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Abstract—We present a computational method for empirically
characterizing the training loss level-sets of deep neural networks.
Our method numerically constructs a path in parameter space
that is constrained to a set with a fixed near-zero training loss.
By measuring regularization functions and test loss at different
points within this path, we examine how different points in the
parameter space with the same fixed training loss compare in
terms of generalization ability. We also compare this method for
finding regularized points with the more typical method, that uses
objective functions which are weighted sums of training loss and
regularization terms. We apply dimensionality reduction to the
traversed paths in order to visualize the loss level sets in a well-
regularized region of parameter space. Our results provide new
information about the loss landscape of deep neural networks,
as well as a new strategy for reducing test loss.

Index Terms—deep learning, generalization, optimization

I. INTRODUCTION

Recent advances in neural networks have led to impres-
sive but often inexplicably high performance. For example,
networks trained with local optimization often converge to
globally optimal (zero) training loss. Our incomplete theoret-
ical understanding of how neural networks operate (and when
they might fail) is often described as an “explainability” or
“interpretability” problem in AI.

Inexplicable AI often translates to low user adoption in
high stakes applications such as self-driving cars, medical
diagnosis, and criminal justice. In response, researchers have
recently sought to strengthen our mathematical understanding
of how and when various neural architectures perform well.
For example, Poole et al. [1] showed that global curvature of a
neural network function increases exponentially with depth but
not width, to some extent explaining why deep architectures
perform so well (although cf. [2]). Soudry et al. [3] explained
performance from a different perspective, proving that when
the topmost layers of a network are sufficiently large relative
to the training data, then any differentiable local minimum is
in fact a global minimum with zero training error. Conversely,
Baldi et al. [4] showed that the number of boolean functions
that can be represented exactly by feed-forward networks is a
cubic polynomial of the layer sizes. Using different techniques
than in [3], Du et al. [5] also show that gradient descent
converges to zero error for various network architectures.

This work was supported in part by DARPA award number
HR00111890044.

Related to these theoretical results, various practical tech-
niques can “easily” achieve negligible training error when the
hidden layers and weights are set up correctly. For example,
reservoir computing [6], extreme learning machines [7], and
some applications of the neural engineering framework [8],
have all used techniques where weights and/or activity patterns
leading up to the penultimate layer are chosen randomly,
and then “decoding” or “read-out” by the output weights is
achieved by solving a linear system with near-zero residual.

Given that real-world neural networks are mostly smooth
functions, and often over-parameterized relative to the training
data, we can expect that the optima are not isolated points
in parameter space, but rather, comprise smooth manifolds
(perhaps modulo some singular points). In this paper we
seek to empirically characterize such manifolds to improve
our understanding and engineering of neural networks. For
example, are the level-sets for a fixed training loss typically
path connected? What is the distribution of various regular-
ization values and test loss within the level-set? For a given
regularizer, how does the most regularized point in the level-
set compare to those found in the standard way, by optimizing
a weighted sum of training loss and regularization term?

To begin answering such questions, we use numerical meth-
ods to construct randomly sampled paths within manifolds for
fixed near-zero levels of training loss. We focus on near-zero,
rather than exactly zero, training loss for two reasons: (1)
in practice numerical optimization will not reach true zero
loss, and (2) the gradient is zero at true zero loss, which
would require higher than first-order methods for traversal.
Our approach can be described in terms of two phases. First,
we use standard optimization from random initial weights to
minimize the training loss, thereby locating a starting point in
the manifold corresponding to a near-zero fixed training loss.
Second, we use mathematical principles from gradient pro-
jection and numerical path following [9], [10] to enumerate a
sequence of points within the manifold along a path of interest
(for example, one that minimizes a regularization function).
These two phases are repeated many times with random initial
conditions to form a random sample of paths within level sets
of fixed training loss. In addition, we collect an empirical
distribution of test loss and regularization scores, among other
metrics, along these paths to better characterize these level
sets. This experimental setup is used on an illustrative toy
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example as well as multiple real-world datasets including
MNIST [11], CIFAR10 [12], Iris [13], and Auto-MPG [14]
datasets. We also compare our method against the more typical
approach where the objective is a weighted sum of training loss
and a regularization term. The results show that our method
effectively locates regularized points within the training loss
level-sets that better generalize to test data.

