% and 10%) has been added to all the weights
of the models. The resulted prediction accuracy of the three
models are shown in Figure 2 and Table III. It should be
noted that while Table III contains the absolute value for
the classification accuracy for the various models, Figure 2
contains the values of the classification accuracy for each noise
power when normalised with the corresponding classification
accuracy for each model type in the absence of noise (noise
power of 0%).

1% 2% 5% 10%
Noise power level (%)

0

20

40

60

80

100

N
or

m
al

is
ed

 a
ve

ra
ge

 t
es

t 
ac

cu
ra

cy
 (

al
l l

ay
er

s)
 (

%
)

VGG16
SHUFFLENET
RESNET50

Figure 2: The inference performance of pre-trained VGG16,
ResNet50, and Shufflenet when noise added to all the weights

It can be observed that VGG16 has the best performance and
Shufflenet model has the poorest performance. The VGG16
model did not suffer any degradation in performance when
additive white Gaussian noise of 10% energy level was added,
attesting to the noise resistant behaviour of the model. How-
ever, Shufflenet model suffered huge degradation in perfor-
mance even for 1% energy level white Gaussian noise. The

Table III: Comparison of the performance of pre-trained
VGG16, Shufflenet_V2_R_1.0X and ResNet50 Models in the
presence of noise in all its layer during inference when tested
with Imagenet dataset. The performance metric is the model
classification accuracy

Noise power (%)
Model_Name 0% 1% 2% 5% 10%

VGG16 90% 90% 90% 90% 90%
Shufflenet_V2_R1.0X 89% 12% 6% 1% 1%

ResNet50 93% 92% 89% 69% 24%

model suffered 87%,94%,99% and 99% in degradation for
a noise energy levels of 1%,2%,5% and 10% respectively.
Although the ResNet50 model also suffered some performance
degradation due to the noise, the degradation in performance
is not as severe as the degradation observed in the Shufflenet
model.

The difference in noise resistant ability of the various DL
models can be attributed to the number of parameters in
the model [21]. There are about 2.2 million , 25.6 million
and 138.4 million parameters in Shufflenet, ResNet50 and
VGG16 models parameter. Models with very large parameters
have their learning ability shared among many parameters.
Hence, they are more resistant to noise that models with fewer
parameters.

C. Layer-by-Layer Analysis of the Deep Learning Models
With Noise added Per Layer

The previous section gives the inference performance of
three popular deep learning models when additive white
Gaussian noise is added to all the weights in the models.
This provides a general measure of the noise resistance ability
of the models. In this section, we go a step further to
examine the models layer-by-layer. The goal is to evaluate
how each layer in a deep learning model affects the inference
performance when exposed to noise. The observation will help
us understand the role of the layers and their respective noise
resistance property, and eventually be able to design more
robust deep learning models for noisy analog devices.

1) Performance Analysis of pre-trained ResNet50: The
effect of additive white Gaussian noise of various power levels



4

0 20 40 60 80 100
Layer #

80

82

84

86

88

90

92
Te

st
in

g 
Ac

cu
ra

cy
 (

%
)

1% noise
10% noise
20% noise

Figure 3: The inference performance of pre-trained ResNet50
trained on Imagenet dataset in the presence of noise (seed=40)
in its layer (one layer at a time)

on the parameters (trainable and untrainable) of each layer
of ResNet50 model trained on Imagenet dataset are shown
in Figure 3 and 4 (with different seeds of the pseudorandom
noise). In this work, the batch normalization parameters were
considered to be a single layer. This is because their properties
are a little different from the properties of the weight and
bias of a neural network. It was observed that the neural
network showed a certain degree of resistance to the noise
at lower power level for all the layers in the model. It was
also observed that the level of resistance reduces as the noise
energy level increases. For noise energy level that the model
didn’t show strong resistance to the effect of additive white
noise, it was observed that the later layers are more resistance
to the noise than the layers that are earlier in the network.
This trend was also observed for other models irrespective of
the type of model used or the dataset they were trained on.
However, for each specific layer, although it appears that there
is some pattern in the degradation of performance, it is still
quite random for individual layers in the model. For instance,
when the energy of the noise is the same but the seed of the
pseudorandom noise changes, the pattern of the degradation is
very different as shown in Figure 3 with seed=40 and Figure 4
with seed=30.

