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Abstract—Graph convolutional networks (GCNs) have
achieved great success in dealing with data of non-Euclidean
structures. Their success directly attributes to fitting graph
structures effectively to data such as in social media and
knowledge databases. For image processing applications, the use
of graph structures and GCNs have not been fully explored.
In this paper, we propose a novel encoder-decoder network
with added graph convolutions by converting feature maps to
vertexes of a pre-generated graph to synthetically construct
graph-structured data. By doing this, we inexplicitly apply graph
Laplacian regularization to the feature maps, making them more
structured. The experiments show that it significantly boosts
performance for image restoration tasks, including deblurring
and super-resolution. We believe it opens up opportunities for
GCN-based approaches in more applications.

Index Terms—Graph convolution, image deblurring, image
restoration, convolutional neural networks

I. INTRODUCTION

Graph convolutional networks (GCNs) have recently been
shown outstanding ability in dealing with data of non-
Euclidean structures, such as point clouds and graphs. Re-
cently they have gained much increased attention in the
signal/image processing and machine learning communities.
Many existing applications of GCNs have focused on graph
data or data exhibiting graph structures, such as social net-
works [1], [2], physical systems [3], and knowledge graphs
[4].

The main advantage of graph networks is to express dis-
semination among information and interaction of data; hence
GCNs are powerful tools to represent the intra-relationship of
input data. In [5], GCN was used in classification to describe
relationships between multiple labels. In this case, the original
data was not graph-structured (i.e., images in the Euclidean
space), while high-level features were abstracted and further
processed by knowledge graphs. Similar work can be also seen
in [6]. GCN in image classification is often applied on the
result of encoder, as indicated in Fig. 1 (a), and the existing
research suggests that GCN works well on these encoded
data. Such applications are based on high-level semantics.
By comparing network structures of classification and image
restoration, we can reasonably argue that semantic relation-
ships should also exist in low-level features, for instance,
intermediate feature maps in the convolutional neural networks

Fig. 1. Comparison of GCN in classification and the encoder-decoder
structure. Since the data processed by pooling and fully connected network
(FCN) can be processed by GCN, we can infer that the latent information in
the encoder-decoder can be better represented by GCN.

(CNNs). In this paper, we explore the use of GCNs in an
encoder-decoder structure, as illustrated in Fig. 1 (b).

In the forward process of a CNN, features produced by
the convolutions may be used to infer their topological rela-
tionships. Some features may be more important and subse-
quent layers may depend more on these key features. These
topological relationships can be described by graph networks.
Therefore, we propose a GCN-based encoder-decoder network
to exploit such relationships among features. For efficiency,
we first produce an artificially constructed graph structure and
then fit features into the graph, followed by their corresponding
weight updating. By doing this, the features extracted contain
certain structural relationships useful to many image restora-
tion tasks such as deblurring and super-resolution. To our best
knowledge, there is no similar approach before. Such use of
GCNs also broadens the application of GCNs.

The proposed network adds graph convolutions by con-
verting feature maps to vertexes of a pre-generated graph
to extract topological structures of the features. By doing
this, we inexplicitly apply graph Laplacian regularization to
the feature maps, making them more structured. Furthermore,
we use residual learning to moderately deepen the graph
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Fig. 2. Proposed method converts feature maps from CNN into a graph, treating each channel as an identity or node and connecting them by a pre-defined
adjacency matrix. The output layer of GCN is converted back to feature maps.

network in order to increase performance. The experiments
show that GCN in the feature space can significantly improve
the performance in the task of image restoration (we use
image deblurring and super-resolution as examples). We also
analysed the relationship between our method and the channel
attention structure.

We summarise our contributions as follows:

• We proposed a concept to transfer feature maps into
vertexes of a pre-generated graph for graph convolution,
in order to extract inter-relations of the features.

• We proposed a new framework to fit graph network into
the encoder-decoder structure, inexplicitly applying graph
Laplacian regularization to the feature maps. This can be
also regarded as an expansion of channel attention.

• We applied GCN-enhanced deep network to image
restoration tasks, in particular deblurring and super-
resolution, and extensive experiments demonstrated the
superiority of the proposed network compared to the
state-of-the-art methods.

