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Abstract As a green and low-carbon transportation way, bike-sharing pro-
vides lots of convenience in the daily life. However, the daily usage of sharing
bikes results in dispatching problems, i.e. dispatching bikes to the specific des-
tinations. The bike-sharing platform can hire and pay to workers in order to
incentivize them to accomplish the dispatching tasks. However, there exist
multiple workers competing for the dispatching tasks, and they may strate-
gically report their task accomplishing costs (which are private information
only known by themselves) in order to make more profits, which may result in
inefficient task dispatching results. In this paper, we first design a dispatching
algorithm named GDY-MAX to allocate tasks to workers, which can achieve
good performance. However it cannot prevent workers strategically misreport-
ing their task accomplishing costs. Regarding this issue, we further design a
strategy proof mechanism under the budget constraint, which consists of a
task dispatching algorithm and a worker pricing algorithm. We theoretically
prove that our mechanism can satisfy the properties of incentive compatibil-
ity, individual rationality and budget balance. Furthermore we run extensive
experiments to evaluate our mechanism based on a dataset from Mobike. The
results show that the performance of the proposed strategy proof mechanism
and GDY-MAX is similar to the optimal algorithm in terms of the coverage
ratio of accomplished task regions and the sum of task region values, and our
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mechanism has better performance than the uniform algorithm in terms of the
total payment and the unit cost value.

Keywords Bike-sharing · Mechanism design · Task dispatching · Pricing

1 Introduction

Bike-sharing as a low-carbon travelling way, can solve the problem of “the
last mile” in the public transportation system. There exist many bike-sharing
platforms, such as HelloBike, Mobike and so on, where HelloBike has provided
bike-sharing services in more than 460 cities in China. However, the bike dis-
patching problem emerges with the flourishment of the bike-sharing market.
For example, bikes can be parked anywhere when riders reach their destina-
tions, and then other riders may not find available bikes in the nearby area.
The platform needs to dispatch these bikes regularly to specific locations in
order to satisfy riders’ demands (e.g. dispatching bikes to the exit of subway
station). However, the bikes are usually distributed anywhere within a spe-
cific geographical area, and thus it is inconvenient and costive to use trucks
to convey them. Actually, in the real world, some riders might be willingly
to accomplish these dispatching tasks in their spare time to make money, and
thus the bike-sharing platform can pay to incentivize these riders (i.e. workers)
to dispatch bikes to specific locations. In this paper, we intend to analyze how
the bike-sharing platform hires workers to dispatch bikes efficiently.

In more detail, the bike dispatching tasks in different ares may have differ-
ent values. For example, the value of dispatching bikes to the subway station
is high since potentially it can satisfy plenty of riders’ demands. Furthermore,
the platform usually has a budget constraint for paying to workers who ac-
complish the tasks. In this context, the bike-sharing platform needs to hire
workers to dispatch bikes efficiently given the budget constraint in order to
maximize the total values of dispatching tasks. Similar to some existing works,
we consider that the platform adopts an auction based mechanism to allocate
dispatching tasks to workers. In this mechanism, the platform divides the over-
all area into a number of small regions. In each region, there exist a number
of bikes to be dispatched. Workers bid for the dispatching tasks by reporting
their accomplishing costs of dispatching all bikes in that region, i.e. instead of
bidding for dispatching an individual bike, workers bid for a region, which in-
cludes a number of bikes to be dispatched. The platform then determines how
to match workers with regions, and determines the payments to the workers
in order to maximize the total values of all regions. In this situation, it may
happen that multiple workers compete with each other for the bike dispatch-
ing regions in order to make profits, and they may untruthfully report their
costs of accomplishing tasks in order to make more profits. This may result in
inefficient task dispatching results for the platform. Therefore, how to design
an strategy proof1 auction mechanism to allocate dispatching tasks and pay

1 Strategy proof means that workers have no incentives to misreport their private infor-
mation, i.e. satisfying incentive compatibility (workers can maximize their own profits by
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to workers under the budget constraint to maximize the total accomplishing
values of regions is a key issue.

Specifically, this paper advances the state of art in the following ways. In
order to maximize the region values given the budget constraint, we first de-
sign a task dispatching algorithm, named GDY-MAX, which consists of GDY
operation and MAX operation. The experimental results show that this task
dispatching algorithm can achieve good performance. However, GDY-MAX
cannot meet strategy proof. Then according to Myerson’s theorem [2], we fur-
ther design a strategy proof mechanism where the task dispatching algorithm
is monotonous and the worker pricing algorithm is based on critical price.
In more detail, we use linear programming to improve the classical greedy
algorithm by introducing Max operation in the submodule of maximization
problem, and then design the task dispatching algorithm satisfying the mono-
tonicity. In addition, we design the worker pricing algorithm with the budget
constraint based on the critical price. We theoretically prove that this mecha-
nism can satisfy the properties of incentive compatibility, individual rationality
and budget constraint. Furthermore, we run extensive experiments to evalu-
ate GDY-MAX and the strategy proof mechanism based on a Mobike dataset.
The results show that the performance of the mechanism and GDY-MAX is
similar to the optimal algorithm in terms of the coverage ratio of accomplished
task regions and the sum of task region values, and our mechanism has better
performance than the uniform algorithm in terms of the total payment and
the unit cost value.

