
Identifying Possible Rumor Spreaders on Twitter: A
Weak Supervised Learning Approach

Shakshi Sharma and Rajesh Sharma
Institute of Computer Science

University of Tartu, Estonia
Email: {shakshi.sharma, rajesh.sharma}@ut.ee

Abstract—Online Social Media (OSM) platforms such as Twit-
ter, Facebook are extensively exploited by the users of these
platforms for spreading the (mis)information to a large audience
effortlessly at a rapid pace. It has been observed that the
misinformation can cause panic, fear, and financial loss to society.
Thus, it is important to detect and control the misinformation
in such platforms before it spreads to the masses. In this work,
we focus on rumors, which is one type of misinformation (other
types are fake news, hoaxes, etc). One way to control the spread
of the rumors is by identifying users who are possibly the rumor
spreaders, that is, users who are often involved in spreading
the rumors. Due to the lack of availability of rumor spreaders
labeled dataset (which is an expensive task), we use publicly
available PHEME dataset, which contains rumor and non-rumor
tweets information, and then apply a weak supervised learning
approach to transform the PHEME dataset into rumor spreaders
dataset. We utilize three types of features, that is, user, text,
and ego-network features, before applying various supervised
learning approaches. In particular, to exploit the inherent net-
work property in this dataset (user-user reply graph), we explore
Graph Convolutional Network (GCN), a type of Graph Neural
Network (GNN) technique. We compare GCN results with the
other approaches: SVM, RF, and LSTM. Extensive experiments
performed on the rumor spreaders dataset, where we achieve up
to 0.864 value for F1-Score and 0.720 value for AUC-ROC, shows
the effectiveness of our methodology for identifying possible
rumor spreaders using the GCN technique.

Keywords: Online Social Media, Misinformation, Graph Neu-
ral Network, Weak Supervised Learning.

I. INTRODUCTION

Online Social Media (OSM) platforms, initially developed
for connecting individuals have become a hotbed for users
who spread misinformation regularly by exploiting the con-
nectivity and globality of these platforms [1]. On one side,
these platforms offer a place for the expression of views.
However, on the flip side, these platforms have not been able
to regulate the spread of misinformation. According to [2],
false information propagates six times faster than the true
news on these platforms, which can result in panic, fear, and
financial loss to society [3]. Thus, it is important to control
misinformation propagation before it spreads to the masses.
However, it is not a trivial task to identify such users as they
blend very well by creating many connections with users who
are not involved in spreading misinformation activities [4].

Misinformation can be categorized into two main types. The
first one is the fake news, the news which is certainly not true.
The second one is the rumors, a piece of information whose
validity is in doubt at the time of posting. In other words,

there is a doubt whether the information being posted is true
or false. In this work, we focus on identifying the “possible”
rumor spreaders. We define rumor spreaders as those users
who are often engaged in spreading the rumors [3], and the
term “possible” in our work points to the fact that it is very
likely that the user could be a rumor spreader.

In the past, researchers have proposed various techniques
for identifying suspicious or malicious users involved in the
spread of misinformation on OSM platforms such as Twitter.
These works include analyzing the user profiles’ information
[5, 6], observing user activity patterns across a specific time
window [7, 8], tracking the profiles through the usage of
a smartphone’s battery [9]. Furthermore, few additional ap-
proaches utilized graph-based techniques [10] and multi-modal
feature exploitation [11] for the detection of malicious profiles.

Identifying possible rumor spreaders is important, as they
could be the potential source of misinformation propagation.
Curbing on such users means controlling the misinformation
diffusion as well. However, this problem has not acquired
significant attention in contrast to detecting rumors or fake
news. This is primarily due to the lack of an annotated dataset
about rumor spreaders [12]. Thus, identifying possible rumor
spreaders is challenging in many aspects, which is the theme
of this research work.

In this paper, we use the PHEME dataset, which contains
rumor and non-rumor tweets about five incidents, that is, i)
Charlie hebdo, ii) German wings crash, iii) Ottawa shooting,
iv) Sydney siege, and v) Ferguson occurred between 2014 and
2015. In order to transform the tweets dataset into a rumor
spreaders dataset1, we explore the sentiments of the tweets
and calculate the rumor spreaders’ intensity score (that is, how
often a user posts rumor tweets). In addition, we also utilize
the weak supervised learning approach, which is a branch of
machine learning used to label the un-annotated data using few
or noisy labels in order to avoid the expensive task of manual
annotation of the data [13]. Please note that the labels that
are generated using this approach are the near ground-truth
labels. Thus, we use the term ‘possible’ for rumor spreaders
dataset.

After the data transformation step, we leverage the following
three distinct features for classifying possible rumor spreaders:

1Code and data is available at - https://github.com/shakshi12/RumourGNN

ar
X

iv
:2

01
0.