II. RELATED WORK

A. Graph Convolutional Networks (GCNs)

From the perspective of aggregator, GCNs can be divided
into spectral-based and spatial-based. Authors in [7] firstly
developed graph convolutions based on spectral graph the-
ory using the Fourier basis of a given graph in the spec-
tral domain. Many extensions subsequently apply extensions,
improvements and approximations on spectral-based GCNs
[2], [8]. Spatial-based GCNs [1], [9] directly define graph

convolution operations on the graph by operating on spatially
close neighbours.

In the recent rapid and fruitful development of GCNs, most
methods employed shallow GCNs. Some attempted different
ways of training deeper GCNs [1], [11]. However, these
networks are limited to 10 layers in depth before performance
degrades. Inspired by the benefit of training deep CNN-based
networks [12], DeepGCNs [13] proposed to train a very
deep GCN (56 layers) by adapting residual/dense connections
(ResGCN/DenseGCN) to GCN.

B. Image Deblurring

Image deblurring is a challenging task due to its ill-posed
nature. It aims to recover the latent sharp image from a
degraded input due to factors such as camera or object
motion, which hinders many computer vision tasks including
object detection and classification. To restraint the solution
space, many prior based methods have been proposed, for
instance, dark channel prior [14] and extreme channel prior
[15]. With the advent of deep neural networks (DNNs) [16],
[17], some methods use deep neural networks to help find blur
kernels and restore sharp images [18], [19]. In [20], end-to-
end deblur CNN [21] was proposed, directly recovering sharp
image without considering blur kernels. Kupyn et al. [22],
[23] adapted generated adversarial network (GAN) in image
deblurring. In [24], recurrent neural networks were adopted,
inspired by infinite impulse response (IIR). Tao et al. [25]
proposed scale-recurrent network with parameter sharing, and
Gao et al. [26] further adopted densely connected networks in
this framework.



Fig. 3. Our adopted graph with different mean node degrees, which are 2, 4, and 6 respectively. The mean of degree cannot be odd number [10]. Graph with
mean degree more than 6 has very densely connected links, which is not easy to illustrate. The size of nodes is linear with the degree of the graph.

C. Image Super-Resolution

Image super-resolution (SR), which refers to the process
of estimating a high-resolution (HR) image from its low-
resolution (LR) input, has attracted extensive attention in
the computer vision community due to its wide range of
applications. To restore realistic HR details, early approaches
rely on interpolation techniques based on sampling theory [27].
Natural image statistics was adopted in [28] to reconstruct
better high-resolution images. However, these methods have
limitations in predicting realistic and reasonable textures due
to the large solution space. Based on the success of CNNs,
many CNN-based learning methods have been developed for
the SR task. Dong et al. proposed SRCNN [29] to adopt deep
convolutional network into solving image super-resolution.
In [30], Kim et al. observed that increasing network depth
showed a significant improvement in accuracy, and further pro-
posed VDSR. Haris et al. [31] proposed a deep back-projection
method by using iterative up- and down-sampling. Lim et al.
[32] proposed EDSR, which improved the performance by
removing unnecessary modules in the conventional residual
networks.

III. GRAPH NETWORK ON FEATURE MAPS

The concept of our entire network is shown in Fig. 2. Con-
volutional layers produce high dimensional feature maps. Each
feature map is transferred into a set of independent vertexes,
and features are then connected via a pre-generated graph.
By doing so, the features extracted by the convolutional layer
become a structured graph network, which can be processed
by graph convolutions. After several graph convolutions, we
transfer the data from nodes back to feature maps in the same
order. These features are further processed by decoder network
and finally reconstructed in the output image for deblurring or
super-resolution.