The rest of the paper is structured as follows. We describe the related work
in Section 2. We then introduce the basic settings in Section 3. In Section 4,
we introduce GDY-MAX dispatching algorithm and the strategy proof mecha-
nism. We run experiments to evaluate our methods in Section 5, and conclude
the paper in Section 6.

2 Related work

There exist plenty of works on analyzing bike-sharing systems. For example,
in [3], the authors use a survey based approach to improve the bike-sharing
system to reduce the traffic congestion. In [7], a framework integrating artificial
immune system(AIS) and the artificial neural network forecasting technique is
developed to predict the bike rental demands, and in [10], the authors propose
a hierarchical prediction model that predicts the number of rents/returns to
each cluster in a future period to achieve redistribution. Furthermore, a data
mining method is proposed to predict the hourly rental demand of bikes, which
can help to provide stable bicycle rental supply for the public transportation
service [4]. In [5], the authors propose a network optimization approach by
considering multiple factors to increase the quality and efficiency of the bike
sharing service. In [6], a Distributed RL (DiRL) approach with reinforcement

truthfully reporting their information) and individual rationality (workers’ profits should be
non-negative) [1].
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learning and transfer learning is proposed to dynamically satisfy users’ demand
at the minimum cost.

How to dispatch bikes is a key issue in the bike-sharing system. For ex-
ample, a multi-objective optimization method is proposed to reposition bikes
over times [8]. In [9], the balancing problem of bike stations is investigated. In
[11], a deep reinforcement learning based framework is proposed to incentivize
users to rebalance the bike distribution and thus improve service levels. In
[12], an approach integrating multiobjective optimization with artificial bee
colony algorithm is used to reposition the bikes over time such that enough
bikes and open parking slots are available to users. Furthermore, hiring users
to accomplish the bike dispatching tasks can be regarded as a typical crowd-
sourcing issue, where auction based methods are widely used to allocate tasks
to users efficiently. For example, in [13], an auction model under a crowdsourc-
ing framework is proposed to allocate bike relocation tasks to users in order
to balance the bike supply and demand.

However, in such crowdsourcing related issues, workers may untruthfully
report their information to make more profits. In order to prevent strategic
behavior of reporting information, mechanism design [2] is introduced to en-
sure workers report information truthfully. In [14], an incentive mechanism
called TruPreTar is proposed to incentivize users to park bicycles at locations
desired by the platform toward rebalancing bike supply and demand. In [15],
the authors introduce a reverse auction framework to model the interactions
between the platform and the smartphone users who perform sensing tasks. A
mechanism called TRAC is proposed which can guarantee that the submitted
bids of users reflect their real costs of performing sensing tasks. In [16], an
asynchronous and distributed task selection (ADTS) algorithm is proposed to
help the smartphone users plan their task selections on their own. In [17], a
mobile crowdsensing framework is proposed to selects workers who are more
likely to provide reliable data, and compensates their costs for both sensing
and privacy leakage. In [18], a Lyapunov-based VCG auction mechanism is
proposed to increase users’ engagement in the crowdsourcing tasks.

However, these works do not consider the budget constraint in when hiring
workers to accomplish the crowdsourcing task. Actually, to the best of our
knowledge, existing works usually do not consider how to prevent strategy
behavior of workers when bidding to dispatch bikes in the bike-sharing system,
or do not consider the budget constraint. In this paper, we intend to design
a strategy proof mechanism to solve the task dispatching issue in order to
maximize the value of task regions.

3 Basic Settings

In this section, we introduce the basic settings of the bike-sharing platform,
workers and tasks, and provide the problem definition.

As we have discussed previously, we divide the overall area into several
small regions. The bike-sharing platform will regularly publish the dispatch-
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ing tasks of each region. Instead of bidding for the specific dispatching task,
workers bid for the specific region according to their current locations. Then
the platform determines the matching between the regions and workers, and
computes the payment to workers. The worker matched with the specific re-
gion needs to dispatch all unsorted bikes in that region to the destinations,
and then gets the payment from the platform. Note that different regions may
have different values, such as that the region of the subway station may have
higher values. In this paper, we intend to maximize the sum of region values
given the budget constraint.

3.1 Task Region

In this paper, we divide the overall area D into k small regular hexagon regions
which do not cross and overlap with each other, i.e.D = {D1, D2, . . . , Dk}. The
task regions are represented by a set T = {t1, t2, . . . , tk}, where tj = (lj , vj),
lj is the centric location of that region, and vj is the value of that region.

3.2 Workers

Workers bid for task regions, and then accomplish all dispatching tasks in that
matched region. We useM = {m1,m2, . . . ,mn} to represent the set of workers,
and use posi to represent the location of worker mi. The task region which can
be accomplished by the worker depends on the geographical region Dmi

and
the worker’s activity radius radi. Now the set of task regions accomplished by
worker i is Ti = {tj | dis (posi, lj) ≤ radi, tj ∈ T }.

Each worker has a cost for accomplishing the dispatching tasks of that
region, consisting of the time cost and energy cost, which is denoted by
ci = α × H + β × S, where H represents the total time to complete the
task, S represents the total walking distance, α and β are time and distance
parameters respectively. For worker mi ∈M , its expected utility ui is defined
as the payment pi received from the platform minus the cost ci, i.e. µi = pi−ci.

