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Abstract—Prognostication of vehicle trajectories in unknown
environments is intrinsically a challenging and difficult problem
to solve. The behavior of such vehicles is highly influenced
by surrounding traffic, road conditions, and rogue participants
present in the environment. Moreover, the presence of pedes-
trians, traffic lights, stop signs, etc., makes it much harder to
infer the behavior of various traffic agents. This paper attempts
to solve the problem of spatio9temporal look9ahead trajectory
prediction using a novel recurrent neural network called the
Memory Neuron Network. The Memory Neuron Network (MNN)
attempts to capture the input-output relationship between the
past positions and the future positions of the traffic agents. The
proposed prediction model is computationally less intensive and
has a simple architecture as compared to other deep learning
models that utilize LSTMs and GRUs. It is then evaluated on
the publicly available NGSIM dataset and its performance is
compared with several state9of9art algorithms. Additionally, the
performance is also evaluated on a custom synthetic dataset
generated from the CARLA simulator. It is seen that the proposed
model outperforms the existing state9of9art algorithms. Finally,
the model is integrated with the CARLA simulator to test its
robustness in real9time traffic scenarios.

I. INTRODUCTION

Research in autonomous vehicles has attracted a lot of
interest from researchers around the world. With the rise
of electric vehicles over the past few years, autonomous
navigation and path planning have become an inherent feature
of these vehicles. In presence of traffic, these vehicles should
reach their destination and also follow traffic rules, prevent
accidents, detect various traffic signs, handle reckless drivers
and rogue vehicles. To be able to perform the aforementioned
tasks, the autonomous vehicle must have the ability to predict
the motion of it’s surrounding vehicles. This will enable
the vehicle to make necessary decisions at the right time.
Anticipating traffic scenarios is thus a major functionality of
autonomous vehicles in order to navigate safely amidst their
human counterparts.

This is a very challenging problem due to the unpredictable
nature of traffic agents. Their behaviour is often determined by
multiple latent variables that cannot be estimated beforehand
in new and unknown environments, such as the mental state
and driving experiences of human drivers, road and weather
conditions, destination of each vehicle in the traffic, reckless

behaviour of traffic agents that involve overtaking, abrupt lane
changing without indication, etc.

Many recent state9of9art deep learning models have utilized
Long-Short Term Memory (LSTM) networks [1] and Gated
Recurrent Units (GRUs) [2] for the trajectory prediction prob-
lem. One technique that is utilized by many approaches is
that of an encoder-decoder architecture. In these approaches,
the spatio-temporal context from the vehicle trajectories is
extracted and then a recurrent neural network (RNN) based
decoder is used to predict the future trajectories. While they
have been successful in regressing the future trajectories of
traffic agents over a certain time horizon, they are heavily
dependent on computational resources due to their complex
architecture and require a lot of training time.

This paper will attempt to address all the aforementioned
problems by adapting a unique recurrent neural network called
the Memory Neuron Network [3]. The Memory Neuron Net-
work is an extension of the traditional neural network with
addition of memory elements to each neuron in the network,
that are capable of storing temporal information. This network
has a simple architecture, and requires less computational
resources as compared to the currently available state9of9art
deep learning methods. The performance of the proposed
model is evaluated on the publicly available NGSIM US-101
dataset. Although, NGSIM dataset provide comprehensive data
of real traffic agents, it does not contain sufficient data for
reckless and rogue traffic agents. To address this situation, a
synthetic dataset is generated using the CARLA simulator [4]
that contains the trajectories of multiple heterogeneous rogue
traffic agents. As the proposed model is computationally less
intensive, it allows for the deployment onto all the rogue vehi-
cles present in the real9time traffic simulation with additional
80 normal cars. To summarize, our main contributions are as
follows:
• A novel prediction model is proposed that uses a recurrent

neural network 9 the Memory Neuron Network for the
problem of spatio9temporal look9ahead trajectory predic-
tion.

• The proposed prediction model is evaluated on publicly
available US9101 dataset, and the RMSE is reported
along with several state9of9art methods.

• To evaluate the performance of our model with respect to
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reckless drivers, rogue vehicles are simulated on CARLA
simulator and their trajectories are recorded. The model is
then implemented in real9time simulation on each rogue
vehicle with a look9ahead horizon of 5s, demonstrating
the robustness and the computational efficiency of the
proposed model.