07
64

7v
2

 [
cs

.A
I]

 6
 J

ul
 2

02
1

1) User Features: This includes users’ features such as
number of followers, number of favorites.

2) Text Features: We exploit users’ tweets as a second set
of features.

3) Ego-Network Features: We also explore the network of
users who posted the tweets and the users who respond
to those tweets. We illustrate this using Figure 1, wherein
the central node I is a node who has posted a tweet,
which we refer to as initiator user and the nodes R1,
R2, R3, and R4 are the responder users who have
replied to the user I’s tweet. The weights on the edges
correspond to the number of times user I, and responder
user interacted with each other. Based on our dataset, we
are only able to create a one-hop network (ego-network)
comprising of initiator user and its responders.

4

57

2

I

R1 R2

R3 R4

Fig. 1: Undirected Weighted Ego-Network of a Twitter User

It is important to note that the network formed between
the initiator of the tweets and their corresponding responders
naturally calls for a technique that can exploit network features
as well. Thus, in order to capture the network properties,
we employ Graph Neural Network (GNN) based approach
for identifying possible rumor spreaders. To be specific, we
explore Graph Convolutional Network (GCN), a particular
type of GNN for our analysis. In contrast to the baseline
approaches: SVM, RF, and LSTM, the GCN approach exhibit
better performance and is able to achieve a value of 0.864
for F1-Score and 0.720 for AUC-ROC Score. To the best of
our knowledge, this is the first work that has explored the
PHEME dataset to identify possible rumor spreaders using a
weak supervised approach.

The rest of the paper is organized as follows. Section II
covers related work. Section III covers dataset description and
methodology used for identifying possible rumor spreaders.
Section IV discusses experiments and their results, and Section
V concludes with some future directions.

II. RELATED WORK

Researchers have proposed numerous techniques for iden-
tifying suspicious or fake user profiles across various OSM
platforms such as Facebook [7], Twitter [5, 14], Tuenti [10], to
name a few. In this section, we discuss past studies across two
dimensions. First, we discuss work related to the identification
of fake or suspicious users. Next, we present works about the

detection of rumors. Our work lies at the intersection of these
two types of works.

A. Suspicious Profile Detection

Identification of suspicious (or fake) profiles on Twitter, a
representative of OSM was initially analyzed using apparent
features such as the number of followers and the number
of followings [5], user-profile-name, screen-name, and email
parameters [6] Our work is different from these global ap-
proaches as they assumed the whole bird-eye view of the
network. In contrast, we are only aware of the ego-networks.
Some other works have focused on identifying suspicious
followers by using multi-modal information [11], which is out
of the scope of this work.

It is a well-observed fact that mobile phones have been
playing a vital role in the popularity of OSM platforms.
Nonetheless, it has facilitated the rise of fake profiles as
well [9]. Therefore, mobile phones too have been used as a
medium in tracking fake profiles. For instance, in [15], the
authors observed the daily behavior of users using mobile
phone activity for detecting fake profiles. Besides researchers
have also used camera-based sensors in detecting fake profiles
within or across multi social networks [16].

B. Rumor Detection

We assume that users who are often involved in dissem-
inating rumors are more likely to be rumor spreaders in
comparison to users whose involvement in spreading rumor
is less. Our approach for identifying the possible rumor
spreaders exploits (rumor and non-rumor) tweets along with
other features present in the dataset. Therefore, we further
present related literature with respect to rumor detection.

Initially starting with the theoretical framework for rumor
spreading [17], and later identification of rumors’ temporal,
structural, and linguistic features [18], the topic related to
rumor detection has attracted considerable attention in recent
years, especially because of advancement in the field of
artificial intelligence techniques. For example, in [19], various
flavors of LSTM architecture are explored and in [20], a multi-
task deep learning model is presented for rumor detection. In
addition, several techniques such as the use of particle swarm
optimization [21], multi-modal approach by exploiting textual
as well as visual features from the data [22, 23], have also
been examined in the literature.

Few approaches in rumor detection have also explored
graph-based methodologies. Specifically, in [24], the authors
constructed a Twitter follower graph and exploited diffusion
patterns of (mis) information for rumor detection. Some of
the papers [25]–[27] have employed Graph Convolutional Net-
work (GCN) based approaches for detecting rumors. Unlike
these works, we study the rumors to identify possible rumor
spreaders.

User profiles have been analysed as an important aspect
in detecting rumor propagation. Analysis of the user profile
[28], identification of source of the rumor [29], genuineness
score of the users in the social network which are spreading

the rumors [30] have been utilized in the past works. Our
work lies at the boundary of these works as our aim is to
identify possible rumor spreaders by using not only the textual
data that is being spread by these rumor spreaders but also
exploring their ego-networks. To accomplish this objective, we
used GCN approach which has been mainly used in the past
for identifying rumors and not for identifying possible rumor
spreaders.