When the platform publishes the task information, workers compete with
each other to bid for the task region. The bid submitted by worker mi is
denoted as bi = (Ti, ci), including the set of regions Ti that can be done
by the worker and the total cost ci. The bids of all workers are denoted as
b = (b1, b2, . . . , bM ). Note that the worker may lie about cost ci (i.e. its bid
may be different from the true cost) in order to make more profits.

3.3 Problem Definition

In this paper, the platform needs to match regions with workers and make
the payment in order to maximize the total values of all accomplished task
regions given the budget constraint. We useM to represent the set of workers
who win the regions, and then the allocated regions are denoted as the set
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TM = ∪mi∈MTi. Note that the payment should be greater than the worker’s
cost, and the total payment should not be greater than the budget constraint
B. We use p = {p1, p2, . . . , pM} to represent the payments to all workers. We
intend to maximize the overall region values, which is defined as follows.

Definition 1 (Bike Task Value Maximization Problem) Given the set
of task regions T , the set of workers M and the set of bids b, the platform
will dispatch task regions to workersM⊆M (i.e. task dispatching algorithm)
and make the payment to workers (i.e. pricing algorithm) under the budget
constraint B, in order to maximize the sum of values V (M) =

∑

tj∈TM
vj , i.e:

max : V (M), s.t. ∀mi ∈M,
∑

mi∈M pi ≤ B

This problem is a typical set cover problem [19], which is an NP-hard Prob-
lem. Therefore an approximation algorithm is needed. We adopt a submodular
function in this paper.

Definition 2 (Submodular functions) N is a finite set. Function f : 2N 7→
R is a submodular function if and only if S1 ⊆ S2 ⊆ N and x ∈ N\S2:

f (S1 ∪ {x})− f (S1) ≥ f (S2 ∪ {x})− f (S2) (1)

According to the definition of submodular function, for any set of workers
M1 ⊆M2 ⊆M and workermi ∈M\M2,M1 ⊆M2, there is V (M1) ≤ V (M2).
The value is:

V (M1 ∪ {mi})− V (M1) =
∑

tj∈Ti∪mk∈M1
Tk

vj (2)

Because of the diminished marginal effect, we have:

∑

tj∈Ti∪mk∈M1
Tk

vj ≥
∑

tj∈Ti\∪mk∈M1
Tk

vj (3)

According to Equations 2 and 3, we now have:

V (M1 ∪ {mi})− V (M1) ≥
∑

tj∈Ti\∪mk∈M1
Tk

vj = V (M2 ∪ {mi})− V (M2)

(4)

4 Task Dispatching and Pricing

In this section, we first describe the task dispatching algorithm GDY-MAX,
and then introduce the strategy proof mechanism which ensure workers bid
truthfully.
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4.1 Task Dispatching Algorithm (GDY-MAX)

To solve the task dispatching issue, we first design a greedy based dispatching
algorithm. The reason of doing this is that the strategy proof mechanism is
based on this algorithm. In addition, we also find that this algorithm can
achieve good performance in the experimental analysis. We call it as GDY-
MAX, which includes GDY operation and MAX operation.

In more details, GDY operation chooses workers with low accomplishing
cost to complete high-value task regions. We use set Mk to represent winning
workers. When adding worker mi into set Mk, the marginal contribution is
fi = fi|Mk

= V (Mk ∪ {mi})− V (Mk). We select the worker with the largest

unit marginal contribution mi∗ ← argmaxmi∈M\Mk

fi
ci

until all workers are
selected, or the payments to workers reach the budget constraint, i.e. ci∗ ≤

B·fi
∗

2V (Mk∪{mi∗})
.

Furthermore, we use MAX operation to choose the region having the largest
value, i.e. m∗ ← argmaxmi∈M V ({mi}). We then select the largest set of task
regions by comparing V (Mk) with V ({m∗}), where {m∗} is the set of workers
who can get the largest sum value of task regions.

Although the MAX operation overcomes the deficiency on the approxi-
mation of GDY operation, GDY-MAX algorithm is not monotonous. For
example, there is a worker mi ∈ Mk with cost ci. GDY-MAX algorithm
can generate the set of workers Mk. Let worker mi report its cost as c

′

and
c
′

< ci. According to the unit margin contribution, when the cost of worker
mi is lower than a certain value, the set of workers selected by GDY-MAX
algorithm could be {m∗}, or {mi}. Therefore, GDY-MAX algorithm does
not satisfy monotonicity. Therefore, according to Myerson’s theorem [2], it is
not strategy proof.

4.2 A Strategy Proof Mechanism

In this section, we intend to design a strategy proof mechanism (named BMT
VMP) under the budget constraint to maximize the value of task regions
while ensuring workers bid truthfully. According to Myerson’s theorem, the
task dispatching algorithm in the mechanism needs to satisfy monotonicity,
and the worker pricing algorithm should be based on the critical price.

4.2.1 Task Dispatching

We adopt linear rounding [20] to address the monotonic issue. First, we com-
pute V ({m∗}), and then compute the values of integer programming solution,
named V . The set with the largest values will be selected. The task dispatch-
ing algorithm can guarantee monotonicity with only a slight sacrifice of per-
formance. In more details, for the linear rounding process of BMTVMP in
the integer programming, BMTVMP(B2 ,M

−) means that variable xi (which
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shows whether the worker is selected by the platform as the winning worker)
changes from a discrete value 0,1 to continuous value [0,1] with the budget con-
straint changed to B/2. To solve the linear programming problem, worker m∗

with the largest region value is eliminated since the final linear programming
solution needs to be compared with worker m∗. Workers with task accomplish-
ing cost greater than B/2 should be excluded. Those workers are denoted as

a set MB
2

. Then the rest of workers is expressed as M− , M\
(

{m∗} ∪MB
2

)

.