Figure 5 shows the effect of adding additive white noise
to more than one layer in the network starting with layer
one. In other words, the performance result at layer L means
that noise of a particular power level was added to all the
layers from layer 1 to layer L. For a fixed noise level, it was
observed that the amount of degradation in model classification
accuracy increases as we increase the number of layer until the
model testing accuracy approach zero. It can also be observed
from the figure that the depth of the layer at which the model
classification accuracy reduces to almost zero reduces as the
energy level of the noise increases.

In order to aid better summarization and analysis of results,
a new metric called average normalized percentage classifica-
tion accuracy per layer is introduced. This is mathematically

0 20 40 60 80 100
Layer #

50

60

70

80

90

N
or

m
al

is
ed

 T
es

ti
ng

 A
cc

ur
ac

y 
(%

)

1% noise
10% noise
20% noise

Figure 4: The inference performance of pre-trained ResNet50
trained on Imagenet dataset in the presence of noise (seed=30)
in its layer (one layer at a time)

0 20 40 60 80 100
Layer #

0

20

40

60

80

100

N
or

m
al

is
ed

 T
es

ti
ng

 A
cc

ur
ac

y 
(%

)
1% noise
10% noise
20% noise

Figure 5: The inference performance of pre-trained ResNet50
trained on Imagenet dataset in the presence of noise in multiple
layers (layer 1 to layer L, L is the layer index).

defined as:

Aavr =

N∑
i=1

Ai

N
(3)

where Aavr is the average normalized percentage classification
accuracy per layer. This new metrics is a metric of a model
rather than the metric of a layer li in a model. This metric is
different from Ai which is a metric of a particular layer in a
model. The comparisons of the various models are then done
in the subsections below.

2) Analysis of ResNet models trained on Imagenet and
CIFAR10 datasets: In this section, the analysis of the per-
formance of various ResNet models trained on Imagenet and
CIFAR10 dataset for classification task is given, when additive
white Gaussian noise at a particular energy level is added to
the various layers of the models. For the Imagenet dataset,
the models of interest are ResNet18, ResNet34 and ResNet50
models. The models are the same in design principles except in
depth with ResNet18 being the shallowest and ResNet50 being
the deepest. The models of interest for the CIFAR10 datasets
are ResNet20, ResNet32 and ResNet56 models with ResNet20



5

1% 10% 20% 40% 60% 100%
Noise power level (%)

0

20

40

60

80

100

N
or

m
al

is
ed

 a
ve

ra
ge

 t
es

t 
ac

cu
ra

cy
 p

er
 la

ye
r 

(%
)

RESNET18 RESNET34 RESNET50

Figure 6: Comparison of the performance of pre-trained
ResNet18, ResNet34 and ResNet50 in the presence of noise in
its layer during inference when tested with Imagenet dataset

Table IV: Details of the ResNet18, ResNet34 and ResNet50
models. The batch normalization parameter is considered as
a layer. The number of parameter includes both trainable and
non-trainable parameters

Model_Name # of Layers # of Parameters
ResNet18 41 11,699,112
ResNet34 73 21,814,696
ResNet50 107 25,610,152

Table V: Comparison of the performance of pre-trained
ResNet20, ResNet32 and ResNet56 in the presence of noise in
its layer during inference when tested with CIFAR10 dataset

Model_Name # of Layers # of Parameters
ResNet20 40 274,442
ResNet32 65 470,218
ResNet56 113 861,770

being the shallowest and ResNet56 being the deepest. These
models are a variant of the original ResNet18, ResNet34 and
ResNet50 models, respectively. The significant difference in
the 2 category of models lies in the fact that the model
architecture has been modified to be suited for use in the
CIFAR10 dataset but the design philosophy is essentially the
same.