III. DATASET DESCRIPTION AND METHODOLOGY

In this section, we first discuss the PHEME dataset (Section
III-A). Next, in Section III-B, we describe how we transform
the PHEME tweets dataset into the rumor spreaders dataset.
Finally, we explain three different types of features extracted
from the dataset, which are provided as input to the machine
learning algorithms (Section III-C).

A. Original Dataset

This paper utilizes the PHEME1 dataset, which is a collec-
tion of rumor and non-rumor tweets that have been extensively
used in previous works [3, 31]. The dataset comprises five
events (or incidents) - Charlie hebdo, German wings crash, Ot-
tawa shooting, Sydney siege and Ferguson. For the rest of this
work, we refer to them as Charlie, German, Ottawa, Sydney,
and Ferguson, respectively. The dataset contains information
about the tweets pertaining to these incidents that have been
posted as breaking news during the year 2014 – 2015. To be
specific, data is provided in the form of five files, where each
file is related to five particular incidents. The data in each file
is stored in JSON format, having information about the source
(or initiator’s) tweet and its corresponding information. Table
I provides detailed information about various fields.

TABLE I: Dataset Description

No Fields Description
1 user id unique id of the initiator user
2 tweet tweet posted by initiator
3 # of followers of the initiator
4 # of favorites of the initiator
5 verified user source user has verified account or not
6 reply user id unique id of the reply user
7 reply tweet tweet posted by reply user
8 # of reply followers of the reply user
9 # of reply favorites of the reply user
10 verified reply user reply user has verified account or not
11 label initiator’s tweet is rumor or not

Furthermore, each source tweet has the ground-truth re-
garding whether the tweet is a rumor or non-rumor. Table
II, column ‘# of Tweets (%)’ provides information about
the number of rumor and non-rumor tweets for each of the
incidents for our analysis.

B. Transformation of Tweets Dataset into Rumor Spreaders
Dataset

Due to the lack of an annotated dataset of users who are
spreading the rumors on OSM platforms, we first transform the

1https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-
rumours/4010619

TABLE II: Distribution of Tweets and Spreaders for each of
the incidents in the dataset

of Tweets (%) # of Spreaders (%)
Incidents Rumor Non-rumor Rumor Non-rumor
Charlie 458 (22%) 1621 (78%) 13879

(74.2%)
4821
(25.8%)

German 238 (50.7%) 231 (49.3%) 1464
(50.3%)

1442
(49.7%)

Ottawa 470 (52.8%) 420 (47.2%) 3978
(51.1%)

3794
(48.9%)

Sydney 522 (42.8%) 699 (57.2%) 7545
(61.8%)

4658
(38.2%)

Ferguson 284 (24.8%) 859 (75.2%) 3792 (35%) 7001 (65%)

PHEME dataset (which carries information pertaining to the
initiator’s tweets, such as users who replied to the initiator’s
tweets, the followers count of the initiator user, etc.) into the
rumor spreaders dataset. Table III, column ‘Tweets’, shows the
original dimensions of the incidents, wherein each cell value
represents the total number of initiator’s tweets (36189 rows
in case of Charlie) and the total number of features, including
ground-truth labels (11 columns for all the incidents).

TABLE III: Dimensions of the PHEME dataset at various
levels

Incidents Tweets Rumor Spreaders Adjacency Matrix
Charlie 36189, 11 18700, 304 18700, 18700
German 4020, 11 2906, 304 2906, 2906
Ottawa 11394, 11 7772, 304 7772, 7772
Sydney 22775, 11 12203, 304 12203, 12203
Ferguson 46064, 11 10793, 304 10793, 10793

In order to identify possible rumor spreaders, we start by
placing each user with its corresponding tweets followed by its
responders and their respective reply tweets. As part of the data
cleaning process, we remove non-alphanumeric characters,
URLs, stopwords, punctuations, lowercase all the words and
perform additional Natural Language Processing operations as
well, for instance, Porter Stemming of the words. We cover
the steps taken for the conversion:
Step 1: Sentiment Analysis of the Reply tweets: It is highly
likely that a tweet may have attracted multiple responses (or
replies). To exemplify, Table IV shows an example of the
two tweets from Ferguson incident. The first row corresponds
to the non-rumor tweet along with its replies (in this Table,
we have shown only two replies, but a tweet can have any
number of replies), whereas the second row corresponds to
the rumor tweet. It can be seen that the reply tweets possess
sentiments with respect to the posted tweet, which can help
in identifying the rumors, and thus, rumor spreaders. For
instance, non-rumor tweets are in support of the initiator’s
tweet, hence, represents a positive sentiment. Whereas in the
case of rumor tweets, reply tweets do not show support of the
initiator’s tweet, indicating negative sentiment. This could be
a key indication that sentiments of the reply tweets play a key
role in identifying whether the tweets posted by the user is
rumor or not.