II. RELATED WORK

The connectedness, or lack thereof, of the training loss
landscape has been an interesting theme of exploration in
recent studies on deep neural networks. Large (deep and wide)
networks embody a certain redundancy which has been argued
to cause lowered energy (i.e., loss) barriers and increased
connectivity in the loss landscape [15]–[18]. One consequence
of such redundancy, for instance, is that slight perturbations
to individual parameters in large networks can be offset by
making the other parameters adapt in such a way that the any
change in the training loss is negligible. Such insights forms
the basis of various pruning methods [19], [20] as well as the
more popular Dropout method [21].

More generally, a similar adapting procedure can be used to
find new, and perhaps neighboring, points in the loss landscape
with comparable performance. Recently, Garipov et al. [22]
and Draxler et al. [18] independently showed that for multi-
layer neural networks it is possible to path-connect a pair
of distinct minima in the parameter space. The former show
that a pair of distinct sets of weights, obtained, for example,
by training two randomly initialized instances of the same
network, can be connected through polygonal curves along
which the training loss remains nearly the same as that on
the distinct end-points. The latter show that the same connec-
tion can also be established using the Nudged Elastic Band
method [23], a method used to discover reaction pathways in
chemical reactions. Similarly, Nguyen [17] showed that every
sublevel-set of an over-parametrized feed-forward network is
connected, under mild assumptions on the topology of the
network. Our work complements and extends these works
in several ways. First, we propose a numerical, architecture-
agnostic method for traversing loss level-sets with respect to
a given direction of interest (such as one that minimizes a
regularizer). Such a traversal requires a single starting point
and does not require any of the consecutive points on the
level-set to be known beforehand (as is the case in [22] and
in [18]). Second, the numerical nature of the method allows
it to sidestep some of the assumptions (such as those on the
layer width and topology of the network deduced in [17] and
[16]) as the traversal is carried out.

III. APPROACH

We consider smooth neural network models with trainable
parameters θ ∈ RN , where N is the number of parameters,
along with a non-negative training loss function L : RN →
R≥0 and a regularization function R : RN → R≥0. Here θ
can be interpreted as a vector obtained by concatenating the
flattened weight matrices and bias vectors that span multiple

layers in a network. We are interested in characterizing a level
set with a fixed near-zero training loss ε > 0. We denote this
level set by M, defined as:

M = {θ ∈ RN : L(θ) = ε}. (1)

In particular, we are interested in how R(θ) varies withinM.
We focus on the case where ε > 0 is near, but not exactly,
a minimum value of L. In this case, ∇θL 6= 0, and M is a
smooth manifold, with implicit equation L(θ) = ε. An initial
point θ0 ∈ M can be found with standard gradient-based
optimization. Then we can numerically generate a sequence
of discrete steps θ0, θ1, ..., θn, ... in M as follows.

Expanding around the current point θn ∈M, a second-order
Taylor approximation of M’s implicit equation is

L(θn + δ) ≈ L(θn) + δ>∇θL(θn) + δ>H(θn)δ/2 (2)

where H(θ) is the Hessian of L(θ). We seek a numerical step
θn+1 = θn+δ that remains inM, i.e., L(θn+1) = L(θn) = ε.
From (2) it is apparent that such a δ should satisfy

0 ≈ δ>∇θL(θn) + δ>H(θn)δ/2 (3)

We consider the case when M is a level set of training loss
near, but not at, a local minimum. In this case, the first-order
Taylor term dominates, and we seek a δ satisfying

δ>∇θL(θn) = 0. (4)

An infinitesimal step in direction δ satisfying the condition
above will remain in M. More interestingly, there is some
freedom in choosing δ as long as it satisfies Eq. 4. Let r
denote some direction of interest that may or may not be
confined toM. For example, r could be −∇θR(θn), in which
case we seek to minimize the regularization term, or it could
be sampled from a multidimensional normal distribution, in
which case we will proceed on a random walk.