II. RELATED WORK

This section sets out to explore some of the various methods
currently present in the literature to address the motion predic-
tion problem. The existing literature can be broadly classified
into three parts which are discussed below.

A. Mechanics-based methods

In these approaches, vehicles are mathematically modelled
using Newtonian laws of translation and rotation. Once the
model is formed, an Unscented Kalman Filter (UKF) is used
to estimate the states of the vehicles. [5] propose an Interactive
Multiple Model Trajectory Prediction (IMMTP) which com-
bines physics-based and manoeuvre-based predictive models.
[6] use a deterministic sampling approach in the UKF process
for a robust estimate of target trajectories. These models work
really well in certain scenarios and short time prediction
horizon. However, these approaches tend to linearize the
obtained models and hence, are unable to capture the inherent
non-linear characteristics in a generic traffic scenario. Another
issue with these approaches is that the parameters of the
mathematical model such as the dimensions of the vehicle, its
braking coefficients, steering torque etc., must be set and tuned
in real9time, as soon as a vehicle is detected in the vicinity.
This may not be feasible when the other agent’s model is
unknown. A detailed study on these methods can be found in
[7].

B. Human behavior-based models

These techniques attempt to build a mathematical formu-
lation of the human behavior and utilize these as a model
for the driving process. [8] apply the theory of planned
behavior to model the driver behavior, and develop a driver
model that accounts for various human aspects such as driving
experiences, emotions, age, gender etc. [9] and [10] apply
control theory and Markov Decision Process (MDP) to model
human behaviors specifically for the navigation process in a
single lane. To extend the analysis to multi9lane junctions,
Hidden Markov Models are proposed to model human behav-
iors in [11]. Statistical models have been proposed in [12],
[13] and [14] to predict driving manoeuvres and behaviors.
These methods work best when the knowledge of the human
behaviors and their analysis are known beforehand. However,
in the case of new and unknown environments these models
fail to provide reliable predictions.

C. Deep learning methods

These methods use a spatial encoder to process the raw tra-
jectory data, and then use recurrent neural networks to estimate
the future trajectories. To extract the spatial context from the
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∆ŷt

et

z91

∆x̂t91
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Fig. 1: Spatio-temporal lookahead model

trajectories, [15], [16] and [17] use a sequential point9based
representation. Occupancy grid9base is another popular rep-
resentation for the spatial context. These approaches model
trajectories as a 2D sequence, which can be unstructured at
times due to the missing temporal information. Extraction of
the temporal context is normally done by using RNNs. [18]
propose a Bayesian fuzzy model to accurately estimate the
temporal dependencies. [19] and [20] also use Convolutional
Neural Networks to encode the temporal context. To unify
the spatial and temporal contexts, [21] follows a simple
and effective approach, where both the contexts are encoded
together, using a Multi-Layer Perceptron, which drastically
improves the prediction performance. [22] use a RNN based
encoder-decoder along with [23] to model the spatio-temporal
context. For the process of predicting future trajectories dif-
ferent variants of RNNs have been used. [24] use a standard
LSTM network for trajectory prediction on highways. [25] and
[26] use Imitation Learning along with Generative Adversarial
Networks to predict future trajectories. [27] use LSTMs along
with Convolutional Neural Networks with social pooling lay-
ers and generate a multi-modal Gaussian model for trajectory
prediction. While these approaches have helped in improving
the performance, they require heavy computational resources.
This can make them quite hard to be implemented in real9time
scenarios.

III. TRAJECTORY PREDICTION FRAMEWORK

Fig. 1 shows the proposed model for trajectory prediction.
The figure consists of a trajectory database, that consists of all
the change in trajectory samples for multiple vehicles, present
in the dataset, and the Memory Neuron Network which is
shown as a black box. At every time instant t, the trajectory
database provides the change in the (x, y) coordinates for a
particular vehicle, and the network estimates the next change
in position of the vehicle. The initial values provided by
the trajectory database is fed to the network multiple times
sequentially, so that the predicted values reach a steady9state.
Once the steady9state is achieved, the network then receives
consecutive input values from the trajectory database.
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Fig. 2: The coordinate system is shown for a particular ego
vehicle in a multi-lane traffic environment. The y-axis is along
the longitudinal direction and the x-axis is perpendicular to it.

