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Abstract—Data augmentations are important ingredients in the
recipe for training robust neural networks, especially in computer
vision. A fundamental question is whether neural network fea-
tures encode data augmentation transformations. To answer this
question, we introduce a systematic approach to investigate which
layers of neural networks are the most predictive of augmentation
transformations. Our approach uses features in pre-trained vision
models with minimal additional processing to predict common
properties transformed by augmentation (scale, aspect ratio,
hue, saturation, contrast, and brightness). Surprisingly, neural
network features not only predict data augmentation trans-
formations, but they predict many transformations with high
accuracy. After validating that neural networks encode features
corresponding to augmentation transformations, we show that
these features are encoded in the early layers of modern CNNs,
though the augmentation signal fades in deeper layers.

Index Terms—computer vision, neural networks

I. INTRODUCTION

Convolutional neural networks (CNNs) have enjoyed
tremendous success on popular computer vision problems.
Ideally, vision models for these tasks would be equivariant to
perturbations in color, translation, scale, and rotation. Transla-
tion invariance has been partially architected in CNNs [1], and
building models with other equivariant properties is an active
area of research [2]–[7]. In spite of their success, CNN models
remain sensitive to small changes [8] in training data with
respect to desirable equivariants. The typical [9], yet effective
[10] approach to build robust models is to leverage brute force
via data augmentation.

However, current understanding of the effects of data aug-
mentations is limited, and using data augmentations often
requires ad-hoc or task-specific heuristics. An instance of this
problem occurs when objects are shown to models at different
scales: popular models for classification exhibit a noticeable
drop in accuracy when the scale of their test-time data does
not match that of their training-time data [11]. In parallel, we
observe that enhanced data augmentation can lead to dramatic
improvements in accuracy, especially in adversarial scenar-
ios [12], but this requires rearchitecting models to effectively
leverage adversarial examples.

The importance of data augmentation leads to natural ques-
tions about what useful concepts models learn from data
augmentations. As data augmentations are often intended to
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(a) Our model pipeline; a ranking model uses backbone features to
score (rank) the extent of augmentations in pairs of inputs. Here, each
score is a measure of the extent of zoom in each input image.
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(b) Relative importance of the first block of ResNet-18 for predicting
each of the data augmentation ranking tasks. (x-axis ordered roughly
by complexity of augmentations).

Fig. 1: Do layer activations from CNNs encode input variations
introduced by data augmentation? For a given image, a pair
of inputs is generated by varying the extent of a data augmen-
tation (e.g., scale). Figure 1a shows how we probe model
features for augmentation information. Figure 1b shows that
early ResNet layers are more important for encoding low-level
transformations (brightness and saturation).

reflect natural priors (e.g., objects belonging to the same class
have variations in scale), a relevant question is how these
priors are captured by the model. Concretely, we ask whether
variations corresponding to data augmentations are encoded by
models, and where this encoding takes place. For example, do
models encode brightness variations in the earlier layers, in the
later layers, or both? Which data augmentations correspond to
low-level model features, and which correspond to high-level
model features?

We search for answers to these questions by investigating
whether intermediate activations of models capture input dif-
ferences introduced by data augmentation. First, we define a
set of attributes (scale, aspect ratio, and color transformations)
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that are desirable invariants (equivariants) for models and com-
monly targeted by the data augmentations of current model
training pipelines [13]. Following these definitions, we propose
several experiments, introducing a data augmentation ranking
task (as illustrated in Figure 1a) to understand whether CNNs
implicitly learn a representation for these attributes, comparing
against baseline models relying on primitive features. These
experiments measure the predictive performance of a ranking
model that uses intermediate features collected from pre-
trained models to predict augmentation attributes. Following
these experiments, we inspect the relative importance of fea-
tures used in the ranking model to understand the relative
importance of layers in encoding data augmentation attributes.