The performance comparison of the ResNet model trained
on Imagenet and CIFAR10 datasets are shown in Figure 6
and 7, respectively. It is clear that the lowest degradation in
performance (100-Aavg) was observed for each of the model
at lower noise power, as expected. This observations buttresses
the noise resistant ability of deep neural networks. It was
shown that the amount of degradation also increases with the
increase in the noise power level for each model. Furthermore,
It was observed that models with more depth suffers less
degradation as compared to models with less depth. It was also
observed that the models trained on Imagenet dataset suffers
more degradation in performance when compared with the
equivalent model for the CIFAR10 dataset. This may be due
to the fact that the classification task for the Imagenet dataset
is more complex than that in the CIFAR10 dataset.

1% 10% 20% 40% 60% 100%
Noise power level (%)

0

20

40

60

80

100

N
or

m
al

is
ed

 a
ve

ra
ge

 t
es

t 
ac

cu
ra

cy
 p

er
 la

ye
r 

(%
)

RESNET20 RESNET32 RESNET56

Figure 7: Comparison of the performance of pre-trained
ResNet20, ResNet32 and ResNet56 in the presence of noise in
its layer during inference when tested with CIFAR10 dataset

1% 10% 20% 40% 60% 100%
Noise power level (%)

0

20

40

60

80

100
N

or
m

al
is

ed
 a

ve
ra

ge
 t

es
t 

ac
cu

ra
cy

 p
er

 la
ye

r 
(%

)

VGG16 SHUFFLENET_V2_1X RESNET50

Figure 8: Comparison of the performance of pre-trained
VGG16, Shufflenet_V2_1X and ResNet50 in the presence of
noise in its layer during inference when tested with Imagenet
dataset

Table VI: Details of the VGG16, Shufflenet_V2_1X and
ResNet50 models. The batch normalization parameter is con-
sidered as a layer. The number of parameter includes both
trainable and non-trainable parameters

Model_Name # of Layers # of Parameters
VGG16 16 138,357,544

Shufflenet_V2_1X 113 2,295,940
ResNet50 107 25,610,152

Table VII: Details of the ResNet50 and ResNet50-SE models.
The batch normalization parameters are grouped together and
considered as a layer. The number of parameter includes both
trainable and non-trainable parameters

Model_Name # of Layers # of Parameters
ResNet50 107 25,610,152

ResNet50-SE 139 28,141,144



6

1% 10% 20% 40% 60% 100%
Noise power level (%)

0

20

40

60

80

100

N
or

m
al

is
ed

 a
ve

ra
ge

 t
es

t 
ac

cu
ra

cy
 p

er
 la

ye
r 

(%
)

RESNET50 RESNET50-SE

Figure 9: Comparison of the performance of pre-trained
ResNet50 and ResNet50-SE in the presence of noise in its
layer during inference when tested with Imagenet dataset

3) Analysis of VGG and Shufflenet models trained on Im-
agenet: The effect of model design principles on the ability
of neural network to resist additive white Gaussian noise of
different power level is investigated in this section. This is
done by comparing the performance of three different models,
trained on Imagenet dataset but with different architecture de-
sign principles, when additive white Gaussian noise of various
power is injected into their layers. This is different from the
case in Section III-C2 where the models were the same in
design principles but vary in depth. The models investigated
and compared in this section are VGG16, ResNet50 and
Shufflenet (Version 2, ratio 1.0x) and ResNet50-SE models.

Figure 8 shows the performance comparison between
VGG16, Shufflenet_V2_R1.0X and ResNet50 when noise is
injected into their layers. The trend in the performance of
each of the model were very similar to the one observed in
section III-C3 although the degradation in performance differs
from one model to the other. The VGG16 model has the
best noise resistance property among the three models while
Shufflenet_V2_R1.0X having the worse performance. In fact,
the VGG16 model did not experience degradation in classifi-
cation accuracy for noise power level of 1%, 10%, 20% and
40%. Furthermore, the degradation in classification accuracy
experience at noise power level of 60% and 100% are very
minimal (1% and 4% respectively) as compared to the other
two models. This is unexpected as the shallowest model among
the models under review is the VGG16 model and the deepest
is the Shufflenet_V2_R1.0X model. This may be because the
different architecture design philosophy which is the major
difference among the models under review. The VGG16 and
ResNet50 models were designed with the aim of maximizing
the performance of deep neural network by leveraging on
the ability of neural network to give improved performance
with increase in the depth of the network. Although this
design philosophy gave some consideration to the amount of
compute , memory and power resource needed to train and
test the models, maximizing performance was the primary
consideration. This design philosophy is different from the