Given ∇θL and some such r, we therefore seek a δ with
a non-zero component along r that also satisfies Eq. 4, which
is a linear problem. However, a numerical step along δ is not
infinitesimal and will introduce some error (i.e., L(θn+δ) 6= ε)
that must be corrected numerically. To that end, we adopt a
predictor/corrector scheme [10] for phase 2 of our method.
The predictor step advances along a δ that is orthogonal to
∇θL and has a component along r. If this introduces any
non-negligible deviation in L, corrector steps are then used to
return to M. More formally, the loss deviation D for the nth

iteration of phase 2 is defined below:

D(θn) = (L(θn)− L(θ0))2 (5)

where θ0 is the traversal starting point inM found by the first
phase. In a predictor step, while the training loss deviation is
below a pre-specified small threshold, the network weights
will be updated according to the following relations:

δp = ∇θR− proj∇θL∇θR
θn+1 = θn − ηδ̂p

(6)



where δ̂p is the unit vector along the prediction direction δp,
η is the learning rate, and projba is the projection of a vector
a on to another vector b, defined as:

projba = (a>b̂)b̂ (7)

A practical choice of R is the squared L2 norm: R(θ) = θ>θ.
Note that equation (6) differs from standard gradient de-

scent, in that we project away the component of the regu-
larization gradient ∇θR(θn) along the training loss gradient
∇θL(θn). Since the resulting δ̂p has no components along
∇θL(θn), taking an infinitesimal step along this direction will
not change L(θ) but will change (reduce) R(θ). However, in
practice, numerical steps are not infinitesimal and small errors
would accumulate without a corrector step.

In the corrector step, which sets in if the training loss devia-
tion D is above the aforementioned threshold, the deviation is
minimized using gradient descent. In order to avoid undoing
the work in the predictor step, we constrain the corrector steps
to move orthogonally to δp. This is done by computing a
descent direction -∇D that reduces the loss deviation, and
then projecting away its component along δp. The resulting
weight update equations for a corrector step, therefore, are:

δc = ∇θD − projδp∇θD

θn+1 = θn − ηδ̂c
(8)

It remains to identify stopping criteria for this predic-
tor/corrector procedure. Two reasonable stopping criteria in-
clude the number of total predictor/corrector steps allowed,
and the vectors ∇θL and ∇θR being anti-parallel. While
the total number of steps criterion is a simple resort in case
of limited available compute, the anti-parallel criterion is
informed by the method of Lagrange multipliers [24] using
which the problem of manifold traversal can also be described
as a constrained optimization problem. More precisely, for a
given L, ε and R, we are interested in traversing M along a
path that minimizes R, i.e.:

minimize R(θ), subject to L(θ) = ε. (9)

Using the method of Lagrange multipliers, we have

F (θ, λ) = R(θ) + λ(L(θ)− ε) (10)

where λ is the multiplier and F is the Lagrangian. The
solution to Eq. 10 involves finding stationary points θ where
∇θF = ∇θR + λ∇θL = 0. At a point minimizing R,
where the constraint is also satisfied, the gradients ∇θL and
∇θR will be anti-parallel. This is because a decrease in the
regularizer R translates into an increase in L and vice versa.

IV. SMALL ILLUSTRATIVE EXAMPLE

We first illustrate our procedure with a simple problem:

minimize x+ y

subject to x2 + y2 = 1,
(11)

as shown in Fig. 1. For a given (x, y) initialized randomly on
the unit circle corresponding to the constraint x2 + y2 = 1, a
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Fig. 1. Left: The contours for the objective and the constraint given in Eq.
11. The black dot at the top of the unit circle is a random starting point for
the predictor/corrector procedure. Right: The new green points visualize the
overall progress of the predictor/corrector procedure. The black dot at the
lower left is the point minimizing the constrained objective.

series of predictor/corrector steps, informed by the directions
specified by the objective gradient and the constraint gradient,
drives the solver towards the point at which the constrained
objective x + y is at its minimum. The exact number of
steps taken by the procedure varies and is determined by
hyper-parameters such as the predictor/corrector step size.
However, the overall progress of the procedure can be assessed
by tracking metrics such as the angle between the objective
gradient and the constraint gradient. The progress of the
predictor/corrector procedure, when applied to the constrained
optimization problem above, is also visualized in Fig. 1. Note
that the two gradients are anti-parallel at the final point.