Our results show that CNNs implicitly learn to encode
attributes of popular data augmentations such as scale, aspect
ratio, saturation, and contrast without being explicitly trained
on these objectives. Additionally, we find that these attributes
are typically encoded in the earlier layers of networks, suggest-
ing that models learn to normalize input variations introduced
by data augmentations. Later layers appear more important for
aspect ratio and scale, which can be considered higher-level
than attributes such as brightness and saturation, as shown in
Figure 1b. We present data augmentation prediction as tool to
improve the currently limited interpretability [14] of CNNs.

II. RELATED WORK

Data augmentations are a tried and true method of improv-
ing CNN accuracy [9], [15]. Prior work has also compared data
augmentation in the input space with augmentations applied
in the feature space of neural networks, with the conclusion
that “plausible transformations” that are guaranteed to avoid
changing the label yield the most improvement in model
performance [16]. More recently, using augmentations to in-
crementally increase the difficulty of training [17], automati-
cally generating augmentation strategies [13], and modifying
networks to better support adversarial or corruption-based
augmentations [12] have emerged as promising directions.
Augmentations are relevant in the semi-supervised setting [18],
label-smoothing [19], regularization [20], [21], and dataset
watermarking [22]. Work has also been done to understand
the theoretical motivation behind data augmentation [23], [24].
Data augmentations are also important from the perspective of
model biases such as texture and shape bias [25].

On the side of neural network understanding, visualizing
features and saliency maps [26]–[30] have enabled interpreta-
tion of the functionality and learned patterns of neural network
layers. Intermediate model features have also been used to
synthesize and visualize the textures learned by models [31],
[32]. Automated approaches such as training classifiers to infer
brain activity and state are a longstanding staple of neuro-
science research [33], and have been co-opted recently for
understanding fundamental questions about what is encoded
in neural network activations [34].

The challenges of choosing the best model architecture
for a task and scaling it appropriately [35] have emerged as
important problems, yet both model architecture and model

capacity are usually treated as black-box parameters [36], [37].
By investigating how different components of models react to
data augmentation, we hope to reveal which components of
models are relevant for good classification performance.

III. A RANKING MODEL FOR AUGMENTATIONS

To assess whether neural network features encode data
augmentation transformations, we propose a ranking task that
predicts the relative extent of augmentation attributes given
intermediate neural network features. We employ a ranking
model instead of a regression approach since obtaining the ab-
solute extent of augmentation is difficult. For example, for the
task of predicting the scale of an object, it is difficult to design
a numerical definition of scale that is consistent across many
different input examples and object classes. We use a separate
ranking model as it facilitates interpretability over blackbox
approaches that only consider the final output or accuracy of
model predictions. As we show in subsection VI-A, we can
leverage the ranking model weights to infer the importance of
different layers to the ranking tasks.

To circumvent the requirement of precisely-labeled data
for augmentation attributes, we only attempt to rank the
relative values of augmentation attributes using pairwise rank-
loss [38], which can be considered a binary classification task
for pairs of input examples. For the case of scale, the task is to
decide whether the scale of the object in one image is greater
than the scale of the object in the other. More formally, for
each i, j pair of examples the loss function is defined as

log (1 + exp(−sgn(vi − vj)× (f(xi)− f(xj))))

where vi, vj , xi, xj , and f denote the true augmentation
parameters, inputs to the ranking model, and ranking model
respectively. For each image in the dataset, we produce ordered
pairs of images by applying an augmentation transformation
parameterized by different random values.

IV. CHOOSING AND DEFINING AUGMENTATIONS

We describe our definitions of scale, aspect ratio, hue,
contrast, saturation, and brightness in this section, focusing
on the constraint that our definitions must yield an ordering or
ranking of input examples. Figure 2 shows examples for some
augmentations considered. We choose these augmentations
based on the following criteria: (1) Ease of implementation:
given an unlabeled set of images, it is straightforward to infer
an ordering of perturbed images? (2) Popularity in training
pipelines: each of the transformations considered are either
partially or fully implemented in standard TensorFlow [39].
(3) Diversity in abstraction level: scale and aspect ratio are
higher level attributes, whereas color attributes can almost be
directly inferred from raw pixel values with limited context.