A. Conversion between feature map and graph nodes

Since we use graph convolutions on features of a CNN,
one of the difficulties is the conversion between feature maps
and graph nodes, i.e., basic units of a graph. Usually, the
implementation of graph convolution is based on adjacency
matrix and degree matrix of a given graph, thus the data
structure in training a deblurring or SR network need to fit
in those matrix operations. In addition, using too many filters
to convolve can lead to much increased dimensions and com-
putational complexity. For instance, using 3 filters to convolve
a 2D grey-scale image can produce a 3-dimensional matrix. To
deal with these problems, we propose a new method, given in
Algorithm 1. Consider an input X , by converting dimension
C to the graph, yielding a new dimension F , the data can
appear in C × F structure with each element a feature map
for left multiplication, and is the same as the mathematical
form given in [2].

B. Graph Convolution

1) Pre-generated Graph: Graph structure is important in
GCNs. However, we find that using any suitable structure from
natural laws and adding graph convolutions can help improve
the CNN performance in image restoration. Generating the
graph structures at each iteration during training can be ex-
tremely computationally intensive and may not produce stable
results. We propose to use a pre-generated graph structure
throughout to alleviate the burden of generating graphs dynam-
ically. With a pre-generated graph, transforming conventional
convolutions to graph convolutions incurs little extra cost.
Here, we use the Watts–Strogatz (WS) model [10], a random
generated graph that has small-world network properties, such
as clustering and short average path length. For a small-world
graph, the average minimum path length is usually small and
produces some hub nodes, to reflect importance of the features.
We generate the graph based on number of features. For



Fig. 4. Visual comparison of image deblurring on GoPro, with DeblurGAN-v2 [23], SRN [25], PSS-NSC [26], and DSHMN [33]. Our method produced
clearer details especially on person’s hair and stripes on the shutter door.

Algorithm 1 Conversion between feature maps and nodes
Input X ∈ RBs×C×W×H : feature map, where Bs is batch

size, W and H is width and height of input feature, C is
the number of features;

Output Xout ∈ RBs×C×W×H : the feature map after graph
convolution.
Convert X ∈ RBs×C×W×H to X∗ ∈ RBs×H×W×C ;
for all data in an epoch do

Convert X to X∗ ∈ RBs×H×W×C×F , added F as graph
feature dimension;

for numbers of GC layers do
X∗ ← GraphConv(X∗);

end for
Convert X∗ to X ∈ RBs×H×W×C , with graph feature

dimension F removed;
end for
Convert X ∈ RBs×H×W×C to X ∈ RBs×C×W×H ;

instance, for a 96-channel feature map, the graph has 96 nodes.
Since we randomly create the graph for training, we have
the following theorem to show that different random graphs
would not result in marked differences in graph properties,
determined by degree centrality [34], which is defined as the
number of links upon a node.

Theorem 3.1: Assume x1, x2, x3, ...xn are the degrees of
a graph of n nodes, in Watts-Strogatz model, and M i is the
average degree of the ith random graph, M i = 1

n

∑n
j=1 x

i
j .

With large or increasing value of n, M i → k, a constant. The
degree of graphs conforms to Gaussian distribution.

Theorem 3.1 can be easily proved by the Law of Large
Numbers.

The core properties of a graph is determined by the degree
of the graph. The average degree of a set of random graphs
of same number of nodes becomes stable when the number
increases. There are some nodes that are more significant
than others, thus the weights of CNN will adapt to the graph
structure when training with a new graph. The order of nodes
does not affect much the network performance. Exemplar
graphs of different average degrees are illustrated in Fig. 3.

2) Aggregator and Updator: For GCN, propagation con-
tains aggregators to obtain hidden states of nodes. Various
GCNs utilise different aggregators to gather information from
each node’s neighbours and specific updaters to update nodes’
weights. Kipf et al. [2] developed an aggregator for spectral
GCNs. Consider an undirected graph G, our aggregator is
given as

T = D̃− 1
2 ÃD̃− 1

2X. (1)

where Ã = A+ IN denotes the adjacency matrix of the graph
G with added self-connections produced by identity matrix IN .
N is the number of nodes. T is the aggregator. Based on the
renormalisation trick proposed in [2], IN + D− 1

2AD− 1
2 →

D̃− 1
2 ÃD̃− 1

2 , where D is the degree matrix. From [2], [35]

X l+1 = T lΘl. (2)

where Θl ∈ RC×F is a matrix of graph convolution (GC)
filter parameters of C input channels and F filters in the lth

GC layer, T l is the aggregator of the lth layer, X l+1 is the
convolved matrix after the lth layer. Thus we get

GraphConv(X) = D̃− 1
2 ÃD̃− 1

2XΘ. (3)

as a representation of the graph convolution used in the
proposed network.