In this regard, we first try to analyze the sentiments of

TABLE IV: An Example of the Tweets on Ferguson incident

No Initiator Tweet Reply Tweet 1 Reply Tweet 2

1
The mother of the boy killed in #Ferguson
speaking to media about the loss of her son.
http://t.co/YlxEDKoebB

@AntonioFrench @b9AcE guess the cops were
protecting and serving the community again.

@AntonioFrench my heart aches
for her! This was so wrong!

2

Police in #Ferguson once charged a man
w/ destruction of property for bleeding
on their uniforms after they beat him
http://t.co/MRVP76sdUP

@AnonyOps that’s not true Dudeee!!
please go and read good newspapers.

@RianAlden not at all, but they
need to change some things at
#ferguson PD. @AnonyOps

the reply tweets using TextBlob API2. Figure 2 displays the
sentiments of the reply tweets with respect to rumor and non-
rumor tweets for all five incidents. Specifically, the x-axis
represents the positive and negative sentiments with respect
to rumor and non-rumor reply tweets for all the incidents
and y-axis corresponds to its percentage. To capture the same,
we consider the reply tweets under the rumor category if the
initiator’s tweet is a rumor otherwise non-rumor. It is clear
from Figure 2 that reply tweets under the rumor category
have mostly negative sentiments and vice-versa for all the
incidents (we have excluded the # of neutral sentiments, which
are very few in number to avoid confusion). Thus, it can be
validated that the sentiments of the reply tweets can be utilized
to identify rumor tweets, and hence, possible rumor spreaders.

Fig. 2: Sentiments of Reply Tweets with respect to Rumor and
Non-Rumor Tweets for all the five incidents

Step 2: Labeling Reply tweets Using Weak Supervised
Learning Approach: In order to identify the possible rumor
spreaders, we would like to utilize the stance of reply tweets in
our approach. However, no such information is present in the
dataset. Thus, in order to label each reply tweet, we apply the
MinHash3 algorithm in line with [32]. The MinHash finds the
similarities between each pair of the initiator’s tweet and the
reply tweet. Specifically, if both these tweets are similar, then
we assign the same label to the reply tweet as the initiator’s
tweet, indicating that the reply tweet is in support of the
initiator’s tweet. Otherwise, we assign the opposite label to the
reply tweet. We considered two tweets to be similar if their
similarity score is greater than or equal to 85% (this threshold
is validated manually). This approach of labeling the reply
tweets is what we call as weak supervised learning approach

2https://textblob.readthedocs.io/en/dev/api_reference.html
3snaPy API: https://pypi.org/project/snapy/

due to the fact that we do not have the manual annotation of
these tweets.
Step 3: Calculating rumor spreaders’ intensity score:
Tweets’ labels only indicate whether a particular tweet is a
rumor or non-rumor. Therefore, in order to identify possible
rumor spreaders, we calculate a score that indicates the
intensity with which users spread rumors, which we term as
rumor spreaders’ intensity score. We compute this score for
each user by using the following formula:

score =
of times user tweets rumor

Total# of times user tweets
(1)

where the denominator is calculated by counting the total
number of tweets posted by a user, whereas the numerator
is calculated by counting the total number of rumor tweets
posted by a user. The score range lies between [0, 1], where
0 means not a rumor spreader, and 1, indicating possibly a
rumor spreader.

In order to validate the effectiveness of this score, we
calculate the degree (number of connections) from the user-
user reply graph, as shown in Figure 1. We observe that the
nodes (or users) who are connected to many other nodes (or
users), that is, high degree, are more involved in posting rumor
tweets as compared to nodes (or users) who have a low degree.
We then manually check the users with their rumor spreaders’
intensity score calculated using Equation 1. The score is in line
with the degree, which verifies our approach of identifying
possible rumor spreaders.

To model the problem as a binary classification problem, we
put a threshold of 0.5 to create two classes of users. That is, if
the rumor spreaders’ intensity score is < 0.5, then we assign
0 label (indicating non-rumor spreader class); otherwise, we
assign 1 representing the possible rumor spreader class. The
reason for choosing this threshold is based on the observation
that the sentiments of the tweets as discussed in Step 1 are
positive when the rumor spreaders’ intensity score is less
than 0.5, which is indicative of non-rumor spreaders class
and vice-versa. Based on this threshold conversion, Table II,
column ‘# of Spreaders (%)’ shows the number of possible
rumor spreaders and non-rumor spreaders for each of the five
incidents in the dataset.

C. Extraction of three sets of features

In this section, we describe three distinct sets of features
that we extract, to be utilized by our machine learning models
for predicting possible rumor spreaders.

followers count

favorites count

verified user

user id

tweets

user
importance

Conversion of PHEME
dataset into Rumor
Spreaders dataset

Data Transformation

Feature Extraction

User Identification

GCN

Non-Rumor
Spreader

PHEME
Dataset

Dataset

User Features Text Features

Ego-Network
Features

Rumor
Spreader

Fig. 3: Framework

1) User Features: This set of features represents user’s
profile-based information that includes followers count,
favorites count, and verified users.