A. Scale

We carefully settle on a narrow definition of object scale,
avoiding semantic definitions of scale, especially between
different object classes. For example, we are not attempting
to assess whether models capture facts such as “elephants are



Fig. 2: Examples of our definition of scale (row 1), aspect
ratio (row 2), and saturation (row 3). We order columns by
the extent of the augmentation transformation in each example
from left to right.

bigger than dogs.” We choose a pragmatic definition of scale
corresponding more closely to the solid angle of an object or
the proportion of the field of view occupied by an object.

This definition of scale captures the issue of the “train-
test resolution discrepancy” [11], where test-time crops of
images that occupy a smaller area than training-time crops
reduce model accuracy and is reflected in the random cropping
augmentation that is commonly used to present objects of
different scales at training time. This definition is distinct from
resolution or fidelity; one can craft arbitrary examples where
both high and low resolution versions of the same image map
to the same scale after they are cropped and resized.

Additionally, we add the qualification that we consider scale
to be invariant to occlusion or cropping as long as the object
is still partially visible in the frame. We use this qualification
to disentangle scale from the related but separate concept of
bounding-box area occupied by an object. Figure 2 gives
examples following our definition of scale.

From this definition of scale, we define two ranking tasks:
“zoom-out” and “zoom-in.” For the “zoom-out” task, we gen-
erate pairs of input images that zoom-out from the bounding
boxes of objects to generate input images with different scales.
We uniformly sample two values in the range [0.1, s], where
s is the smallest of the total vertical or horizontal distance
from the border of the bounding box to the boundaries of
the image. For the images in the dataset (subsection V-A) we
use, s is expected to be at least 0.3. For the “zoom-in” task,
the different scales are generated by zooming-in on bounding
boxes to different extents. We uniformly sample two values in
[0.5, 0.9] that determine the fraction of the bounding box to
trim before resizing the result to the input size of the backbone
model (224×224) for each pair of inputs. We define the zoom-
in and zoom-out tasks separately because although they may
be of similar difficulty for a human evaluator, intuitively the

(a) (b) (c)

Fig. 3: Average magnitude (brighter indicates higher magni-
tude) of frequency coefficients from an 8×8 patch-wise DCT
on images at increasing scales (left to right). Coefficients are
ordered by frequency in a zig-zag pattern, with lowest in the
top left and highest in the bottom right. The magnitude of
higher frequency coefficients decreases as scale increases.

zoom-out task may be easier as the area occupied by an object
is a proxy for scale when the object of interest does not occupy
the entire frame.

B. Aspect Ratio

Models are naturally exposed to a range of object aspect
ratios at training time through random cropping and natural
variation in the input distribution. Random cropping is an im-
portant source of aspect ratio variation, as many augmentation
pipelines do not consider the original aspect ratios of objects
as constraints on the crop dimensions. With respect to aspect
ratio, we define the ranking order from wide to thin, or the
ratio of vertical to horizontal pixels present in the input after
cropping (but before resizing). Note that while ordering the
aspect ratio between two arbitrary objects is difficult, this
definition suffices when only considering different crops of
the same object.

The aspect ratio task uses the same pipeline as the scale
tasks, with the objective changed to ranking the ratio of
vertical to horizontal pixels. To generate each input image, we
sample four random uniform values in [0.4, 0.4] that determine
the proportion of horizontal and vertical pixels to trim.

C. Hue, Saturation, Contrast, Brightness

Hue, saturation, and contrast are common distortions ap-
plied to input images. As each of these augmentations are
parameterized by either relative multipliers or absolute deltas
to the original image, these parameters lend themselves nat-
urally to an ordering for ranking. We include brightness as
a sanity check that should be trivially encoded for both the
CNN backbones and baselines. While we consider contrast a
color transformation, it is arguably higher-level than the other
augmentations as discerning contrast requires context.