V. EXPERIMENTAL METHODS

In order to assess the generality of the method across
multiple datasets and architectures, we used it on the MNIST
[11], CIFAR10 [12], Iris [13], and Auto-MPG [14] datasets,
with both convolutional and fully connected networks. On each
of these, we used the two-phase method described earlier to
carry out near-zero-loss level-set traversal of the training loss
function using the training split of the dataset.

A. MNIST

The MNIST dataset corresponds to a 10-class classification
problem and has 60k training examples and 10k test examples
of size 28x28 pixels containing images of handwritten digits
from 0 to 9. The pixel values for all examples were standard-
ized to be in the [0, 1] interval. In order to accommodate the
maximum number of experiments on large networks within
the available computational capacity, all MNIST experiments
used different random subsamples of 1000 examples from the
full training set. The whole test set was used.

For MNIST feed-forward (i.e., fully connected) experi-
ments, we used a network with 3 hidden layers of 100 neurons
each. For convolutional experiments, we used two 2D convo-
lutional layers followed by one full-connected layer (again, 3
layers total). Each convolutional layer had 20 convolutional
filters of dimensions 3 × 3 and was followed by a 2D average
pooling layer with pool size 2 × 2. The final feedforward
layer had 10 outputs, one per class. All hidden layers used



tanh activation and the output layer used softmax. A fully-
differentiable activation such as tanh was a convenient choice
since it guaranteed smoothness of the loss function.

In phase 1 of the predictor/corrector scheme, the weights of
a network were initialized using Glorot normal initialization
[25] and the network was trained using minibatch-gradient
descent with a categorical cross-entropy loss L using the Adam
optimizer [26]. More specifically, the network was trained with
a batch size of 32 for 100 epochs to achieve a near-zero loss
on the training set of 1000 examples.

In phase 2, the network underwent a number of predic-
tor/corrector steps depending on whether the squared change
in training loss along R was above or below the loss deviation
threshold.R was set to be the squared norm function described
earlier and the squared loss change threshold was set to
10−10 for all experiments for all datasets. The predictor or
corrector step each had a separate full-batch optimizer, whose
learning rate was adjusted heuristically based on the geometry
of the landscape being traversed. More precisely, the learning
rate for each optimizer was increased or decreased by a
multiplicative factor depending on whether the angular change
in the associated (predictor or corrector) direction in any two
consecutive steps was above or below a pre-specified threshold
of 0.1 degrees. The multiplicative factor was set to 0.1 and 1.1
for angular changes greater than or less than the 0.1 degrees
threshold respectively. We believe the angular change heuristic
takes into account the ruggedness of the loss landscapes and
using it yields a less chaotic traversal of the loss landscape.
Large angular changes indicate sharp bends in the traversal
curve, which call for a lower learning rate to maintain stability.

Finally, before every predictor step (after a series of cor-
rector steps had finished), we measured training set loss,
test set loss, test set accuracy, sum of squared norms for
network weights, and the angle between loss gradient ∇θL
and regularization gradient ∇θR. In theory, phase 2 would
stop when the angle between the two is 180◦ or 0◦, at which
point there is no direction in which to decrease R without
changing L. But in the numerical approximation, we observed
that it was difficult to reach those exact angles in practice. For
practical reasons, the number of total predictor steps taken in
phase 2 was set to 10000 for MNIST feed-forward experiments
and 5000 for MNIST convolutional experiments.

B. CIFAR10

The CIFAR10 dataset corresponds to a 10-class classi-
fication problem and has 60k training examples and 10k
test examples which are RGB images of size 32x32. For
CIFAR10 experiments too, the pixel values for all images
were standardized to be in the [0, 1] interval. Similarly to
the reasons described for the MNIST dataset, all CIFAR10
experiments also used different subsamples of 1000 examples
from the training set. The whole test set was used.