Table VIII: Details of the Shufflenet_V2_0.5x and Shuf-
flenet_V2_1X. The batch normalization parameters are
grouped together and considered as a layer. The number of
parameter includes both trainable and non-trainable parameters

Model_Name # of Layers # of Parameters
Shufflenet_V2_0.5x 113 1,374,744
Shufflenet_V2_1X 113 2,295,940

design philosophy for the Shufflenet model where the same
amount of consideration was given to both performance and
the amount of memory, compute and power resource needed to
train and test the models. This is primarily because Shufflenet
was designed to be deployed on resource constrained devices
with limited compute, memory and power budget.

The performance comparison of ResNet50 and ResNet50-
SE when noise is injected into their layers is shown in
Figure 9. The performance of the individual models also
follows the trend observed in section III-C2 as expected.
Although they share similar names, ResNet50-SE is more
resistant to noise as shown in Figure 9. This performance
difference can be attribute to slight difference in architecture
design philosophy as ResNet50-SE is a variant of the original
ResNet50.ResNet50 uses an identity-based skip connections
to ensure deeper network are able to learn better. ResNet50-
SE model, in addition to the identity based skip connection,
uses Squeeze and excitation unit to ease the learning process,
and significantly enhance the representational power of the
network.it achieves these by explicitly modelling the inter-
dependencies between the channels of its convolutional fea-
tures by using global information to selectively emphasise
informative features and suppress less useful ones [16], [17].

D. Analysis of models with similar design principles and
depth but different number of parameters

Model compression can be defined as any action taken to
make DL models lighter or smaller in order to achieve faster
inference or reduce their memory requirement [22], [23]. The
effect of model compression on performance of neural network
models in the presence of additive white Gaussian noise in
their layer is investigated in this section. This was achieved
by using a model with similar architecture design principle
and same depth but differ in the number of parameters. The
models used for the investigation are the Shufflenet_V2_1x
and Shufflenet_V2_0.5x [18]. The Shufflenet_V2_1x model
has 2.4 million parameters and 146 million floating point
operations per second, while the Shufflenet_V2_0.5x model
has 1.4 million parameters and 41 million floating point
operations per second, highlighting the difference in their
model complexity despite having the same depth.

The performance of the two models are compared in Figure
10. The performance of the individual model when additive
white Gaussian noise of certain power level was injected into
layers follow the trend established in section III-C2. However,
there was a noticeable difference between the performances
of the models despite having the same depth and following
the same design principles. The Shufflenet_V2_0.5x perform
poorly than the Shufflenet_V2_1x for most of the noise power



7

1% 10% 20% 40% 60% 100%
Noise power level (%)

0

20

40

60

80

100

N
or

m
al

is
ed

 a
ve

ra
ge

 t
es

t 
ac

cu
ra

cy
 p

er
 la

ye
r 

(%
)

SHUFFLENET_V2_0.5X
SHUFFLENET_V2_1.0X

Figure 10: Comparison of the performance of pre-trained
Shufflenet_V2_1x and Shufflenet_V2_0.5x in the presence of
noise in its layer during inference when tested with Imagenet
dataset

levels. The poor performance is attributed to the difference in
the model complexity of the models. The reduction in the
number of parameters reduces the noise resistance ability of
the Shufflenet_V2_0.5x model.