Finally, the optimal solution of linear programming can be denoted as GDY-
LP-MAX

(

B
2 ,M

−
)

. Similarly, the optimal solution of the integer programming

is expressed as GDY-IP-MAX
(

B
2 ,M

−
)

.

Similar to GDY-MAX algorithm, BMTVMP
(

B
2 ,M

−
)

is also based on

greedy method. However, BMTVMP
(

B
2 ,M

−
)

has different MAX operation.
The task dispatching algorithm compares the maximum region value with the
value of the optimal linear programming solution GDY-LP-MAX

(

B
2 ,M

−
)

. In-

stead of comparing values directly, we set a parameter θ = 6e2

(e−1)2 , which is re-

lated to the approximation ratio. The reason of setting such a parameter value
is as follows. From the degree of similarity between GDY-LP-MAX

(

B
2 ,M

−
)

and V (Mk), we have:

GDY-IP-MAX

(

B

2
,M−

)

≤
3e

e− 1
max {V (Mk) , V (m∗)} (5)

According to pipage rounding [21] in the linear programming, we have:

GDY-LP-MAX

(

B

2
,M−

)

≤
2e

(e− 1)
GDY-IP-MAX

(

B

2
,M−

)

(6)

Based on Equations 5 and 6, we have:

GDY-LP-MAX

(

B

2
,M−

)

≤
6e2

(e− 1)2
max {V (Mk) , V (m∗)} (7)

Therefore, the parameter θ is set to 6e2

(e−1)2 .

Finally, the task dispatching algorithm of BMTVMPmechanism is shown
in Algorithm 1.

In Algorithm 1, lines 3 to 6 indicate how to sort workers based on the
marginal contributions. Then lines 8 to 11 compare V (m∗) with the opti-
mal solution of linear programming GDY-LP-MAX

(

B
2 ,M

−
)

. When GDY-

LP-MAX
(

B
2 ,M

−
)

< θ × V (m∗), we choose {m∗} as the winning worker,
otherwise, we select Mk as the winner. The time complexity of this algorithm
is O(|M |2).

Lemma 1 The task dispatching algorithm of BMTVMP mechanism satisfies

monotonicity.

Proof From lines 8 and 11 of Algorithm 1, we can see that there are two
possible outputs. We now discuss them in turn.
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Algorithm 1: Task dispatching algorithm of BMTVMP
Input: Set of workers M ; Set of task regions T ; Budget constraint B; Set of bids b

Output: Set of winning workers M∗

1 Mk ← φ;

2 m∗ ← argmaxmi∈M V ({mi}), mi∗ ← argmaxmi∈M
fi
ci
;

3 while M\Mk 6= φ and ci∗ ≤
(B·fi∗ )

2V (Mk∪{mi∗})
do

4 Mk ←Mk ∪ {mi∗};

5 mi∗ ← argmaxmi∈M\Mk

fi
ci
;

6 end

7 M− ←M\ ({m∗} ∪MB);

8 if GDY-LP-MAX
(

B
2
,M−

)

> 6e2

(e−1)2
× V ({m∗}) then

9 M∗ ←Mk;
10 else
11 M∗ ← {m∗};
12 return M∗;

– If the output is M∗ = {m∗}, it shows that GDY-LP-MAX
(

B
2 ,M

−
)

≤
θ×V (m∗). In this case, the cost of worker m∗ accomplishing the task only
needs to satisfy the budget constraint B. Therefore, the bid of worker m∗

cannot affect the final result, which means that this worker will always be
selected as the winner.

– If the output is M∗ = Mk, we have GDY-LP-MAX
(

B
2 ,M

−
)

> θ×V (m∗).
Assuming that there is no change in the task accomplishing cost for the
remaining workers other than worker mi, worker mi ∈Mk will submit new
bid where the task cost will be reduced from ci to ci′ . In this case, the value

of GDY-LP-MAX(B2 ,M
−) will be increased due to the reduced cost of

workermi, satisfying the statement in line 8. For the marginal contribution,
since the task cost is reduced to c′i, the position of worker mi will be
advanced in the overall workers. We assume that the new position is j and
j ≤ i. Because of the decreased marginal effects, we have fi|Mi−1

≤ fi|Mj−1
.

The sum of values is, however, increased with the increased workers, which
can be expressed as V (Mi−1 ∪ {mi}) ≥ V (Mj−1 ∪ {mi}). In combination
with budget constraint, we have

c′i < ci ≤ B ×
fi|Mi−1

V (Mi−1 ∪ {mi})
≤ B ×

fi|Mj−1

V (Mj−1 ∪ {mi})
(8)

Based on the above analysis, if the original winning worker reduces the task
accomplishing cost, it still satisfies the budget constraint and the marginal con-
tribution condition, and thus is selected as the winning worker. In summary,
the task dispatching algorithm in BMTVMP mechanism satisfies monotonic-
ity.