We only report convolutional neural network experiments
for CIFAR10, because traversals with fully-connected layers
were less stable. This is perhaps because the learning problem
underlying CIFAR10 is complex and arguably more suited
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Fig. 2. Phase 2-learning curves for MNIST convolutional experiments. Blue
curves are averages over 10 randomly-initialized runs and the bands indicate
the standard deviation. From top to bottom: 1) Angle between ∇L and ∇R
approaches 180◦. 2) Squared norm of network weights decreases. 3) Training
set loss remains almost constant. ) Test set loss decreases. 5) Test set accuracy
increases.

for convolutional neural networks. The convolutional network
used for different experiment runs had the same configuration
as that for MNIST experiments: 3 hidden layers with two 2D
convolutional layers, preceding a feedforward layer. However,
the number of units in each hidden layer was thrice that in
the MNIST case. Specifically, the convolutional layers had
60 2D convolutional filters each and the feedforward layer
following them had 300 units. The dimensions for convo-
lutional filters here were the same as those for MNIST, as
were the activations and other hyper-parameters such as weight
initialization method, batch-size and number of iterations for
phase 1 training. The total number of predictor/corrector steps
was set to 20000 for CIFAR10 experiments.

C. Other Datasets

We also carried out level-set traversal experiments with Iris
and Auto-MPG datasets. The Iris dataset corresponds to a 3-
class classification problem and includes 150 examples. Of
these examples, 120 were used as the training split and the
other 30 as the test split. The Auto-MPG dataset corresponds
to a regression problem and has 398 examples in total. Six
of these had missing values in one of the variables and were
exluded. Of the remaining 392, 314 were used as the training
set and the remaining 74 were used as the test set.

For both Iris and Auto-MPG, we used a feed-forward
network with 3 hidden layers with 100 neurons each. Var-
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Fig. 3. Phase 2-learning curves for MNIST feed-forward experiments. Note
that the results are aggregated over 10 random runs of the experiment.
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Fig. 4. Phase 2-learning curves for IRIS feed-forward experiments.

ious hyper-parameters such as weight initialization method,
activations in the hidden layers etc. were the same as those
in the MNIST and CIFAR10 experiments. The total number
of predictor/corrector steps in phase 2 were set to 20000 and
30000 for Iris and Auto-MPG respectively. Lastly, we used
mean squared error (MSE) as the loss and evaluation metric
for Auto-MPG instead of average categorical cross-entropy
loss and average categorical accuracy used for other datasets.
This is because Auto-MPG represents a regression problem.
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Fig. 5. Phase 2-learning curves for Auto-MPG feed-forward experiments.
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Fig. 6. Phase 2-learning curves for CIFAR10 convolutional experiments.

D. Weight Decay Experiments

We also compared the predictor/corrector approach with
the more typical “weight decay” approach: namely, uncon-
strained optimization of an objective that is a weighted sum
of training loss and L2-regularization. To this end, for each
of the datasets described earlier, we also trained randomly-
initialized instances of the networks described earlier such that
the training objective now also included an L2 or squared sum
of weights term scaled with a weight-decay parameter. Note
that there was no two-phase training or numerical traversal in
these experiments; just one phase of standard unconstrained
stochastic gradient descent with an additive regularization
term in the objective. The weight decay parameter, λ, is
usually set through trial and error in such experiments. In
our weight decay experiments, its value was taken to be in
the log10space over the interval [10−6, 106]. For each value
of λ, 10 randomly-initialized networks were trained using
mini-batches of 32 for an appropriate number of epochs. The



Experiment Our Method Weight-Decay Best λ
MNIST-CNV 94.47± 0.26% 93.92 ± 0.57% 10−4

MNIST-FF 89.01 ± 0.42% 89.60± 0.46% 10−4

CIFAR10-CNV 36.96± 0.87% 35.38 ± 1.10% 10−2

IRIS-FF 96.67± 0.0% 96.67± 0.0% 10−3

MPG-FF 5.36± 0.27 9.00 ± 0.73 10−4

TABLE I
COMPARISON OF TEST SET ACCURACY/MSE

total number of training epochs in these experiments was 200
for MNIST and CIFAR10. For Iris Auto-MPG datasets, the
number of epochs was set to 500. The networks for MNIST
and CIFAR10 were trained with random subsamples of 1000
training examples, as described earlier.