E. Summary of observations

In summary, the following observations can be made based
on the experiments:

1) In general, deep models have some noise resistant
ability. This ability was observed to be generally true
irrespective of the model type and the dataset used. The
noise resistant performance of the deep learning models
decrease as the energy of the noise increases and/or the
number of layers of the model affected by the noise
increases.

2) The noise resistant ability of various layers of deep
learning models differ. It was observed that the layers
that are deeper in the model are less sensitive to noise
as compared to shallow layers in the model.

3) The number of layers in a model affects the noise
resistant ability of a deep learning model. This explains
the difference in performance of ResNet18, ResNet34
and ResNet50 models trained on Imagenet dataset in
the presence of noise.

4) The architecture design principle of a deep learn-
ing model also affects its noise resistant ability. This
explains the difference in performance between the
VGG16, Shufflenet_V2_1X and ResNet50 models as
shown in Figure 8.

5) Model compression methods could impact on the noise
resistance ability of a deep learning model. This was
demonstrated by Shufflenet models as shown in Figure
10 that the noise resistant ability was impaired due to
reduction in the number of parameters despite having
the same depth.

IV. DISCUSSION AND RELATED WORKS

There are several works in the literature on the effect of
analog noise on neural network models. The use of noise for
regularization purpose of deep learning model was proposed
in [24]. It also considered 3 approaches to controlling trade-
off between the bias and the variance of a neural network.
The works of [25], [26] focused on the injection of noise
to the synaptic weight of neural networks during training to
improve their noise resistant ability.The improvement in noise
resistant ability is very important as analog devices suffers
from limited precision and also presence of analog noise in
the hardware. The use of knowledge distillation,a method to
transfer knowledge from a teacher model to a student model,
was used to improve further the noise resistant ability of a DL
model in [7].In this case, the student and the teacher model are
the same model. The student model obtained from this method
showed better performance than the DL model obtained from
the method used in [25] during inferencing in the presence of
analog noise.

Instead of training the DL models on digital devices, the
training of neural networks on analog hardware in order to
improve their noise resistant ability was done in [27], [28].
The DL model is trained using stochastic gradient descent
and back-propagation in the presence of noise it will later
experience during testing. The resulting model adapt to the
noise by developing some resistance to it in the process
of learning its weight.Despite its advantages, this method
has some demerits. The need to design a back-propagation
circuitry on a device for only inferencing complicates the
chip design and also increases the area of the chip though
the back-propagation is only needed once. This method is
laborious as DL training might have to be done on every chip
that will be used during testing. This is because the analog
noise power might vary from one chip to another [2]. Chip-in-
the-loop method, a method that involves measuring the error
that the model is going to experience in the hardware and
then using the error to update the weights in software, was
used in [29], [30].This method is used to tune pre-trained
model for the chip in order to make them adaptable to the
chip. The process can be slow and very inefficient. The use of
linear and non-linear analog error correcting codes to protect
the analog weights was done in [31]. A study on the design
of code rate of error correction code for different layers of
the neural network was also conducted. A comparison was
done between this method and the binarized neural network
which is an alternative to this method. The use of deep
reinforcement learning and selective protection scheme to
choose the important bit for error correcting codes protection
was done in [32]. The reinforcement learning algorithm was
used to determine the complex relationship between the bits to
protect and the model performance in order to determine the
optimal trade off between redundancy and performance. The
paper also showed that the most important bit in the weights
of a DL model that is worthy of protection is not always the
most significant bit.

The existing works are different from this study as they
explore ways to use analog noise to improve on the noise



8

resistant properties of DL models. On the other hand, the
objective of this study is to investigate and provide intuitions
and insights about the noise resistant ability of popular deep
neural networks, especially those DL models for image clas-
sification. Although some bench marking studies were done
in [31], digital noise (bit flipping) was used unlike this work
where we used analog noise (additive white Gaussian noise).
Furthermore, a comprehensive study has been performed in
this work, including examining the performance of the DL
models when the noise is added to all the weights, and the
detailed effects of the noise on each individual layer of the
DL models. The effect of noise on the layers of each neural
network is important as layers are the building blocks of
DL models. In addition, this study compared the performance
differences between models of difference design and provide
insights on the effect of model compression on the noise
resistance ability of DL models.