4.2.2 Pricing

According to Algorithm 1, there will be two possible outputs. When the final
result is worker m∗ with the maximum value, the platform can take the entire
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budget as its payment. Otherwise, the platform needs to calculate the payment
to each winning worker separately and ensure that the total payment does not
exceed the budget constraint B.

Definition 3 (Critical Cost) p is the worker’s critical task cost. If the task
accomplishing cost submitted by the worker is greater than its critical cost p,
the worker will not be assigned to the task by the platform, otherwise it will
be assigned.

When the payment to worker mi is calculated, we can remove mi from the
set of sorted winning workers. Then, the payment that worker mi receives at
each position is calculated separately. Obviously, the payments are different
for workers at different positions. We then choose the largest price as the
payment to worker mi. This method calculates the payment pi as the critical
cost of worker mi ∈ M∗. Note that the payment to unassigned workers is set
to 0, while the payment to worker m∗ with the maximum value is set to B.
In the case of multiple winning workers, we first remove worker mi, and get
the remaining workers M−i = M\mi. According to the greedy method, we
compute the payment which can defeat worker from first to k−i + 1 position,
denoted as c−i

i(j). c
−i
i(j) has two limitations. First, the marginal contribution of

worker mi’s unit cost is greater than mj ’s unit cost:

f−i
i

c−i
i(j)

≥
f−i
j

cj
⇒ c−i

i(j) ≤
f−i
i × cj

f−i
j

= ϕi(j) (9)

Second, c−i
i(j) should not be greater than budget constraint B:

c−i
i(j) ≤ B ×

f−i
i

V
(

M−i
j−1 ∪ {mi}

) = λi(j) (10)

From Equations 9 and 10, we know that c−i
i(j) ≤ min

{

ϕi(j), λi(j)

}

. The

pricing algorithm use the smallest value between ϕi(j) and λi(j) as the payment

p−i
i(j) to worker mi. When the position index j increases, f−i

j is monotonically

increased, and
cj

f
−i
j

is monotonically decreased according to the submodularity

of the value function. Therefore, we can select the maximum value of p−i
i(j) and

set it as the payment to worker mi.

pi = max
1≤j≤(k′+1)

p−i
i(j) (11)

The pricing algorithm is shown in Algorithm 2. Lines 2 to 3 mean that
worker m∗ has the maximum task region value and the total budget B is the
worker’s payment. Lines 6 and 7 sort other workers by marginal contribution
when removing mi and put them into the set M−i. Then, lines 8 to 13 use the
new sorted sequence to calculate the possible payment pi for worker mi, and
then select the maximum value from all possible values as the payment to mi.
The time complexity of Algorithm 2 is O(|M |3).
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Algorithm 2: Worker pricing algorithm of BMTVMP
Input: Set of workers M ; Set of task regions T ; Budget constraint B; Set of bids b;

Set of winning workers M∗

Output: Payment p

1 p← 0;
2 if M∗ = {m∗} then
3 p← B;
4 return p;
5 for mi ∈M∗ do

6 M−i ←M\ {mi} , j ← 1,M−i
j−1 ← ∅, pi ← ci;

7 mj ← argmaxmt∈M−i
f
−i
t

ct
;

8 while M−i\M−i
j−1 6= ∅ and cj ≤

B×f
−i
j

V
(

M
−i
j−1

∪(mi}
) do

9 ϕi(j) ←
f
−i
i

×cj

f
−i
j

, λi(j) ←
B×f

−i
j

V
(

M
−i
j−1

∪{mi}
) ,pi ← max

{

pi,min
{

ϕi(j), λi(j)

}}

;

10 M−i
j ←M−i

j−1 ∪ {mj} , j ← j + 1,mj ← argmaxmt∈M−i\M′
j−1

f
−i
t

ct
;

11 end

12 ϕi(j) ←
f
−i
i

×cj

f
−i
j

, λi(j) ←
B×f

−i
i

V
(

M
−i
j−1

∪{mi}
) ;

13 p← max
{

pi,min
{

ϕi(j), λi(j)

}}

;

14 end
15 return p;

Lemma 2 The payment calculated by the pricing algorithm meets the critical

cost requirement.

Proof The proof can be shown in two cases:

– After worker mi submits a new bid, where the task accomplishing cost of
mi is less than the critical cost pi, ci ≤ pi = p−i

i(r), we have ci ≤ θi(r) and

ci ≤ λi(r). The worker can be assigned to the task at position r.
– After worker mi submits a new bid, where the task accomplishing cost is

greater than or equal to the critical cost pi, the platform will no longer
select the worker as the winner. We discuss it in the following two cases.
1) θi(r) ≤ λi(r), we get p

−i
i(r) = θi(r) from pi ← min{θi(j), λi(j)}. When mi’s

task cost is not less than pi, ci > θi(r) can be obtained. The cost of mi in-
creases while the marginal contribution remains, which means the marginal
contribution per unit cost of worker mi is smaller than the marginal contri-
bution per unit cost of worker mr. At the same time, we sort the workers
by marginal contribution of unit cost. Let j ∈

[

r + 1, k−i + 1
]

be below
position r, we have θi(r) ≥ θi(j). Then we have ci > θi(r) > θi(j), and mi

will not be selected as the winner. Suppose that at position j, we have
ϕi(j) > p−i

i(r) = ϕi(r) > p−i
i(j) = λi(j) from θi(r) < θi(j). Since the cost of

worker mi has increased, we have ci > θi(r) > λi(j), and it means that the
budget constraint is not satisfied and mi is not selected as the winner.
2) θi(r) > λi(r), p

−i
i(r) = λi(r) can be deduced from pi ← min{θi(j), λi(j)}.