As before, we sample random uniform values for each of
these tasks. For saturation and contrast, we sample the relative
multipliers used to apply the transformation to determine the
ranking labels (in the range [0.5, 1.5]). For hue, we rank the
delta relative to the original image (in the range [−0.2, 0.2]).

V. METHODOLOGY

To understand whether CNN activations capture attributes of
data augmentations, we adopt an experiment pipeline similar



to one used to extract position information from CNNs [34];
we also use the intermediate activations as input to a predictor
from a pre-trained vision model with frozen parameters, but
with several key differences. Instead of attempting to generate
a two-dimensional output, our prediction task is learning to
rank input examples according to their data augmentations.
Our ranking model uses only average pooling and a single
linear layer to allow for easy interpretation of the model
weights. For position information, the ground-truth can be gen-
erated deterministically, and it is the same across all images.
However, in the case of data augmentations, ranking labels are
generated on-the-fly, in tandem with the augmentations.

A. Dataset

We use a subset of the ImageNet [40] training dataset in our
experiments. We limit our subset to images that have exactly
one bounding box to mitigate the effect of cropping only some
relevant objects in view. We also choose images with bounding
boxes that span at least 30% of the input image, with the
additional requirement that the borders of the bounding box
must be at least 30% of the image dimensions away from edges
of the image. Together, these requirements ensure that there
is range to zoom out from bounding boxes and to provide
reasonable resolution when zooming in on a bounding box.
These constraints reduce the original 1.2 million ImageNet
images to roughly 86, 000 images, which we split into 65, 000
and 21, 000 images for training and validation. For simplicity,
we use this dataset for all of our ranking tasks, even those that
do not require bounding box constraints.

B. Baseline Comparisons

We also evaluate two baselines that either use an 8 × 8
discrete cosine transform (DCT) to generate features (to un-
derstand the impact of frequency information), or are passed
the input images directly (passthrough). Figure 3 shows an
example of how the magnitudes of frequency coefficients
change with the scale of an object. For the DCT baseline, we
apply average pooling to the DCT features while the spatial
dimensions of the passthrough baseline are not reduced.

C. Ranking Model and Training Pipeline

Our ranking model uses the intermediate activations from a
pre-trained CNN as inputs to rank instances of a given data
augmentation transformation. Figure 4 shows a high-level di-
agram of the relationship between the backbone model and the
ranking model. For our experiments, we use ResNet-18/50 [41]
as the backbone, although this approach is compatible with any
feedforward CNN. To unify the spatial dimensions of each
layer, we apply global average pooling while preserving the
channels. The average-pooled tensors are then fed to a single
linear layer that computes the ranking score for a given input
example. For each each pair of input examples, we use the
ranking scores and logistic loss to fit the linear layer.

The training pipeline begins with iteration through a dataset
of images, where each image is used to generate a pair of input
examples. Each input example is transformed by sampling a

Fig. 4: Backbone and ranking model used in our evaluation.
The backbone is a pre-trained CNN (such as ResNet-18),
with parameters frozen. The activations from the backbone
are average-pooled to align their spatial dimensions and fed
to a linear layer that produces a score that ranks input pairs
(e.g., score a > score b?).

random variable and the current augmentation ranking task
(e.g., scale). At this time, a label for this pair of input examples
can be computed as a boolean expression of the random
variables (e.g., scale a > scale b?). A collection of pairs and
labels comprise a batch that is used to fit the linear layer with
logistic loss. The parameters of the backbone model are frozen
during training of the ranking model to prevent the ranking
task from affecting the intermediate features of the backbone.
We use the same approach with the baselines, with average
pooling omitted for the passthrough baseline.

D. Where are data augmentations encoded?

We use the weights of the linear layer to measure the relative
importance of the activations for each layer of the backbone
model. Due to the simplicity of the linear ranking model, we
can measure the contribution of each layer of the backbone
by taking the product of the weights and the corresponding
standard deviations in the layer activations.