A. Problem Formulation

The coordinate system used for formulating the trajectory
prediction problem is shown in Fig. 2. It shows the ego
vehicle (filled rectangle) and the non9ego vehicles surrounding
it (hollow rectangles). The location of the vehicle is measured
at its centre of mass in the local coordinate frame instead of
the global coordinate frame (GPS data). The ego vehicle is
assumed to be equipped with sensors that can measure the
position and velocity of the surrounding non9ego vehicles in
the local coordinate frame . In this manner, it is possible to
obtain the track histories of the non9ego vehicles present in
the vicinity of the ego vehicle.

The inherent uncertainties of the sensors only provide an
approximate estimate of the position and velocities of the
surrounding vehicles. As a result, it is challenging to predict
the future trajectories of these vehicles using simple kinematic
equations. Thus, as followed in [28], a data - driven model is
developed that can relate the past track histories of the vehicles
to their future trajectories. As the values of the trajectory data
can change drastically when driving from one point to another
over long periods of time, the difference between consecutive
(x, y) coordinates are taken:

∆xt = xt 9 xt91 (1)

where xt = (xt , yt) are the local coordinates of a vehicle at
time instant t. As the datasets are generated through sampling
data points uniformly, the difference in the trajectory samples
will be bounded within certain limit, ensuring network stability
and improved performance. The trajectory prediction problem
is then, posed as a system identification problem, with the
state of the system given by ∆xt. Assuming this system is
observable, from [29] the state of the system can be formulated
as:

∆xt = F (∆xt91,∆xt92, ..) (2)

where F (.) is an unknown nonlinear function of the previous
states. The goal of the network is to predict the next change
in coordinates (∆x̂t) of the vehicle at time t such that the cost
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∆ŷt91 ...

∆x̂t

∆ŷt
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Fig. 3: The memory neuron network is fully connected with 6
hidden neurons. Every neuron has a memory neuron associated
with it. Initially, the network is trained with zero inputs so
that the weights stabilize to some equilibrium point, before
providing the actual data.

function J is minimized at every time step. Here J is given
by

J = ‖∆xt 9 ∆x̂t‖2 (3)

where ‖.‖
2

represents the L2 norm.

B. Network Architecture

The network architecture is shown in Fig. 3. The figure
shows some of the network parameters that provides clarity
on understanding the functioning of the network. The Memory
Neuron Network consists of fully connected network neurons
(large open circles) and its associated memory neurons (small
filled circles). There are weights associated with both the
connections of network neurons and memory neurons. Both
these weights are updated during backpropagation.

To describe the functioning of the network, let ∆xt91 =
(∆x̂t−1,∆ŷt−1) be the inputs to the network. The net output
nhj (t) of the jth network neuron in the hidden layer h can be
calculated as:

mh
j (t) =

2∑
k=1

wikjn
i
k(t) +

2∑
k=1

f ikjv
i
k(t) (4)

nhj (t) = gh
(
mh
j (t)

)
, 1 ≤ j ≤ 6 (5)

where,
• wikj is the weight of the connection from kth network

neuron in the input layer i to jth network neuron of the
hidden layer h.

• nik(t) is the output of the kth network neuron in the input
layer i. In our case, ni1(t) = ∆x̂t−1 and ni2(t) = ∆ŷt−1.
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• f ikj is the weight of the connection from the memory
neuron corresponding to the kth network neuron in the
input layer i to jth network neuron of the hidden layer
h.

• vik(t) is the output of the memory neuron of the kth

network neuron in the input layer i.
• gh(.) = tanh(.) is the activation function of the network

neurons present in the hidden layer.
The output of the memory neuron corresponding to the jth

network neuron in the layer l is given by:

vlj(t) = αljn
l
j(t 9 1) + (1 9 αlj)v

l
j(t 9 1), l ∈ {i, h, L} (6)

where αlj is the weight of the connection from jth network
neuron in the input layer l to its corresponding memory
neuron. The net output nLj (t) of the jth network neuron in
the last layer L is calculated as:

mL
j (t) =

6∑
k=1

whkjn
h
k(t) +

6∑
k=1

fhkjv
h
k (t) + βLj v

L
j (t) (7)

nLj (t) = gL
(
mL
j (t)

)
, 1 ≤ j ≤ 2 (8)

where,
• βLj is the weight of the connection from the memory

neuron to its corresponding jth network neuron in the
last layer L.