Assuming that position j ∈ [0, k−i + 1], then λi(r) is greater than λi(j).
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Worker mi’s cost increases ci > p−i
i(r) = λi(r) > λi(j), and it will not be

selected as the winner because of the budget constraint. Assuming that
λi(r) < λi(j), we can get λi(j) > p−i

i(r) = λi(r) > p−i
i(j) = ϕi(j). Furthermore,

we have ci > p−i
i(r) = λi(r) > ϕi(j), it has conflict with θi(r) > λi(r), mi

cannot be selected.

In conclusion, the payment pi calculated by the worker pricing algorithm is
the critical cost of mi.

4.2.3 Theoretical analysis

In this section, we theoretically prove that our mechanism can satisfy incentive
compatibility, individual rationality and budget constraint.

Theorem 1 BMTVMP mechanism satisfies incentive compatibility under

budget constraint.

Proof From Lemma 1 and Lemma 2, we know that the task dispatching al-
gorithm is monotonous and the payment is the critical cost of the worker.
According to Myerson’s theorem, BMTVMP mechanism satisfies incentive
compatibility.

Theorem 2 BMTVMP mechanism satisfies individual rationality under bud-

get constraint.

Proof In the worker pricing algorithm (Algorithm 2), the worker who does not
participate in the dispatching task is paid zero. According to pi ← max{pi,
min{θi(j), λi(j)}}, we know that the payment to mi is pi ≥ p−i

i(j). Bids submit-

ted by other workers are unchanged when calculating the remuneration of mi.
In this case, other winning workers will remain unchanged except mi, which
can be represented by the set Mi−1 = M−i

j−1. Worker mj can win by elimi-
nating mi. In the list that does not exclude mi, worker mi is selected by the
platform as the winner, which indicates that mi’s task cost meets the budget
constraint, and it can be inferred that:

ci ≤
B × fi|Mi−1

2V (Mi−1 ∪ {i})
=

B × f−i
i|Mj−1

2V
(

M−i
j−1 ∪ {i}

) = λi(j) (12)

The list is sorted by the marginal contribution of unit cost, and the position
of worker mi precedes that of worker mj :

fi|Mi−1

ci
≥

fj|Mi−1

cj
⇒ ci ≤

f−i

i|M−i
j−1

× cj

f−i
j|Mi−1

= ϕi(j) (13)

From Equations 12 and 13, we have the task accomplishing cost of worker mi:
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ci ≤ min
{

ϕi(j), λi(j)

}

≤ p−i
i(j) ≤ pi (14)

The above equations indicates that the task accomplishing cost of worker
mi is less than or equal to payment pi. Then the utility of worker mi is greater
than or equal to zero. To sum up, in either cases, the utility obtained by the
worker is non-negative. Therefore, BMTVMP mechanism satisfies individual
rationality.

Theorem 3 Given the dispatching task assigned to worker mi ∈ M∗, the

payment pi limited to fi
V (M∗)×B

, the total payment calculated by BMTVMP

mechanism meets the budget constraint.

Proof We assume that the output of the task dispatching algorithm is M∗ =
{m∗}. Now the worker’s pricing algorithm sets B as the payment, which meets
the budget constraint. In another case, the output of the task dispatching
algorithm is M∗ = Mk. Assuming that the worker pricing algorithm gives
mi ∈ Mk a large payment, which satisfies pi > fi

V (M∗)×B
. Let position j ∈

[0, k−i +1], the equation r = argmaxp−i
i(j) is established. As the payment pi is

limited by the marginal contribution of unit cost and the budget, we have:

pi ≤
f−i

i|M−i
r−1

× cr

f−i

r|M−i
r−1

=
B × f−i

i|M−i
r−1

2V
(

M−i
r−1 ∪ {i}

) (15)

According to individual rationality, the utility obtained by worker is non-
negative, and ci ≤ pi. Because worker mi is not selected within the former
(i − 1) positions, when 0 ≤ j ≤ (i − 1), we have p−i

i(j) < ci. Then we have

p−i
i(j) < p−i

i(r). Furthermore, Mi−1 ∈ M−i
r−1, when M−i

r−1 ∪ {mi} = M−i
r−1 ∪Mk,

it can be concluded that:

fi|Mi−1

pi
≥

f−i
i|Mr−1

pi
≥

2V
(

M−i
r−1 ∪ {mi}

)

B
=

2V
(

M−i
r−1 ∪Mk

)

B
≥

V (Mk)

B
(16)

From Equation 16, it can be obtained that pi ≤
fi

V (M∗)×B
. The original

assumption is not true. Therefore, the payment pi to worker mi ∈ Mk meets
pi ≤

fi
V (M∗)×B

. We have that:

∑

mi∈M∗

pi ≤
B ×Σmi∈M∗fi

V (M∗)
= B (17)

Therefore, the total payment of BMTVMP mechanism will not exceed the
budget constraint.
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Fig. 1 Demand of weekdays and weekends

5 Experimental Analysis

We now run experiments to evaluate our methods. In the experiment, we
use a Mobike dataset including worker tracks in Shanghai from August 1 to
September 1, 2016. Each data record contains order ID, bike ID, worker ID,
start time, start location (longitude and latitude), end time, end location, and
trace. The total amount of orders is 102361. In the experiment, we assume
that the bikes needs to be dispatched periodically.