VI. EVALUATION

We begin the evaluation with the accuracy results (Table I)
for each of the pairwise ranking tasks. Due to the binary nature
of a pairwise ranking task, the accuracy of random guessing is
50%. For all tasks, we find that the ResNet backbones either
match or substantially outperform the baselines, particularly
on the augmentations that are not color manipulations. This
suggests CNNs may implicitly model scale and aspect ratio as
components of features.

Prior work has compared the early layers of CNN to the
discrete cosine transform (DCT) [42]. To some extent, we



Zoom In-Train Zoom In-Val
Passthrough 97.7 46.4
DCT 56.8 46.6
ResNet-18 93.9 90.1
ResNet-50 90.8 84.9

Zoom Out-Train Zoom Out-Val
Passthrough 98.5 51.8
DCT 57.5 52.4
ResNet-18 82.4 68.8
ResNet-50 77.6 64.8

Aspect Ratio-Train Aspect Ratio-Val
Passthrough 98.7 54.9
DCT 54.1 57.7
ResNet-18 87.6 80.9
ResNet-50 85.9 81.3

Hue-Train Hue-Val
Passthrough 94.0 65.0
ResNet-18 87.6 71.6
ResNet-50 84.0 66.0

Saturation-Train Saturation-Val
Passthrough 97.5 98.9
ResNet-18 97.5 98.3
ResNet-50 95.2 94.0

Contrast-Train Contrast-Val
Passthrough 100.0 62.0
ResNet-18 100.0 100.0
ResNet-50 99.7 99.7

Brightness-Train Brightness-Val
Passthrough 100.0 100.0
ResNet-18 100.0 100.0
ResNet-50 99.3 98.8

TABLE I: Accuracies for ranking models that use the baselines
and ResNet backbones across the ranking tasks. ResNet fea-
tures encode many augmentation attributes to a high degree of
accuracy, particularly high-level ones such as scale and aspect
ratio. ResNet features also beat the baselines on contrast by
a wide margin. The accuracy of the ranking model can be
used as a proxy to determine to what degree an augmentation
attribute is encoded in the CNNs.

expect the DCT (Figure 3) and low-level features of earlier
layers to act as a proxy for scale and/or aspect ratio. Intuitively,
two views of the same object at different scales are expected to
contain different frequency domain representations, where the
smaller scale view is expected to have more high frequency
components than the larger scale view. If CNNs capture
some elements of frequency domain transforms in convolution
layers, we would expect that this information could be used
to better infer scale information. Other augmentations, such as
hue and saturation, may present cues in the absolute or relative
values of the color channels early in network architectures.

When comparing results for the scale tasks, we note that
the performance of the ResNet backbone was substantially
lower for the “zoom-out” than “zoom-in” task. This drop in
accuracy was surprising as it was thought that the ranking
model could rely on the later layers and localization as a
proxy for scale, although it is possible that the use of average
pooling in the ranking model could have limited localization
information. Additionally, performance on the zoom-out task
may have suffered as a consequence of it being more fine-

grained than the zoom-in task: many images may have a
limited amount of slack in which crop sizes can be increased
without overstepping image boundaries. Still, the performance
of the ResNet backbones far surpassed the DCT baseline on
both scale tasks, suggesting that CNNs have stronger cues for
object scale than spatial frequency.

This result suggests another source of scale information
may appear in the higher-level representations of networks.
With the knowledge that activations late in CNNs (e.g., at
the last layer) map neatly to class labels [29], it is plausible
that high-level features map coarsely to scale as well (e.g., by
their spatial extent in the last layer). However, we attempt to
avoid trivial cues for scale via a very simple ranking model
(Figure 4) and by reducing spatial information via pooling.

Across some tasks, we observe that ranking using the
ResNet-18 backbone sometimes outperforms the ResNet-50
backbone. We suspect that this is due to the large increase in
the number of input dimensions to the ranking model when
ResNet-50 is used (due to the increase in total number of
channels), and regularizing the weights of the ranking model
could yield improved performance. The heavy overfitting of
the passthrough baseline can likely be attributed to reliance
on absolute position (no average pooling is used) that is not
generalizable to the validation set. An alternative hypothesis
is that ResNet-50 yields lower ranking performance because
it more successfully normalizes away perturbations caused by
augmentations. This hypothesis is interesting as it suggests
that models with stronger performance may do a better job of
eliminating differences created by data augmentations.