E. Results

Since phase 1 of our approach is standard gradient-based
optimization, we focus on phase 2 results. Figs. 2 and 3
visualize the phase 2 progress over 10 random runs of MNIST
convolutional and feed-forward experiments described earlier.
The angle plots for these experiments show low variance
over a major fraction of the traversal. This indicates relative
smoothness of the landscape, which is also confirmed by
the quick drop in squared norm of the network weights.
Similarly, Fig. 6 shows results for 10 random runs of the
CIFAR10 convolutional experiment. Results for 10 random
runs of Iris and Auto-MPG feed-forward experiments are
shown in Figs. 4 and 5 respectively. Note that different runs
of the same experiment for level-set traversal used a different
random subsample of the MNIST or CIFAR10 training dataset
as described in the sections above. The weights of all the
networks trained were also initialized randomly.

The figures show that the training loss for all new points
explored during the traversal was at the same level (loss
deviation being ≤ 10−5 for the specified squared deviation
threshold of 10−10, to be precise) as that reached at the
end of phase 1 training. This confirmed that the proposed
numerical procedure almost always successfully navigates a
constant near-zero-loss manifold M along a regularizing R.
The traversal revealed a set of additional near-minima which
displayed a generalization ability superior to or equal to that
exhibited by the point in parameter space reached at the end
of conventional training in phase 1. These newly-discovered
near-minima almost always had lower values of the test set
loss, which naturally translates to a better test set accuracy.

As discussed in the previous sections, the weight decay
experiments provided for a comparison between the proposed
method and the one where the network loss has an added
regularization term. The average test set accuracy values for
10 randomly-initialized runs of each of the MNIST feed-
forward, MNIST convolutional, CIFAR10 convolutional, Iris
feed-forward, and Auto-MPG feed-forward experiments at the
end of level-set traversal are included in Table I. Compared
to the best average test set accuracy values obtained at the
end of weight decay experiments runs corresponding to best-
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Fig. 7. Number of example-wise gradient computations needed to reach a
given performance level on CIFAR10, for weight decay (L2) and traversal
(our method).

performing (λ) and which are given in the same table, the
values from our method are often superior. Note that in
the Auto-MPG dataset, which corresponds to a regression
problem, the loss and the accuracy were both taken as mean
squared error (MSE). From these results, we can argue that the
proposed method on average does a better job than training
on loss with added regularized term at finding well-regularized
points in the loss landscape.

VI. COMPUTATIONAL COMPLEXITY

The main computational expense in both our method and
standard weight decay comes from evaluation of the loss
and its gradient on many training examples. Therefore, their
relative computational complexities depend on the number of
example-wise gradient evaluations needed to reach a given
level of performance. Empirically, this number is highly
problem-specific. On Iris, MPG, and MNIST, our method was
favorable regardless of the number of gradient evaluations. In
other words, for any number of additional gradient evaluations
after phase 1, our method is always above, or within one
standard deviation of, weight decay testing performance. The
CIFAR10 benchmark was more interesting, as shown in Fig.
7. In this case, weight decay initially outperforms our method
substantially, but does not improve with additional gradient
evaluations. In contrast, our method steadily improves with
additional computation, and outperforms weight decay after
∼12.5K example-wise gradient evaluations in phase 2.

VII. VISUALIZING LEVEL-SET TRAVERSALS

We also used dimensionality reduction to provide visual
insight into the level-set trajectories. More specifically, we
used Principal Component Analysis (PCA) [27] to obtain
projections of these trajectories along the top 6 principal
components with the most explained variance ratio. PCA
was carried out on the set of weight vectors obtained by
subsampling every 5th point of a phase 2 traversal. The
trajectories, when plotted along with the points obtained at
the end of training with weight decay, provided for a visual
confirmation of both methods converging to the same highly-
regularized neighborhood in the parameter space.