5.1 Experimental Settings

We first pre-process all order data and distinguish them into weekdays and
weekends, as shown in Figure 1. We can see that there is a huge difference
between the number of orders on weekdays and weekends. In order to make
a reliable and consistent experimental results, we exclude the order data of
weekends, and run the experiments on the order data of weekdays.

Fig. 2 Task dispatching diagram
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Table 1 Experimental Parameters

Parameters Description

Average number of bikes from 1 to 100
Workers’ moving radius 1.5, 2, 2, 3, 3.5

The unit price [0.01, 0.1]
Basic price [10, 20]

The number of workers from 50 to 600
Budget constraints from 500 to 2000

We set the experimental area as a two kilometers by two kilometers square,
divide it into a number of small regions. By looking into the dataset, the
number of bikes in a region ranges from 1 to 100. We categorize the regions
into 5 levels, and each level corresponds to different unit cost information.
The bike-sharing platform sets different values for tasks. The task value of the
bustling regions is higher, which is shown in red, followed by yellow and green
on the map. When there are fewer workers and the region is faraway from city
centre, the region has low values, which is shown in blue, as shown in Figure
2. Specifically, the region value is equal to the number of bikes multiplied by
the average time of accomplishing tasks. We then use a scaling factor 0.1 to
compute the final value. The worker’s radius of activity is divided into 5 levels,
namely 1.5, 2, 2, 3 and 3.5 kilometers. We set 2 twice because there exist plenty
of regions with 50 to 100 bikes. The higher the bike density is, the smaller the
worker’s radius of activity is. The worker cost is calculated by the basic price
plus the total price. The total price is obtained by multiplying the unit price
with the number of bikes. Since the value factor 0.1 is set, in order to make
cost value at the same magnitude, the unit price is randomly selected from
[0.01, 0.1] and the basic price is set [10, 20] at random.

In the experiment, we randomly select different workers from the dataset
at each time, and set the number of workers between 50 and 600 with step size
50. For each worker, the set of accomplishing task region depends on radius,
and the cost of task accomplishment is uniformly distributed in the range.
The experiment sets the budget between 500 and 2000 with step size 250. The
experimental parameters are shown in Table 1.

Furthermore, we evaluate our mechanism and GDY-MAX dispatching al-
gorithm against two benchmark algorithms.

UNIFORM[22]: It sets the probability of 2/5 to assign the single worker
with the maximum value, and the probability of 3/5 to choose the workers ac-
cording to greedy algorithm. This probabilistic selection method enables the
UNIFORM algorithm to have a constant approximation ratio in the worst en-
vironment. The comparison between UNIFORM algorithm and BMTVMP
mechanism can intuitively shows the influence of payments on the maximiza-
tion of task region values.

OPTIMAL: The optimal algorithm of the set coverage problem can obtain
the optimal solution for the value maximization problem. Therefore OPTI-
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MAL algorithm is selected. However, it cannot be used in real life since the
computation is heavy and cannot guarantee strategy proof.

We evaluate BMTVMP and GDY-MAX against the above two algo-
rithms in terms of the following metrics.

– The coverage ratio of accomplished task regions, which is the proportion
of the regions completed by workers to the total number of regions.

– The sum of task region values, which is the accumulation of values of
accomplished task regions.

– The total payment, which is paid to workers by the platform.
– The unit cost value, which is the ratio of sum of task region values to the

total payment of platform.

5.2 Experimental Results

The experiments are repeated for 100 times, and we compute the average
results for the analysis. We now discuss the experimental results in detail.

The coverage ratio of accomplished task regions: The coverage ratio
of the four algorithms are shown in Figure 3, where the number of workers is
set to 300, and the corresponding budget constraint is set from 500 to 2000.
From Figure 3, we can see that the coverage ratios of the accomplished task
regions of GDY-MAX, OPTIMAL algorithm and BMTVMP mechanism
increase with the increased budget since the platform is able to hire more
workers to complete more tasks, and thus increasing the regional coverage.

In general, three algorithms can achieve more than 70% coverage given the
high budget except UNIFORM algorithm. Furthermore, the performance of
GDY-MAX algorithm is very similar to that of OPTIMAL algorithm. In
contrast, the task coverage of BMTVMP mechanism is slightly lower, but
the ratio of coverage growth is stable. Note that the UNIFORM algorithm
shows that the coverage tends to decline when the budget increases. It may be
caused by the random selection of winning workers with a certain probability.
Workers with high cost are selected to spend more budget and the amount of
accomplished task regions is reduced, thus resulting in the decreased coverage
ratio. On the other hand, we find that when the budget increases to a high
value, BMTVMP mechanism is still unable to cover all regions. This is be-
cause the workers’ locations are randomly selected and thus cannot cover all
regions.

Figure 4 shows the coverage ratio of four algorithms when the budget is
set to 1000 and the number of workers is set from 50 to 600. The experimental
results show that the overall coverage of GDY-MAX algorithm, OPTIMAL
algorithm and BMTVMP mechanism increase with the increased number of
workers. Compared with Figure 3, the coverage ratio increases faster, implying
that the number of workers has a greater impacts on the coverage ratio than
the budget.