Hue appears to be the least favorable task for the ResNet
backbones (relative to the baselines). We suspect that this
may be due to the narrow range of hue considered, or the
difficultly in assessing the absolute delta in hue from the
original image. We expect the task of ranking the raw value
of hue rather than the magnitude to be easier. On the opposite
end, contrast appears to be the least favorable task for the
baselines (relative to the ResNet backbones), especially of the
color augmentations. We expect that this is because contrast
requires more image context and consequentially is a higher-
level attribute than hue or saturation. Accordingly, contrast
depends more on later layers of the backbones than the other
color transformations (Figure 5).

We find that the baseline backbones achieve their highest
performance on the color tasks. This is relatively unsurprising,
as some color attributes (such as saturation) may be dis-
cernible by the raw values of the input color channels. More
surprisingly, however, was that while the early layers were
favored especially for the color-focused transformations, the
most highly weighted layer was not the stem of the ResNet
models but rather a few layers later.

A. Which layers encode the augmentations?

Figure 5a and Figure 5b show the relative importance of
ResNet-18 layers for the ranking tasks when taking the mean
and max across the channels respectively. A general trend is
that the earlier layers are weighted more highly for all of the



(a) (b)

(c) (d)

Fig. 5: Weightings of activations for ranking tasks with a ResNet-18 backbone (a, b) and ResNet-50 backbone (c, d), with
the sum of activations for each task normalized to 1.0. Ranking tasks are ordered from left to right roughly from low-level
(color perturbations) to high-level (scale and aspect ratio). Early layers are more important for lower-level ranking tasks, such
as color attributes. Color represents mean (a, c) and max (b, d) value across the channel dimension.

ranking tasks. Interestingly, this trend occurs even when taking
the max across channels despite the later layers having more
channels than the early layers.

Another difference is that slightly deeper layers appear more
important (or alternatively, early layers are less important) for
contrast, aspect ratio, and scale (zoom in and zoom out). This
pattern may be the result of contrast, scale, and aspect ratio
being a higher-level attribute than brightness and saturation.
While we did not explicitly attempt to build a classification
model using backbone features, these differences suggest that
backbone features could also be used to classify the the
different types of augmentations.

We see a similar trend for the mean (Figure 5c) and max
(Figure 5d) of feature importance across channels for ResNet-
50. For the aspect ratio and zoom in tasks, the most highly
weighted layer (when taking the max across channels) occurs
later in the model. In both ResNet-18 and 50, shortcut layers
seem to be neglected by the ranking models. In ResNet-50, the
later layers appear to be more highly utilized (especially when
taking the maximum across channels) though this effect might
be accounted for by ResNet-50’s greater number of channels
increasing the chances that some channel in a layer may be
weighted highly.

To further validate the trend of early layers more strongly



Zoom In-Train Zoom In-Val
ResNet-18 Block 1 95.5 92.2
ResNet-18 Block 2 95.8 92.8
ResNet-18 Block 3 93.7 89.1
ResNet-18 Block 4 93.2 90.0
ResNet-18 Block 5 90.0 85.1
ResNet-18 Block 6 87.5 82.9

Aspect Ratio-Train Aspect Ratio-Val
ResNet-18 Block 1 75.7 78.7
ResNet-18 Block 2 87.6 86.3
ResNet-18 Block 3 86.5 88.8
ResNet-18 Block 4 87.7 87.2
ResNet-18 Block 5 80.1 79.1
ResNet-18 Block 6 66.7 62.8

Hue-Train Hue-Val
ResNet-18 Block 1 75.1 77.5
ResNet-18 Block 2 77.6 76.6
ResNet-18 Block 3 77.8 73.0
ResNet-18 Block 4 81.0 72.5
ResNet-18 Block 5 82.5 67.5
ResNet-18 Block 6 82.1 65.8