3) Deep GCN: To further improve the performance, we
also consider ResGCN [13] to make the network deeper. As
being analysed in [13], [37], deepening the network is useful.
We believe that such conclusion is also applied in GCNs.
Compared with [13], our network faces to a fresh challenge
with pre-generated graph, and the aggregator will be different
from the original ResGCN. Thus, we removed normalization
and limited the number of ResGCN blocks within 10 to avoid
computational complexity. Based on Eq. 3, the ResGCN block
used in this paper can be given as

Xout = GraphConv(α(GraphConv(Xin))) +Xin. (4)

where α(·) denotes the activation function, e.g. ReLU. In this
paper, we compared and analysed the influence of different
number of ResGCN blocks in the experiments.



Fig. 5. Visual comparison of image super-resolution on Urban100, with RDN [36], DBPN [31], and EDSR [32].

Fig. 6. Structure of proposed network for image deblurring. The red lines
denote skip connections.

IV. EXPERIMENTS

A. Experiments on Deblurring

1) GCResNet: We adopted graph convolutions in the resid-
ual blocks (ResBlocks) in our network for deblurring and term
it as Graph Convolution ResNet (GCResNet). We removed
normalization layers based on the analysis of [25], [32]. The
network is based on an encoder-decoder structure with residual
link from the import of the network to the last convolution
layer. We used 18 ResBlocks in encoder and 18 ResBlocks
in decoder. We adopted graph convolution layers between
encoder and decoder. The network structure is shown in Fig.
6. We used MSE loss, as it is the most suitable loss function
and widely used in image deblurring [25], [26].

We evaluated the GCResNet on the GoPro dataset [20],
the most used end-to-end deblurring dataset. There are 2,103
pairs of sharp and blur images for training and 1,111 pairs for
evaluation. The set was collected by averaging sharp images
from videos thus is more realistic compared to other synthetic
blurring datasets [38]. We further tested the model on the
Human-aware Image Deblurring (HIDE) dataset [39], which
covers both wide-range and close-range scenes. The HIDE
dataset has two parts: HIDE I (1304 long-shot pictures) and
HIDE II (7118 close-ups pictures). We combined HIDE I and
HIDE II, leading to 6397 images for training, 1063 of HIDE
I and 962 of HIDE II for testing.

2) Training Details: Implementation of the proposed
method consists of production of a graph network and training
the network. We used MATLAB [40] to produce the WS
graph with ρ = 0.9 (slightly different values would not
result in significant differences). We implemented the proposed
network by Pytorch on a NVIDIA Tesla P100 GPU. During
training, we randomly cropped a 256 × 256 region from a
blurred image and used it and its ground truth image at the
same location as the training input. The batch size was set to
12. All weights were initialized by the Xavier method [41], and
biases were initialized to zero. The network was optimized by
using the Adam [42] with default setting β1 = 0.9, β2 = 0.999
and ε = 10−8. The learning rate was initially set to 0.0001
and linearly decayed to 0.

3) Results: We used the Peak Signal-to-Noise Ratio
(PSNR), Structural SIMilarity (SSIM) and Feature SIMilarity
(FSIM) index [43] for image quality assessment. The proposed
network was compared with the mainstream methods: Deep-
Deblur [20], SRN-Deblur [25], PSS-NSC [26], DeblurGANv2
[23] and SVRNN [24]. Results are shown in Table. I. The pro-
posed method has the best performance. A visual comparison
is shown in Fig. 4, indicating that GCResNet has restored
clearer and sharper details.