2) Text Features: This feature represents text-related
features, such as the tweet column in our dataset. We
employ popular Word2Vec embedding (a specific type
of Vector Space Models) [33] to convert the tweets into
a numeric vector. Specifically, for each unique word in
the tweet, Word2Vec generates its corresponding 300-
dimension numeric vector, which is then aggregated
in such a way that each sentence represents a 300-
dimension vector. Besides, we remove few noisy words
as well, for instance, aaand, aand, aaaaand using English
vocabulary.

3) Ego-Network Features: To capture the network prop-
erties in the data, we created a feature which we call
as User Importance (user_imp) feature. This feature
helps in adding the network properties in the dataset
by calculating the importance of each user with respect
to replies it has received. The formula for calculating
this feature is as follows:

user_imp =
of replies a user gets

of replies of all users
(2)

Figure 3 summarizes the framework, which we discussed
in this Section. Section IV discusses the parameters used by
GCN and the results of various approaches.

IV. EXPERIMENTS AND RESULT SECTION

In this section, we discuss few of the main hyper-parameter
tuning used by our models (Section IV-A). Next, we discuss
various optimization techniques (Section IV-B), and lastly, we
discuss the results of our approaches (Section IV-C).

As mentioned in Section I, there is a network formation
between initiators and responders in terms of tweets. Thus, we
use GCN [34], a type of GNN technique, which can exploit
both the network structure and features (such as tweets, fol-
lowers count). In particular, we perform a binary classification
for identifying if a specific Twitter user is possibly involved in
rumor spreading or not. In addition, we compare GCN with
other baseline approaches (SVM, RF, and LSTM).

A. Hyper-Parameters tuning

Table V shows the values for various hyper-parameter
settings that are chosen for fine-tuning the models for im-
proving the performance. Here, we have specified few of the
main hyper-parameters only. For instance, SVM has a hyper-
parameter, kernel, which is a function that finds the similarity
score between two data points even from the high dimensional
input space in order to find the optimal hyperplane. RF has
a hyper-parameter known as, number of trees in forest that
specifies how many trees should be formed so that they can be
used as a parallel estimators in order to make final prediction.
The rest of the hyper-parameters are specific to the neural
networks (for both LSTM and GCN). The number of layers
in a network represents the total number of layers used in a
model, number of channels in each layer represents the total
number of output neurons to be used in a layer, drop out
layer is used to avoid overfitting of the data. The activation
function decides which neuron to activate for the next layer
in the network, number of epochs refers to the number of
iterations the neural network model is to be trained for. The
loss function is used for refining the model after every epoch.
The NA values in the table refer to Not Applicable.

TABLE V: Hyper-Parameters Tuning of models

Parameters\
Models SVM RF LSTM GCN

Kernel radial basis
function NA NA NA

of trees NA 100 2 2
of layers NA NA 2 2
of channels
in first layer NA NA 32 32

of channels
in second layer NA NA 2 2

Drop out layer NA NA 0 2
of Epochs NA NA 300 300
Activation
function NA NA sigmoid sigmoid

Loss function average hinge binary cross
entropy

binary cross
entropy

Apart from the Table V hyper-parameters, GCN model
takes two additional inputs - graph adjacency matrix and
nodes’ features matrix. The graph adjacency matrix stores
the nodes’ neighbors information in a ZXZ matrix, where
Z represents the total number of nodes (users) in the dataset.

The nodes’ features matrix ZXF is the final matrix of the
preprocessing step, where Z represents the number of nodes
and F is the size of total features. As already mentioned, Table
III, column ‘Rumor Spreaders’, shows the dimensions of the
nodes’ features matrix for each of the incident. Specifically,
each cell values represents the nodes, Z and the features, F
where F represents the features (attributes) such as followers
count, word embedding of tweet, user_imp. In addition, the
dimensions of the adjacency matrix are shown in III, column
‘Adjacency Matrix’, wherein each cell values represents the
total number of users in a dataset. After providing required
inputs to GCN, the model is trained to predict possible rumor
and non-rumor spreaders.

In order to predict possible rumor spreaders, the nodes
have labels as 0 (non-rumor spreader) or 1 (possibly a rumor
spreader). In Section IV-C, we discuss results of all the
machine learning approaches.

B. Optimization Techniques

As part of the optimization, we perform following steps -
1) Cross Validation: To ensure the effectiveness of our

model and to avoid overfitting of data, we perform K-
Fold cross-validation on our dataset where K = 5. To
avoid the class imbalance problem in Charlie incident,
we use Stratified K-Fold.

2) Standardization: All the features are standardized be-
fore training the machine learning model.