TABLE II: Ranking accuracy when only using features from a
single block of ResNet-18, ordered from early to later layers.
The early blocks yield higher accuracy, indicative of early
layers more strongly encoding augmentation attributes.

encoding augmentation attributes, we rerun a selection of
experiments, using activations from only a few layers at a time.
If the early layers are more relevant for encoding augmentation
attributes, then we should observe an accuracy drop when
using activations from later layers. Indeed, Table II shows
this drop, suggesting that even if neural networks encode
augmentations, this signal begins to be normalized away in
later layers, a trend we discuss further in paragraph VII-0a.

VII. DISCUSSION

a) Specialization vs. normalization: For augmentations
that are encoded or captured by CNN activations, we ask
where or at what depth? We describe this question as the
specialization vs. normalization question: we posit that data
augmentations that are encoded by earlier layers are normal-
ized away by the model, whereas attributes that are encoded
in later layers incur specialization. Intuitively, if a model
captures augmentation attributes in early layers but discards
this information by the later layers, it has normalized away
the augmentation. However, if a model retains augmentation
differences in later layers, the intuition is that this augmenta-
tion incurs specialization in the same way that the last layer
is specialized at a per-class granularity for classification tasks.

The importance of activations from earlier layers relative to
those from later layers for our ranking objectives suggests that
attributes such as scale are normalized away by CNNs. This
phenomenon appears more desirable than the alternative where
augmentation attributes are encoded and preserved throughout
the model, indicating limited generalization at the output. The
lower ranking accuracy when using a ResNet-50 backbone
(vs. ResNet-18) may indicate that more accurate models do a
better job of normalizing away augmentations.

Fig. 6: ImageNet classification accuracy vs. training steps of a
from-scratch model compared to that of a backbone model
pre-trained on the aspect ratio ranking task. Classification
performance does not improve, suggesting that encoding aug-
mentations is not inherently desirable.

b) An adversarial “ranking model”: An alternative sce-
nario we considered was a generative model that proposes
augmented images that attempt to fool the backbone model,
taking activations of a pre-trained backbone as input. However,
a difficulty of this approach is that some popular augmenta-
tions (scale transformations) are not easily expressible using
standard vision operators or are not differentiable. Still, we
see adversarial augmentations as an important related problem:
what augmentations are the most difficult for current models?

c) Can ranking objectives be used as pre-training tasks?:
That neural networks appear to encode data augmentation
transformation attributes raises the question of whether these
attributes are inherently useful for vision tasks. If it is useful
for neural network models to encode these attributes, would
a source of accurate scale, aspect ratio, or color information
improve their performance? Figure 6 shows the results of
an experiment where a backbone is pre-trained without class
labels via a downstream ranking task (aspect ratio). We find
that pre-training to rank augmentations does not improve
classification performance (with no improvement over training
from scratch). The lack of improvement seems to support
the hypothesis that encoding augmentations is not inherently
desirable, and that normalization is the desired effect.

d) Limitations and future work: In using a simple linear
layer to build our ranking model, we sacrifice model per-
formance for interpretability. It may be possible that with
sufficient representation power (e.g., with a deeper or more
complex architecture) in the ranking model, data augmentation
transformations can be recovered with high accuracy using
only deep network layers. Still, we believe that using a linear
ranking model reveals that augmentation transformations are
prominent in neural network features in early layers. A natural
extension of this work would include novel model architec-
tures and augmentations.

VIII. CONCLUSION

We posed the question of whether modern CNNs encode
attributes corresponding to popular data augmentations such



as color and scale transformations. To answer this question,
we proposed data augmentation ranking tasks to understand
whether CNNs encode differences introduced by data augmen-
tations and designed a method that compares the predictive
power of the intermediate activations in a CNN. We find
that CNNs encode many data augmentations, and that the
earlier layers are generally the most predictive of augmentation
transformations. Our findings also suggest that the signal of
augmentations fades in later layers, and that more accurate
models normalize away augmentations to a greater extent.
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