• vLj (t) is the output of the memory neuron corresponding
to the jth network neuron in the last layer L.

• gL(.) is a linear activation function with unit slope for
the network neurons in the output layer L.

• nLj (t) is the output of the jth network neuron in the last
layer L. In our case, nL1 (t) = ∆x̂t and nL2 (t) = ∆ŷt.

To ensure the stability of the network dynamics, the following
condition is imposed: 0 ≤ αlj , βLj ≤ 1.

The backpropagation algorithm is used to update all the
weights of the network corresponding to both the network
neurons as well as the memory neurons. The following squared
error function is used for backpropagation:

e(t) =
2∑
j=1

(nLj (t)− dj(t))2 (9)

where dj(t) is the desired teaching signal that is derived from
the trajectory database. In our case, d1(t) = ∆xt and d2(t) =
∆yt.

At the time of updation t = τ , the weights are updated by
using the following rule:

wlkj(τ + 1) = wlkj(τ)− ηel+1
j (τ)nli(τ), l ∈ {i, h} (10)

f lkj(τ + 1) = f lkj(τ)− ηel+1
j (τ)vli(τ), l ∈ {i, h} (11)

where η is the learning rate for the weights of the network,
and

eLj (τ) =
(
nLj (τ)− dj(τ)

)
, 1 ≤ j ≤ 2 (12)

ehj (τ) =
(
gh(mi

j(τ))
)′ 2∑
p=1

eLp (τ)whjp(τ), 1 ≤ j ≤ 6 (13)

The various memory coefficients are updated using the
following equations:

αlj(τ + 1) = αlj(τ)− η′ ∂e
∂vlj

(τ)
∂vlj
∂αlj

(τ) (14)

βLj (τ + 1) = βLj (τ)− η′eLj (τ)vLj (τ) (15)

where η′ is the learning rate for updating the memory coeffi-
cients, and

∂e

∂vhj
(τ) =

Nl+1∑
s=1

fhjs(τ)eLs (τ) (16)

∂vlj
∂αlj

(τ) = nlj(τ 9 1) 9 vlj(τ 9 1) (17)

where Nl+1 is the number of network neurons in the layer next
to l. The memory coefficients are hard9limited to [0, 1] if they
happen to fall outside the range. For a detailed discussion on
the functioning of the network and additional details, please
refer to [3].

A crucial requirement in system identification problems is to
determine how many previous inputs and outputs are to be fed
back to the model to capture the generic nonlinear input-output
mapping of the model. The presence of the memory neurons
ensures that this requirements is optimally learnt during the
learning process. Note that the output of the network depends
on the previous inputs as well as its own outputs due to the
presence of memory neurons in the output layer. Thus, the
estimated next state of the system ∆x̂k is given by:

∆x̂t = F̂ (∆x̂t91,∆x̂t92, ...) (18)

where F̂ (.) is the nonlinear transformation represented by
the Memory Neuron Network. The predicted samples ∆x̂t
depends on the previous inputs due to the presence of memory
neurons in the input and hidden layers, and it depends on its
own previous outputs due to the presence of memory neurons
in the output layer. Thus, the spatio9temporal look9ahead
model represented by Fig. 1 is known as parallel identification
model [30].

C. Training and Implementation Details

The Trajectory database consists of differences between
consecutive trajectory samples, as given by equation (1).
During the learning process, at every time step t the network
receives the previous state information ∆xt91, and predicts
the estimated next state ∆x̂t. The actual state of the system
∆xt is then used as a teaching signal, to backpropagate the
squared error ‖∆xt 9 ∆x̂t‖2

2
and update both the weights

associated with the network neurons and the memory neurons.
The network consists of six neurons in the hidden layer, with
tanh(.) as its activation function, and linear activation function
in the output layer. The number of hidden neurons were chosen
based on experimentation, and no significant improvement was
observed when the number of hidden neurons were increased.
It was also noted that there was no significant improvement,
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TABLE I: Root Mean Square Error (RMSE) values (in meters) are reported over a prediction horizon of 5s for the NGSIM
dataset.