3) Feature Importance: In addition to the above two
techniques, three feature selection techniques, namely,
Chi-Square, Information Gain, Gain Ratio are applied
to each of the five incidents of rumor spreaders dataset
to check whether each feature is correlated with the
target variable. Table VI depicts the p-values of three
feature selection techniques. For all the features, p-value
< 0.05 which shows that these features are important in
predicting possible rumor spreaders. Thus, we consider
all the features in our experiments.

TABLE VI: Feature Selection Techniques (values in the cells
indicates their corresponding p-values)

Features Chi-Square Information Gain Gain Ratio
followers count 5.28e-05 4.62e-07 8.56e-09
favorites count 8.66e-17 11.65e-22 5.56e-11
verified users 2.26e-10 1.44e-05 3.67e-07
user importance 7.87e-20 9.93e-23 7.83e-26

C. Results

In this section, we discuss the micro and macro-analysis of
our evaluation for all the incidents using five metrics.
1. Macro-Analysis: Table VII provides the macro-averaged
results of our machine learning models for all the five metrics
for Charlie, German, Ottawa, Sydney, and Ferguson respec-
tively. In general, GCN outperforms other classifiers in all the
five metrics. SVM and RF perform better than LSTM in most
of the metrics. Considering per incident evaluations, the results
of German incident outperforms with a significant margin,

TABLE VII: Metrics performance of different models

S.No. Metrics SVM RF LSTM GCN
Charlie

1 Accuracy 0.748 0.760 0.671 0.790
2 Precision 0.748 0.758 0.571 0.790
3 Recall 0.748 0.628 0.571 0.790
4 F1-Score 0.853 0.840 0.778 0.864
5 AUC-ROC 0.600 0.600 0.570 0.690

German
6 Accuracy 0.552 0.567 0.541 0.715
7 Precision 0.553 0.567 0.541 0.717
8 Recall 0.552 0.567 0.541 0.716
9 F1-Score 0.572 0.567 0.546 0.709
10 AUC-ROC 0.552 0.566 0.540 0.720

Ottawa
11 Accuracy 0.567 0.565 0.552 0.675
12 Precision 0.567 0.565 0.552 0.681
13 Recall 0.566 0.565 0.552 0.677
14 F1-Score 0.578 0.569 0.559 0.655
15 AUC-ROC 0.566 0.566 0.550 0.680

Sydney
16 Accuracy 0.618 0.639 0.561 0.655
17 Precision 0.565 0.606 0.541 0.655
18 Recall 0.520 0.579 0.542 0.664
19 F1-Score 0.751 0.740 0.638 0.690
20 AUC-ROC 0.618 0.638 0.540 0.660

Ferguson
21 Accuracy 0.652 0.675 0.585 0.705
22 Precision 0.598 0.634 0.549 0.671
23 Recall 0.519 0.589 0.549 0.658
24 F1-Score 0.782 0.778 0.676 0.783
25 AUC-ROC 0.652 0.674 0.550 0.660

whereas Charlie results exceed with a small margin. In spite
of using Stratified K-Fold, the class imbalance problem might
have affected the Charlie results.
2. Micro-Analysis: Figure 4 shows the micro-performance of
each of the approaches under five metrics for all the incidents
in our dataset. Specifically, the x-axis represents the fold
number under five-fold cross-validation, whereas the y-axis
represents the metrics used for evaluation. To summarize, each
incident consisting of five plots depicting Accuracy, Precision,
Recall, F1-Score, and AUC-ROC Score for each fold. It can
be seen from the plots that, in general, the GCN approach is
performing better than the baseline models. However, GCN
approach on German and Ottawa incidents performed sig-
nificantly better compared to the other two approaches. This
clearly implies that the GCN approach is a natural fit for our
problem statement.

Furthermore, we plot the AUC-ROC plot for each of the
incidents to understand the micro-performance of the algo-
rithm at different thresholds. Figure 5 shows the AUC-ROC
Curve for Charlie, German, Ottawa, Sydney, and Ferguson
respectively. It can be noticed that SVM, RF, and LSTM
perform little better than the random model, whereas GCN is
better with a good margin. However, RF performs better than
the other two baselines in the case of the Ferguson incident.
Besides, the GCN approach performs well on lower thresholds
for German, Ottawa, and Sydney. In contrast, the reverse is
the case for Charlie, and Ferguson indicating the reasons,
higher values of Accuracy, Precision, Recall, and F1-Score

Accuracy Precision Recall F1-Score AUC-ROC
C

ha
rl

ie

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

SVM
LSTM
RF
GCN

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

G
er

m
an

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

O
tta

w
a

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

Sy
dn

ey

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

Fe
rg

us
on

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
Fold

0.0

0.2

0.4

0.6

0.8

Fig. 4: Performance of GCN model under five-fold cross validation for all the incidents

(a) Charlie (b) German (c) Ottawa (d) Sydney (e) Ferguson

Fig. 5: Performance of AUC-ROC Curve on all the five incidents

than AUC-ROC values for the Charlie and higher values of
Accuracy, Precision, and F1-Score than AUC-ROC values for
the Ferguson incident. In all cases, the results are indicative
that GCN is able to exploit the relation among the initiator’s
tweet and its responders, which helped it to perform better.