Fig. 8 visualizes the whole level-set trajectories for 10
random runs of MNIST feed-forward experiments along with
the arithmetic mean of the weight vectors obtained at the end
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forward experiments. The traversed points have been color-coded from first
to last as visualized in the appended colorbar. The mean of endpoints for
the traversals is given as blue cross while the mean of points obtained at the
end of training with weight decay for best-performing λ is given as red star.
Note that the latter two points are almost collocated (in the top-6 principal
subspace).

of 10 runs of weight decay experiments corresponding to the
best-performing λ (red star). The average of the end-points
of the trajectories (blue cross), which occurs very close to
the average end-point for training with weight decay, is also
shown. Note that the top 6 principle components are split into
two 3D sub-plots. As seen in the figure, all traversals seem
to be moving to the same neighborhood. This indicates the
presence of a global heavily-regularized neighborhood in the
parameter-space. Based on intuition from stochastic weight
averaging [28], we hypothesized that better test performance
might be achieved by collecting the final points from each
traversal, and then averaging them to produce a single new,
superior weight vector (blue cross). In fact, the measured loss
at this average weight vector was worse, not better, than at the
final traversal points. This suggests some non-convexity in the
loss surface near the highly regularized points.

To test this hypothesis, we visualized auto-MPG training
loss surface in the top-2 principle component sub-space in
Fig. 9. Regularly-spaced grid points in this sub-space were
inverse-transformed to weight space to evaluate training loss,
and trajectory points were also projected into this sub-space.

The loss surface in Fig. 9 does not perfectly reflect the
fixed ε loss of the level-set traversal trajectories, because the
inverse-transformed grid points do not perfectly coincide with
the traversals, which have unexplained variance outside the
top-2 PCA sub-space. However, limiting PCA to fewer than
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Fig. 9. Visualizing network training loss for the MPG dataset over a 100
× 100 grid sampled in the top-2 PCA sub-space. Level-set trajectories for
randomly-initialized networks approach an area with substantially higher
training loss. The fraction of total variance explained by the top two principal
components is 21.04%.
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Fig. 10. Like Fig. 9, but with only three traversals. The fraction of total
variance explained by the top two principal components is 79.93%.
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Fig. 11. Like Fig. 9, but with only one traversal. The fraction of total variance
explained by the top two principal components is 97.01%.

10 traversals can reduce this unexplained variance and produce
more accurate loss surface visualizations. Using only 3 or
1 traversals (Figs. 10 and 11, respectively), we see the loss
surface visualization is closer to zero near the traversal points.



VIII. DISCUSSION

We have presented a novel two-phased numerical method
for locating almost optimally regularized weights within the
manifold of near-zero training loss in deep neural networks.
We applied the method on various multivariate classification
and regression benchmarks and architectures. When applied
to the specific problem of minimizing a regularizer at a
constant loss level, our method performs better on average
than the more typical weight decay approach. Furthermore,
we use dimensionality-reduction methods to visualize the loss
dynamics over these level-set traversals.

Since the method uses only first-order information about
the loss and constraint functions, it can arguably be used
on medium to large datasets and networks. Even though we
worked with subsets of the MNIST and CIFAR10 datasets
in order to conduct maximum number of experiments within
available compute, the calculations of full-batch update, as uti-
lized in the predictor/corrector steps, can be readily distributed
over multiple GPUs, using standard provisions in modern deep
learning libraries such as Google’s TensorFlow [29], [30].

While we have reported results for numerical exploration
of constant, near-zero loss manifolds along a regularizing path
only, the method presented here can possibly be generalized to
explore constant-loss manifolds along differentiable paths of
interest in deep neural networks. This is akin to multi-objective
optimization where optimizing successive objectives improves
the overall quality of solutions found. For our future works, we
aim to extend the method to such multi-objective problems in
the context of machine learning and deep neural networks. We
also seek to investigate the scenarios where loss is ‘exactly’
zero, rendering first-order methods insufficient. While second-
order methods are expensive and borderline impractical for
large networks, some recent works exploring the possible
existence of a structure in the Hessian of large networks [15]
provide for an interesting starting point in this regard.
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