The sum of the task region values: Figure 5 shows the sum of task
region values with budgets from 500 to 2000 when the number of workers is
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Fig. 4 The coverage ratio when budget fixed at 1000

300. We can see that when the budget increases, the sum of task region values
increase for all algorithms. The reason is that when the budget increases, bike-
sharing platform can hire more workers to complete more tasks. When the bud-
get exceeds 1000, GDY-MAX and OPTIMAL algorithms can almost com-
plete all tasks and obtain high values compared with other algorithms. Note
that when the budget reaches a relatively large value, BMTVMP mechanism
can not only prevents the strategic behavior, but also achieves near-optimal
performance.

Figure 6 shows the sum of task region values when the budget is 1000 and
the number of workers varies between 50 and 600. Task values obtained by
those four algorithms go up with the increased workers. When the number of
workers increases, bike-sharing platform can select workers with lower cost to
complete tasks, but still win the same value. We can see that BMTVMP
mechanism can achieve similar performance to the optimal algorithm. Al-
though BMTVMP mechanism has a loss of small amount of values, it can
prevent strategic behavior.
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The total payment: Since GDY-MAX algorithm and OPTIMAL al-
gorithm do no include the pricing algorithm, we only evaluate the total pay-
ment of BMTVMP mechanism against UNIFORM algorithm. The number
of workers is fixed at 300 and the budget ranges from 500 to 2000. The results
are shown in Figure 7. We can see that the total payment increases with the
increased budget. When the number of workers is large and the budget is in-
creased, the bike-sharing platform can use more budget to hire more workers
to complete tasks. The total payment of BMTVMP mechanism is less than
UNIFORM algorithm, which implies that BMTVMP mechanism can save
budget and pay to workers more reasonably.

Next, the budget is fixed at 1000 and the number of workers is set between
50 and 600. The total payments of the bike-sharing platform in BMTVMP
mechanism and UNIFORM are shown in Figure 8. The results show that
the total payments of BMTVMP mechanism and UNIFORM algorithm
decrease with the increased workers. The reason is that when the budget is
fixed, the competition among workers becomes fiercer when the number of
workers increases. The platform will choose workers with lower cost to com-
plete tasks, reducing the total payment. Similarly, the results show that the
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Fig. 8 The total payment when budget fixed at 1000

total payment of BMTVMP mechanism is less than UNIFORM algorithm.
Compared with Figure 7, the total payments of both mechanisms decrease, im-
plying that the number of workers has a greater impact on the total payment
than the budget constraint.

The unit cost value: Finally, we use the unit cost value to measure
the performance of BMTVMP mechanism and UNIFORM algorithm. The
number of workers is fixed at 300 and the budget is set between 500 and 1000.
The unit cost value of the bike-sharing platform in BMTVMP mechanism
and UNIFORM algorithm are shown in Figure 9. The unit cost values of
BMTVMP mechanism and UNIFORM algorithm decrease as budget in-
creases. We find that when the budget increases, the sum of task region values
increases and the total payment also increases. However, the experiment re-
sults show that the ratio decreases. That means when the budget is increased,
the amount of increased payment is greater than the sum of task region values,
which is consistent with Figures 5 and 7.

Next, the budget is fixed at 1000, while the number of workers is set
between 50 and 600. The unit cost value of the bike-sharing platform in
BMTVMP mechanism and UNIFORM algorithm are shown in Figure 10.
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The unit cost values of BMTVMP mechanism and UNIFORM algorithm
increase with the increased workers. By comparing Figure 6 with Figure 8, we
know that when the number of workers increases, the sum of task region values
increases, but the total payment decreases, and thus the ratio should increase.
This means that when the number of workers increases, the mechanism can find
workers with lower cost to complete high-value tasks, improving the unit cost
value. We know that the unit cost value of BMTVMP mechanism are always
greater than UNIFORM algorithm, which means that BMTVMP mecha-
nism can also achieve better performance under the impacts of the number of
workers. Comparing Figure 9 with 10, we find that attracting more workers
to participate can obtain more values than simply increasing the budget.
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Fig. 10 The unit cost value when budget fixed at 1000
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6 CONCLUSION

In this paper, we first design a task dispatching algorithm GDY-MAX to
allocate tasks to workers to maximize the value of accomplished task regions.
Since this algorithm cannot prevent strategic behavior of workers, we further
propose a strategy proof mechanism to maximize the values of task regions
under the budget constraint. In more detail, this mechanism consists of a task
dispatching algorithm and a worker pricing algorithm. We use a technique of
linear programming to improve the classical greedy algorithm by introducing
Max operation in the submodule maximization problem, and thus design a task
dispatching algorithm satisfying the monotonicity. Furthermore, we design a
worker pricing algorithm satisfying the budget constraint. We theoretically
prove that our mechanism is strategy proof. We then run extensive experi-
ments to evaluate our mechanism based on a Mobike dataset. The results show
that compared with the UNIFORM pricing algorithm and the OPTIMAL
algorithm, our mechanism and GDY-MAX algorithm can achieve performance
similar to the OPTIMAL algorithm in terms of the coverage ratio of accom-
plished task regions and the sum of task region values. We also show that our
mechanism has better performance than UNIFORM algorithm in terms of
the total payment and the unit cost value.
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