V. CONCLUSION AND FUTURE WORK

Identifying possible rumor spreaders is crucial as it has been
shown that they are the potential sources of rumor propagation
[35]. In this work, we use the PHEME dataset to identify
possible rumor spreaders using a weak supervised learning

approach. We model this problem as binary classification
task by applying various machine learning models to the
transformed rumor spreaders dataset. Our results show that
GCN (compared to baseline models) is able to perform better
(to raise red flags for possible rumor spreaders) by exploiting
relationships of possible rumor spreaders who could blend
well with non-rumor spreaders. The overall performance of
the GCN shows the effectiveness of this approach. We would
like to improve this work through the following multiple plans:

1) Multiclass problem: In our present work, we trans-
formed the dataset to study it as a binary classification
problem. However, in our extended work, we would
like to model this problem as a multiclass prediction
to minimize the loss in transformation.

2) Additional datasets: The transformation of rumor
dataset into rumor spreaders dataset may induces bias.
To overcome that, we would like to apply this framework
on datasets containing all the tweets posted by a user as
opposed to only collecting tweets by a specific topic.

3) New algorithms: To extend our research, we plan to
apply other graph neural network techniques that works
well on unseen graph structures (inductive learning) such
as Graph Attention Networks [36], GraphSage [37].

VI. ACKNOWLEDGMENT

This research is funded by H2020 project, SoBigData++,
and CHIST-ERA project SAI.

REFERENCES

[1] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international
conference on World wide web, 2010, pp. 591–600.

[2] P. Dizikes, “Study: On Twitter, false news trav-
els faster than true stories,” http://news.mit.edu/2018/
study-twitter-false-news-travels-faster-true-stories-0308, 2018.

[3] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter,
“Detection and resolution of rumours in social media: A survey,” ACM
Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–36, 2018.

[4] M. Fire, D. Kagan, A. Elyashar, and Y. Elovici, “Friend or foe? fake
profile identification in online social networks,” Social Network Analysis
and Mining, vol. 4, no. 1, p. 194, 2014.

[5] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, “Detecting
spammers on twitter,” in Collaboration, electronic messaging, anti-abuse
and spam conference (CEAS), vol. 6, 2010, p. 12.

[6] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson, “Trafficking
fraudulent accounts: The role of the underground market in twitter
spam and abuse,” in Presented as part of the 22nd {USENIX} Security
Symposium ({USENIX} Security 13), 2013, pp. 195–210.

[7] A. Gupta and R. Kaushal, “Towards detecting fake user accounts in
facebook,” in ISEA Asia Security and Privacy (ISEASP). IEEE, 2017,
pp. 1–6.

[8] S. Gurajala, J. S. White, B. Hudson, and J. N. Matthews, “Fake
twitter accounts: profile characteristics obtained using an activity-based
pattern detection approach,” in Proceedings of the 2015 International
Conference on Social Media & Society, 2015, pp. 1–7.

[9] M. Salehan and A. Negahban, “Social networking on smartphones:
When mobile phones become addictive,” Computers in human behavior,
vol. 29, no. 6, pp. 2632–2639, 2013.

[10] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection
of fake accounts in large scale social online services,” in Presented as
part of the 9th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12), 2012, pp. 197–210.

[11] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang, “Detecting
suspicious following behavior in multimillion-node social networks,” in
Proceedings of the 23rd International Conference on World Wide Web,
2014, pp. 305–306.

[12] S. Han, J. Gao, and F. Ciravegna, “Neural language model based
training data augmentation for weakly supervised early rumor detection,”
in Proceedings of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, 2019, pp. 105–112.

[13] B. H. C. R. Alex Ratner, Paroma Varma, “Weak Supervision: A New
Programming Paradigm for Machine Learning,” http://ai.stanford.edu/
blog/weak-supervision/, 2019, [Online; accessed 10-March-2019].

[14] B. Wang, L. Zhang, and N. Z. Gong, “Sybilblind: Detecting fake
users in online social networks without manual labels,” in International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
2018, pp. 228–249.

[15] C. Perez, M. Lemercier, and B. Birregah, “A dynamic approach to detect-
ing suspicious profiles on social platforms,” in 2013 IEEE International
Conference on Communications Workshops (ICC). IEEE, 2013, pp.
174–178.

[16] F. Bertini, R. Sharma, A. Iannì, and D. Montesi, “Profile resolution
across multilayer networks through smartphone camera fingerprint,”
in Proceedings of the 19th International Database Engineering &
Applications Symposium, 2015, pp. 23–32.