V. CONCLUSION

Analog hardware implemented deep learning models are
considered a promising approach for edge learning because
they have faster execution speed and at the same time very
energy efficient comparing to digital devices. However, one of
the major concerns of such an approach is the analog noise
incurred weights change in the deep learning models. In this
paper, the noise resistance ability of various deep learning
models in the presence of additive white Gaussian noise was
investigated. Specifically, systematic experiments are carried
out by adding white Gaussian noise of various power level
to the weights in some of the popular deep learning models
for image classification such as VGG, ResNet, and Shufflenet
models. In addition to adding noise to all the weights of the
models, experiments of adding noise to weights layer-by-layer
are also conducted to examine the role of each layer in the deep
learning models in terms of noise resistance. This has been
done for deep learning models with different design principles,
models with similar design principles but different depths
or different number of parameters, as well as models with
and without compression. A performance metric to assess the
resistance of a model to the presence of noise in its layer was
introduced and used to compare the performance of various
models.

In this work, it was observed that deep learning mod-
els do have some noise resistant ability measured by their
performance degradation due to various noise levels and it
varies from model to model. It was shown that the amount
of degradation experience due to the presence of noise could
be affected by factors such as number of parameters (model
compression), depth of the model and design philosophy of
the model. It was also observed that deeper layers in the
models are more resistance to noise than the earlier layers.
This is an important step towards understanding how deep
learning models would perform when implemented in analog
hardware with noise affecting the performance of such models.
The hope is that through comprehensive study, practitioners
may be able to choose the appropriate deep learning models
for given analog hardware to meet performance requirements.

Furthermore, designers of deep learning models may find new
ways to design the structure of the models and new methods
to train the models that make them more robust to noise when
implemented in analog hardware.

VI. ACKNOWLEDGMENTS

This research work is supported in part by the U.S. Dept.
of Navy under agreement number N00014-17-1-3062 and the
U.S. Office of the Under Secretary of Defense for Research
and Engineering (OUSD(R&E)) under agreement number
FA8750-15-2-0119. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the Dept. of Navy or the Office of the Under Secretary of
Defense for Research and Engineering (OUSD(R&E)) or the
U.S. Government.

REFERENCES

[1] H. Noh, T. You, J. Mun, and B. Han, “Regularizing deep neural networks
by noise: Its interpretation and optimization,” 2017.

[2] M. Klachko, M. R. Mahmoodi, and D. B. Strukov, “Improving
noise tolerance of mixed-signal neural networks,” CoRR, vol. abs /
1904.01705, 2019. [Online]. Available: http://arxiv.org/abs/1904.01705

[3] H. Li, M. Bhargav, P. N. Whatmough, and H. . Philip Wong, “On-chip
memory technology design space explorations for mobile deep neural
network accelerators,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–6.

[4] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella,
“Analog architectures for neural network acceleration based on non-
volatile memory,” Applied Physics Reviews, vol. 7, no. 3, 9 2020.

[5] G. Charan, A. Mohanty, X. Du, G. Krishnan, R. V. Joshi, and Y. Cao,
“Accurate inference with inaccurate rram devices: A joint algorithm-
design solution,” IEEE Journal on Exploratory Solid-State Computa-
tional Devices and Circuits, vol. 6, no. 1, pp. 27–35, 2020.

[6] V. Joshi, M. L. Gallo, I. Boybat, S. Haefeli, C. Piveteau,
M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou, “Accurate
deep neural network inference using computational phase-change
memory,” CoRR, vol. abs / 1906.03138, 2019. [Online]. Available:
http://arxiv.org/abs/1906.03138

[7] C. Zhou, P. Kadambi, M. Mattina, and P. N. Whatmough, “Noisy ma-
chines: Understanding noisy neural networks and enhancing robustness
to analog hardware errors using distillation,” ArXiv, vol. abs/2001.04974,
2020.