Time CV CV-GMM
[31]

GAIL-
GRU
[32]

LSTM MATF [33] CS-LSTM
[27]

S-LSTM
[34]

UST [21] UST-180
[21]

MNN

1s 0.73 0.66 0.69 0.68 0.67 0.61 0.65 0.58 0.56 0.36
2s 1.78 1.56 1.56 1.65 1.51 1.27 1.31 1.20 1.15 0.85
3s 3.13 2.75 2.75 2.91 2.51 2.09 2.16 1.96 1.82 1.38
4s 4.78 4.24 4.24 4.46 3.71 3.10 3.25 2.92 2.58 1.92
5s 6.68 5.99 5.99 6.27 5.12 4.37 4.55 4.12 3.45 2.74

when the number of memory neurons associated with the
network neurons in the output layer were increased. The range
of the activation function is adjusted according to the range
of the state values of the system, to avoid clipping during the
prediction phase. It’s slope is also adjusted to provide a linear
relationship with unit slope, about the origin.

The entire trajectory data is taken for a vehicle, and the
difference between consecutive trajectory samples is calculated
and stored in the trajectory database for every vehicle. They
will be referred as differential trajectory samples. Each sample
is then presented to the network sequentially and is trained
using backpropagation. One epoch is said to be completed
when the last sample in the set of differential trajectories
samples is presented and learnt. This procedure is repeated for
100,000 epochs, for multiple vehicle trajectories. The learning
rates for both type of weights is chosen to be 4 × 10−6.
Algorithm 1 summarizes the training procedure. The entire
model is implemented in Python using NumPy library [35].

Algorithm 1: Training pseudocode
Input : A list D = [di], i = 1, 2, · · · , n, where each

element is a set of differential trajectory

data di =
{

∆x
(i)
t

}
=
{

(∆x
(i)
t ,∆y

(i)
t )
}T
t=1

for vehicle i, learning rates η, η′, epochs;
Output : Trained memory neuron model for

trajectory prediction;
Initialize: Initialize the weights of the network

arbitrarily, except the memory coefficients
which are initialized to zero.;

foreach di ∈ D do
for e← 0 to epochs do

foreach ∆xt ∈ di do
Compute output of the network using
feedforward equations (4) - (8);

Compute error for backpropagation using
equation (9)

Update all the weights and the memory
coefficients using equations (10) - (17);

end foreach
end for

end foreach

IV. PERFORMANCE EVALUATION

In this section, the proposed model is evaluated on two
datasets, and the performance is compared quantitatively with
several state9of9art techniques by employing the RMSE met-
ric.

A. Datasets

For evaluating the performance of the proposed model, the
following datasets are used:

(a) NGSIM US-101 [36]: The Next Generation Simulation
(NGSIM) US9101 dataset consists of trajectory data
sampled at 10Hz, over a span of 45 minutes. The
trajectory data is reported in both global as well as local
coordinate frames. These trajectories are recorded from
a fixed bird’s eye view, and consists of varying traffic
conditions. A similar experimental setup is followed as
in [27], where 3s of trajectory history is chosen to
predict the estimated trajectories over the horizon of next
5s during the testing phase.

(b) Synthetic Dataset: In order to predict trajectories of
rogue vehicles, the trajectories for 20 different rogue
vehicles is generated by using the CARLA simulator. The
rogue vehicles are made to skip traffic lights randomly
and move in a zig9zag fashion within the lane, while
traveling at a dangerously high velocity. They can also
change lanes abruptly without any indication. The trajec-
tory data is sampled at 20Hz over a 19minute duration.
In order to capture abrupt changes in the trajectories
of rogue vehicles, they are sampled at a higher rate of
20Hz. The same procedure of choosing 3s of trajectory
history and predicting the estimated trajectories over the
horizon of next 5s during the testing phase is followed.