4) Ablation Study: We conducted an ablation study on the
GCN structure, to show differences between different sets of
GC layers. Results are shown in Fig. 7. When we kept the
number of ResGCN blocks and enlarged the average degree,
the performance would decrease for degree > 4. Note that
the average degree cannot be odd number [10]. We think such
phenomenon was due to too sparse or too dense connections,
and the graph on degree = 4 showed the best topological
properties. The performance of degree = 2 was slightly better
than that of degree = 4. We imply that the performance would
be close to the network without GCN when the average degree
kept increasing, because too many connections would make
GC meaningless on information. We kept degree = 4 and
increased the number of ResGCN blocks, the performance
kept increasing while the growth rate decreased with too



TABLE I
TESTING RESULTS ON GOPRO DATASET

Algorithm DeepDeblur [20] SRN-Deblur [25] PSS-NSC [26] DeblurGANv2 [23] SVRNN [24] RADN-Deblur [44] GCResNet

PSNR 29.08 30.26 30.92 29.55 29.19 31.76 32.64
SSIM 0.9135 0.9432 0.9421 0.9340 0.9306 0.9530 0.9580
FSIM 0.9633 0.9653 0.9756 0.9527 0.9446 0.9798 0.9802

TABLE II
TESTING RESULTS ON HIDE DATASETS

Algorithm
HIDE I (long-short) HIDE II (close-ups)
PSNR SSIM PSNR SSIM

DeepDeblur [20] 27.43 0.9020 26.18 0.8780
SRN-Deblur [25] 29.41 0.9137 27.54 0.9070

PSS-NSC [26] 29.98 0.9234 28.14 0.9021
DeblurGANv2 [23] 28.29 0.8960 26.64 0.8722
RADN-Deblur [44] 28.97 0.9044 26.51 0.8698

GCResNet 30.04 0.9240 28.62 0.9132

Fig. 7. Comparison of different network settings in image deblurring. Degree
= 4 achieved the best results with other settings remained the same. Degree = 2
was better than degree = 6, for degree = 6 was too dense so that the advantage
of graph convolution could not be produced and hence the poor improvement.
Deeper networks showed better performance, but too many residual blocks
would not bring further improvement.

many blocks. The network without ResGCN had the worst
performance. In addition, performance could be improved
by using more features, but that would also lead to heavier
network in CNN. Consider the limit of memory, network
with 128 features and degree of 4 showed the best balanced
performance. We used 5 ResGCN blocks in the GCResNet.

B. Experiments on Super-resolution

1) GCEDSR Network: The network for super-resolution
consists of graph convolutions with the EDSR [32] and we
term it as Graph Convolution EDSR (GCEDSR). We adopted

graph convolution after 8 Resblocks, and then followed by
another 8 Resblocks until the final SR image produced. We
used 5 ResGCN blocks and degree = 2, based on the ablation
study on deblurring. For a fair comparison, we did not change
any other settings in the EDSR, except for adding graph
convolutions. All the convolution layers had 256 channels.

We used L1 loss as the loss function, as it is the most
suitable loss function and widely used in single image super-
resolution [31], [32].

2) Training Datasets: Following [32], [46], we used 800
training images from DIV2K dataset [47] as training set. We
used four standard benchmark datasets for testing: Set5 [48],
Set14 [49], B100 [50], and Urban100 [51]. We conducted
experiments with Bicubic (BI) . The SR results were evaluated
with PSNR and SSIM.

3) Training Details: We implemented the proposed net-
work by Pytorch on a NVIDIA Tesla P100 GPU. During
training, we randomly cropped a 48×48 region from a blurred
image as training input, along with its ground truth image at
the same location. The batch size was set to 24. All weights
were initialized by the Xavier method [41], and biases were
initialized to zero. The network was optimized by using the
Adam [42] with default setting β1 = 0.9, β2 = 0.999 and
ε = 10−8.

4) Results: Quantitative results are demonstrated in Table
III and qualitative results in Fig. 5. One can observe from Fig.
5 that the proposed network outperforms the previous methods
at 4× super-resolution levels.

V. ANALYSIS

A. With Laplacian Regularization

In the proposed GCN, feature maps of the encoder are first
placed onto a graph structure. Then in the GC layers, these
features, now nodes, further undergo graph convolutions, by
Eq. (3). These GC layers inexplicitly apply graph Laplacian
regularization [2], to the resulting the feature maps, XΘ, of
the encoder. The proposed approach combines the efficacy of
CNNs in feature extraction and effectiveness of GNNs for
constraining feature relationships. With a predefined graph
structure, the method is also extremely efficient.