[8] L. Ni, Z. Liu, H. Yu, and R. V. Joshi, “An energy-efficient digital
reram-crossbar-based cnn with bitwise parallelism,” IEEE Journal on
Exploratory Solid-State Computational Devices and Circuits, vol. 3, pp.
37–46, 2017.

[9] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and
et al., “Deep learning with coherent nanophotonic circuits,” Nature
Photonics, vol. 11, no. 7, p. 441–446, Jun 2017. [Online]. Available:
http://dx.doi.org/10.1038/nphoton.2017.93

[10] C. H. Bennett, T. P. Xiao, R. Dellana, B. Feinberg, S. Agarwal, M. J.
Marinella, V. Agrawal, V. Prabhakar, K. Ramkumar, L. Hinh, and
et al., “Device-aware inference operations in sonos nonvolatile memory
arrays,” 2020 IEEE International Reliability Physics Symposium (IRPS),
Apr 2020. [Online]. Available: http://dx.doi.org/10.1109/IRPS45951.
2020.9129313

[11] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler,
K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches,
I. Boybat, M. L. Gallo, K. Moon, J. Woo, H. Hwang, and Y. Leblebici,
“Neuromorphic computing using non-volatile memory,” Advances in
Physics: X, vol. 2, no. 1, pp. 89–124, 2017.

http://arxiv.org/abs/1904.01705
http://arxiv.org/abs/1906.03138
http://dx.doi.org/10.1038/nphoton.2017.93
http://dx.doi.org/10.1109/IRPS45951.2020.9129313
http://dx.doi.org/10.1109/IRPS45951.2020.9129313


9

[12] M. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim,
J. Niroula, S. J. Plimpton, E. Ipek, and C. D. James, “Multiscale co-
design analysis of energy, latency, area, and accuracy of a reram analog
neural training accelerator,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 8, no. 1, pp. 86–101, 2018.

[13] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1383762119304965

[14] D. Rolnick, A. Veit, S. Belongie, and N. Shavit, “Deep learning is robust
to massive label noise,” 2017.

[15] Y. Wu et al., “Tensorpack,” https://github.com/tensorpack/, 2016.
[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[17] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
CoRR, vol. abs / 1709.01507, 2017. [Online]. Available: http:
//arxiv.org/abs/1709.01507

[18] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An
extremely efficient convolutional neural network for mobile devices,”
CoRR, vol. abs / 1707.01083, 2017. [Online]. Available: http:
//arxiv.org/abs/1707.01083

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

[20] F. Chollet, “Training resnet models in keras.” [Online]. Available: https:
//github.com/keras-team/keras/blob/master/examples/cifar10_resnet.py

[21] J. Sietsma and R. J. Dow, “Creating artificial neural networks
that generalize,” Neural Networks, vol. 4, no. 1, pp. 67 – 79,
1991. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0893608091900332

[22] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” CoRR, vol. abs
/ 1710.09282, 2017. [Online]. Available: http://arxiv.org/abs/1710.09282

[23] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2016.

[24] C. M. Bishop, “Training with noise is equivalent to tikhonov regular-
ization,” Neural Computation, vol. 7, no. 1, pp. 108–116, 1995.

[25] A. F. Murray and P. J. Edwards, “Enhanced mlp performance and fault
tolerance resulting from synaptic weight noise during training,” IEEE
Transactions on Neural Networks, vol. 5, no. 5, pp. 792–802, 1994.

[26] M. Qin and D. Vucinic, “Noisy computations during inference: Harmful
or helpful?” CoRR, vol. abs / 1811.10649, 2018. [Online]. Available:
http://arxiv.org/abs/1811.10649

[27] G. M. Bo, D. D. Caviglia, and M. Valle, “An on-chip learning neural
network,” in Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, vol. 4, 2000, pp.
66–71 vol.4.

[28] A. Schmid, Y. Leblebici, and D. Mlynek, “Mixed analogue-digital
artificial-neural-network architecture with on-chip learning,” Circuits,
Devices and Systems, IEE Proceedings -, vol. 146, pp. 345 – 349, 01
2000.