B. Evaluation metric

During the prediction phase, the differential trajectory sam-
ples from the trajectory database is provided for a duration of
3s to the network and for the next 5s, the input to the network
is it’s previous outputs. The predicted values of the network
are summed up with the starting actual trajectory values of
each vehicle over the duration of 5s to generate the predicted
actual trajectory of the vehicle. In order to compare the results
of the proposed model quantitatively, the root mean squared

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 09,2023 at 10:21:16 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Simulating trajectory prediction on CARLA for two rogue vehicles. The trained model is deployed on each of the
rogue vehicle present in the simulation, so that the other vehicles present in the traffic get a ‘5s’ look9ahead of every rogue
vehicle. This way, they can plan some protective measures to avoid any collision with them. The predicted trajectories are
shown frame-by-frame in green dotted lines for future 5s, and the actual trajectories given by the planner are shown for 10s
in red dotted lines. Figure on top shows a car traveling at a roundabout. The bottom figure shows the trajectory prediction at
a junction.

error (RMSE) metric is used over all future time steps T
H

and
number of vehicles N :

RMSE =

∑N
n=1

√∑T
H

t=1

∥∥∥x(n)
t −x̂

(n)
t

∥∥∥2
T
H

N
(19)

C. Results
The performance of the Memory Neuron Network is re-

ported along with several state-of-the-art algorithms tested on
the NGSIM US-101 dataset in Table I. The table consists
of the RMSE for a look9ahead duration of 1s to 5s for
9 algorithms, which has been reproduced from [21]. It is
evident that the Memory Neuron Network outperforms all the
other algorithms. Our results have improved by 35% for 1s
prediction horizon, and about 20% for 5s prediction horizon
when compared to [21]. Further, the rise in the RMSE values
from 1s horizon to 5s horizon is far less for our proposed
model, as compared to other algorithms. From this analysis,
it can also be concluded that the proposed model is relatively
more stable, than the current existing algorithms.

This superior performance can be attributed to the fact
that the memory neurons not only remember their own past
values, but the past values of all the other memory neurons
in it’s preceding layers as well. This makes the Memory
Neuron Network globally recurrent, as compared to the LSTM
networks which are locally recurrent.

To test it’s robustness, the trained model is deployed in real-
time simulation, with 100 cars.1 The simulation is carried out
using C++ APIs provided by CARLA’s unreal environment.
Only the feedforward part of trained network is implemented
in each of the rogue vehicle’s trajectory planner. About 20%
of them are rogue vehicles. The simulation consists of mixed
vehicles, ranging from small cars to heavy trucks. The future
trajectories of all the rogue vehicles are predicted, based on
their current location and their 3s past track histories. The
prediction of the trajectories are shown for two different rogue
vehicles as frame-by-frame snapshots in Fig. 4.

1A detailed video demonstration on the same can be found here.
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It can be observed from Fig. 4 that there is minimal
error between the predicted trajectories and the actual future
trajectories, when the vehicle is travelling in a near9straight
path. The bottom left figure shows the predicted trajectories
at the beginning of a left-turn manoeuvre. It is evident that
there is a relatively higher error in this scenario, as the model
cannot anticipate the radius of curvature of the turning due
to the fact that it has no prior knowledge about the map and
the dimensions of the roads and junctions present in the map.
This shouldn’t be concerning, as the predicted trajectory has
the same structure of the actual future trajectory, and thus it
can be inferred that the vehicle is still going to take a left9turn.
This also holds true with erratic movements like the zigzagging
of the rogue vehicles. While the predicted trajectory may not
be exact as the trajectory that the rogue vehicle takes in the
course of next 5s, the overall behavior of the rogue vehicle
can still be inferred correctly.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a trajectory prediction model, which
uses a novel recurrent neural network as its base model. The
trajectory prediction problem is posed as a system identifica-
tion problem, where the Memory Neuron Network learns the
input-output relationship between the past trajectory samples
and the future predicted trajectory samples. It is clear that the
proposed model outperformed all the state9of9art algorithms
currently available, and is also very efficient in the sense that
it requires less resources when training, computationally faster
due to it’s less complicated architecture. The proposed model
has a RMSE that is about 20% lesser than the RMSE reported
by the current state9of9art algorithms, for a 5s look9ahead
prediction . The robustness of the proposed model is also
verified by deploying it in the CARLA simulator, for each rogue
vehicle. While the model performs very well in relatively
straighter paths, it fails to predict the trajectories accurately at
a junction as it is not aware of the structure of the map. The
proposed model will be improved in this regards by adding
some features related to the roads and junctions present in the
map during the training process, in one of our future works.
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