[17] F. Chierichetti, S. Lattanzi, and A. Panconesi, “Rumor spreading in
social networks,” Theoretical Computer Science, vol. 412, no. 24, pp.
2602–2610, 2011.

[18] S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, “Prominent features
of rumor propagation in online social media,” in 2013 IEEE 13th
International Conference on Data Mining. IEEE, 2013, pp. 1103–1108.

[19] M. S. Akhtar, A. Ekbal, S. Narayan, V. Singh, and E. Cambria, “No,
that never happened!! investigating rumors on twitter,” IEEE Intelligent
Systems, vol. 33, no. 5, pp. 8–15, 2018.

[20] M. R. Islam, S. Muthiah, and N. Ramakrishnan, “Rumorsleuth: joint
detection of rumor veracity and user stance,” in Proceedings of the 2019
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, 2019, pp. 131–136.

[21] A. Kumar, S. R. Sangwan, and A. Nayyar, “Rumour veracity detection
on twitter using particle swarm optimized shallow classifiers,” Multime-
dia Tools and Applications, vol. 78, no. 17, pp. 24 083–24 101, 2019.

[22] S. Singhal, R. R. Shah, T. Chakraborty, P. Kumaraguru, and S. Satoh,
“Spotfake: A multi-modal framework for fake news detection,” in 2019
IEEE Fifth International Conference on Multimedia Big Data (BigMM).
IEEE, 2019, pp. 39–47.

[23] Y. Wang, F. Ma, Z. Jin, Y. Yuan, G. Xun, K. Jha, L. Su, and
J. Gao, “Eann: Event adversarial neural networks for multi-modal fake
news detection,” in Proceedings of the 24th acm sigkdd international
conference on knowledge discovery & data mining, 2018, pp. 849–857.

[24] N. Rosenfeld, A. Szanto, and D. C. Parkes, “A kernel of truth: Deter-
mining rumor veracity on twitter by diffusion pattern alone,” arXiv, pp.
arXiv–2002, 2020.

[25] T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, and J. Huang,
“Rumor detection on social media with bi-directional graph convolu-
tional networks,” arXiv preprint arXiv:2001.06362, 2020.

[26] P. Wei, N. Xu, and W. Mao, “Modeling conversation structure and
temporal dynamics for jointly predicting rumor stance and veracity,”
arXiv preprint arXiv:1909.08211, 2019.

[27] Q. Huang, C. Zhou, J. Wu, M. Wang, and B. Wang, “Deep structure
learning for rumor detection on twitter,” in 2019 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[28] K. Shu, X. Zhou, S. Wang, R. Zafarani, and H. Liu, “The role of user
profiles for fake news detection,” in Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, 2019, pp. 436–439.

[29] P. S. Devi, S. Karthika, P. Venugopal, and R. Geetha, “Veracity analysis
and prediction in social big data,” in Information and Communication
Technology for Sustainable Development. Springer, 2020, pp. 289–298.

[30] B. Rath, W. Gao, J. Ma, and J. Srivastava, “From retweet to believability:
Utilizing trust to identify rumor spreaders on twitter,” in Proceedings of
the 2017 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, 2017, pp. 179–186.

[31] E. Kochkina, M. Liakata, and A. Zubiaga, “All-in-one: Multi-task learn-
ing for rumour verification,” arXiv preprint arXiv:1806.03713, 2018.

[32] S. Nilizadeh, H. Aghakhani, E. Gustafson, C. Kruegel, and G. Vigna,
“Think outside the dataset: Finding fraudulent reviews using cross-

http://news.mit.edu/2018/study-twitter-false-news-travels-faster-true-stories-0308
http://news.mit.edu/2018/study-twitter-false-news-travels-faster-true-stories-0308
http://ai.stanford.edu/blog/weak-supervision/
http://ai.stanford.edu/blog/weak-supervision/

dataset analysis,” in The World Wide Web Conference, 2019, pp. 3108–
3115.

[33] Mikolov, K. Chen, and J. Corrado, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[34] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[35] S. Volkova, K. Shaffer, J. Y. Jang, and N. Hodas, “Separating facts from
fiction: Linguistic models to classify suspicious and trusted news posts
on twitter,” in Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, 2017, pp. 647–653.

[36] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[37] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

	I Introduction
	II Related work
	II-A Suspicious Profile Detection
	II-B Rumor Detection

	III Dataset Description and Methodology
	III-A Original Dataset
	III-B Transformation of Tweets Dataset into Rumor Spreaders Dataset
	III-C Extraction of three sets of features

	IV Experiments and Result Section
	IV-A Hyper-Parameters tuning
	IV-B Optimization Techniques
	IV-C Results

	V Conclusion and Future Work
	VI ACKNOWLEDGMENT
	References