[29] I. Bayraktaroglu, A. S. Ogrenci, G. Dundar, S. Balkir, and E. Alpaydin,
“Annsys (an analog neural network synthesis system),” in Proceedings of
International Conference on Neural Networks (ICNN’97), vol. 2, 1997,
pp. 910–915 vol.2.

[30] S. Schmitt, J. Klaehn, G. Bellec, A. Grübl, M. Guettler, A. Hartel,
S. Hartmann, D. H. de Oliveira, K. Husmann, V. Karasenko, M. Kleider,
C. Koke, C. Mauch, E. Müller, P. Müller, J. Partzsch, M. A. Petrovici,
S. Schiefer, S. Scholze, B. Vogginger, R. A. Legenstein, W. Maass,
C. Mayr, J. Schemmel, and K. Meier, “Neuromorphic hardware in
the loop: Training a deep spiking network on the brainscales wafer-
scale system,” CoRR, vol. abs/1703.01909, 2017. [Online]. Available:
http://arxiv.org/abs/1703.01909

[31] P. Upadhyaya, X. Yu, J. Mink, J. Cordero, P. Parmar, and A. Jiang, “Error
correction for hardware-implemented deep neural networks,” 2019.

[32] K. Huang, P. Siegel, and A. Jiang, “Functional error correction for robust
neural networks,” 2020.

Omobayode Fagbohungbe is currently working
towards his Ph.D. degree at U.S. DOD Center of Ex-
cellence in Research and Education for Big Military
Data Intelligence (CREDIT Center), Department of
Electrical and Computer Engineering, Prairie View
A&M University, Texas, USA. Prior to now, he
received the B.S. degree in Electronic and Electrical
Engineering from Obafemi Awolowo University, Ile-
Ife, Nigeria and the M.S. degree in Control Engi-
neering from the University of Manchester, Manch-
ester, United Kingdom. His research interests are in

the area of big data, data science, robust deep learning models and artificial
intelligence.

Lijun Qian (SM’08) is Regents Professor and
holds the AT&T Endowment in the Department
of Electrical and Computer Engineering at Prairie
View A&M University (PVAMU), a member of
the Texas A&M University System, Prairie View,
Texas, USA. He is also the Director of the Center
of Excellence in Research and Education for Big
Military Data Intelligence (CREDIT Center). He
received BS from Tsinghua University, MS from
Technion-Israel Institute of Technology, and PhD
from Rutgers University. Before joining PVAMU,

he was a member of technical staff of Bell-Labs Research at Murray Hill,
New Jersey. He was a visiting professor of Aalto University, Finland. His
research interests are in the area of big data processing, artificial intelligence,
wireless communications and mobile networks, network security and intrusion
detection, and computational and systems biology.

http://www.sciencedirect.com/science/article/pii/S1383762119304965
http://www.sciencedirect.com/science/article/pii/S1383762119304965
https://github.com/tensorpack/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
https://github.com/keras-team/keras/blob/master/examples/cifar10_resnet.py
https://github.com/keras-team/keras/blob/master/examples/cifar10_resnet.py
http://www.sciencedirect.com/science/article/pii/0893608091900332
http://www.sciencedirect.com/science/article/pii/0893608091900332
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1811.10649
http://arxiv.org/abs/1703.01909

	I Introduction
	II Methodology
	III Experimental Results and Analysis
	III-A Experimental Setup
	III-B Results Analysis With additive Noise on All the Weights of the Deep Learning Model
	III-C Layer-by-Layer Analysis of the Deep Learning Models With Noise added Per Layer 
	III-C1 Performance Analysis of pre-trained ResNet50
	III-C2 Analysis of ResNet models trained on Imagenet and CIFAR10 datasets
	III-C3 Analysis of VGG and Shufflenet models trained on Imagenet

	III-D Analysis of models with similar design principles and depth but different number of parameters
	III-E Summary of observations

	IV Discussion and Related Works
	V Conclusion
	VI Acknowledgments
	References
	Biographies
	Omobayode Fagbohungbe
	Lijun Qian