B. With Channel Attention

The proposed method can be regarded as an expansion of
channel attention mechanism. Consider a simple example: for
a network that only connects all nodes to 8 special nodes
respectively. Hence the graph convolution in our method
is similar with channel-wise attention focused on these 8
channels, which has a similar structure in [46]. The graph that



TABLE III
QUANTITATIVE RESULTS WITH BI DEGRADATION MODEL. BEST RESULTS ARE HIGHLIGHTED.

Methods Scale Set5 Set14 Urban100 B100
SRCNN [29] ×2 36.66 / 0.9542 32.45 / 0.9067 29.50 / 0.8946 31.36 / 0.8879
FSRCNN [45] ×2 37.05 / 0.9560 32.66 / 0.9090 29.88 / 0.9020 31.53 / 0.8920
VDSR [30] ×2 37.53 / 0.9590 33.05 / 0.9130 30.77 / 0.9140 31.90 / 0.8960
RDN [36] ×2 38.24 / 0.9614 34.01 / 0.9212 32.89 / 0.9353 32.34 / 0.9017
D-DBPN [31] ×2 38.09 / 0.9600 33.85 / 0.9190 32.55 / 0.9324 32.27 / 0.9000
EDSR [32] ×2 38.11 / 0.9602 33.92 / 0.9195 32.93 / 0.9351 32.32 / 0.9013
GCEDSR ×2 38.29 / 0.9615 34.05 / 0.9213 33.12 / 0.9386 32.39 / 0.9023
SRCNN [29] ×4 30.48 / 0.8628 27.50 / 0.7513 24.52 / 0.7221 26.90 / 0.7101
FSRCNN [45] ×4 30.72 / 0.8660 27.61 / 0.7550 24.62 / 0.7280 26.98 / 0.7150
VDSR [30] ×4 31.35 / 0.8830 28.02 / 0.7680 25.18 / 0.7540 27.29 / 0.7260
RDN [36] ×4 32.47 / 0.8990 28.81 / 0.7871 26.61 / 0.8028 27.72 / 0.7419
D-DBPN [31] ×4 32.47 / 0.8980 28.82 / 0.7860 26.38 / 0.7946 27.72 / 0.7400
EDSR [32] ×4 32.46 / 0.8968 28.80 / 0.7876 26.64 / 0.8033 27.71 / 0.7420
GCEDSR ×4 32.61 / 0.9001 28.89 / 0.7885 26.72 / 0.8079 27.76 / 0.7439
SRCNN [29] ×8 25.33 / 0.6900 23.76 / 0.5910 21.29 / 0.5440 24.13 / 0.5660
FSRCNN [45] ×8 20.13 / 0.5520 19.75 / 0.4820 21.32 / 0.5380 24.21 / 0.5680
VDSR [30] ×8 25.93 / 0.7240 24.26 / 0.6140 21.70 / 0.5710 24.49 / 0.5830
D-DBPN [31] ×8 27.21 / 0.7840 25.13 / 0.6480 22.73 / 0.6312 24.88 / 0.6010
EDSR [32] ×8 26.96 / 0.7762 24.91 / 0.6420 22.51 / 0.6221 24.81 / 0.5985
GCEDSR ×8 27.39 / 0.7876 25.18 / 0.6503 23.14 / 0.6370 24.92 / 0.6027

we use is small-world graph, with small average path length,
thus key nodes can extract information from other vertexes
within few GC layers.

VI. CONCLUSION

In this paper, we proposed a new convolutional neural
network for image deblurring and super-resolution by adapting
graph network in CNNs. While existing graph neural networks
are for image classification, the proposed network explore
graph structures in the feature maps of CNNs for effective
image restoration. Experiments demonstrate that such adapta-
tion with a predefined graph structure can achieve improved
performance in image restoration with little added computa-
tional costs. Exploring topological relationships among feature
maps is beneficial to many image processing tasks.
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