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Abstract
Standard agglomerative clustering suggests establishing a new
reliable linkage at every step. However, in order to provide
adaptive, density-consistent and flexible solutions, we study
extracting all the reliable linkages at each step, instead of the
smallest one. Such a strategy can be applied with all common
criteria for agglomerative hierarchical clustering. We also
study that this strategy with the single linkage criterion yields
a minimum spanning tree algorithm. We perform experiments
on several real-world datasets to demonstrate the performance
of this strategy compared to the standard alternative.

1 Introduction

Clustering plays an essential role in data processing and man-
agement such as text processing, image segmentation, com-
pression, summarization, knowledge management, network
analysis, and bioinformatics. The goal of data clustering is
to partition the data into groups such that the objects in the
same cluster are more similar in some sense, compared to
the inter-cluster objects. A category of clustering methods
partition the data into K flat clusters via for example opti-
mizing a cost/objective function. Examples of this type of
methods are K-means [27], normalized cut [37] and spectral
clustering [31, 37], where all produce flat clusters without
any explicit relation between them. In practice, however, the
different clusters often do not carry the same information
content, i.e., some are more detailed than the others. Thus, in
an exploratory data analysis approach, it is desired to propose
the clusters at different levels and resolutions, such that both
general and specific information are preserved. In this way,
the user has more control to choose the desired resolution or
even investigate the clusters at different levels and resolutions.
For this reason, hierarchical clustering is often more practi-
cal is many applications and situations, where the results are
usually presented by a dendrogram. A dendrogram is a tree
wherein each node represents a cluster and its final nodes (the
nodes connected to only one other node) correspond to the

objects. A node at a higher level includes the combination
of the lower-level clusters and the edge weights (and their
lengths) represent the inter-cluster distances.

Hierarchical clustering methods, in general, fall into two
categories: agglomerative (bottom-up) and divisive (top-
down) [28]. Agglomerative algorithms consider each object
as a separate cluster, and then combine the clusters in a greedy
manner to build larger clusters, until at the end there is only
one single cluster. Divisive methods, in an opposite way, start
with a single cluster including all objects. Then, at each step,
the clusters are divided into two parts to produce finer clusters.
Agglomerative methods are more common for hierarchical
clustering, and they are usually computationally more effi-
cient than divisive methods [32]. In these approaches, the
clusters might be combined or divided according to different
criteria, e.g., single, complete, average, centroid and Ward.

Several methods have been developed to improve the dif-
ferent aspects of these algorithms. [1] studies the locality
and outer consistency of agglomerative algorithms in an ax-
iomatic way. The works in [23, 26] consider the statistical
significance of hierarchical clustering. [4, 9, 10, 35, 36] inves-
tigate the optimization aspects of hierarchical clustering and
develop several approximate solutions. To provide robustness
in pairwise inter-clusters relations, K-Linkage in [44] investi-
gates multiple pairs of distances for each pair of clusters, [2]
uses global information for determining the similarities be-
tween the clusters, [6] trains a Bayesian network to infer the
relations between the items to be clustered, and [5] suggests
applying agglomerative methods to small dense subsets of the
data instead of the original data. The work in [7] performs the
hierarchical clustering on K-nearest neighbor graph where
fixing a proper K (and the other hyper-parameters) can be
nontrivial as discussed in [42]. The works in [14, 22] might
suffer from the same issues. The methods in [13, 20] investi-
gate combining aggolomerative methods with probabilistic
models which then yields an extra computational complex-
ity. Finally, [8, 18, 30] develop efficient (and approximate)
implementations of aggolomerative methods.

In this paper, we focus on agglomerative hierarchical clus-
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tering. We consider that the standard agglomerative algo-
rithms usually select a minimal reliable linkage at each step.
We call a linkage between two clusters reliable if both clusters
are the nearest neighbors of each other. Linkages represent
the inter-cluster distances according to a criterion such as sin-
gle or average distance. A reliable linkage provides the two
clusters at its two sides to be consistent and share similar prop-
erties. However, in order to be adaptive w.r.t. the data diversity
and variability, we investigate extracting at each step all the
reliable linkages, instead of the smallest one. This strategy,
called reliable agglomerative clustering, enables every object
to potentially contribute from the early steps of constructing
the dendrogram and, thus, clusters with different shapes and
densities can evolve from the beginning. This strategy, similar
to the standard agglomerative procedure, can be used with all
the common criteria, and it is adaptive to the shape and density
of the clusters. A similar idea has been proposed in [3] in an
abstract form without further investigations and analysis. We
note that this contribution is orthogonal to the aforementioned
methods which aim to improve in particular agglomerative
clustering, such that any of those improvements can be em-
ployed with this strategy too. For example, similar to [5], we
may build the dendrogram from the dense subsets of the data
or use global information for computing the base pairwise
(dis)similarities [2]. We may also apply the feature extraction
method in [19] to infer proper unsupervised representations.
In the following, inspired by the equivalence of single link-
age clustering and the Kruskal’s algorithm for computing
minimum spanning trees [24], we study that reliable agglom-
erative clustering with single criterion also yields a minimum
spanning tree. We perform extensive experiments on several
real-world datasets to demonstrate the performance of this
method compared to the standard approach.

The rest of the paper is organized as the following. In
the second section we introduce the reliable agglomerative
strategy, and in the third section we study the connection
to minimum spanning trees. We experimentally investigate
reliable agglomerative clustering in the next section, and
finally, we conclude the paper in the last section.

2 Reliable Agglomerative Clustering

In this section, we describe reliable agglomerative clustering
and discuss the connection to computing a minimum spanning
tree.

2.1 A generic view to agglomerative clustering
Data are characterized by a set of n objects O = {0, ...,n−
1} and a relevant representation. The representation can be
for example the vectors in a vector space or the pairwise
dissimilarities between the objects. In the former case, the
measurements are shown by the n× d matrix X, where the
ith row (i.e., Xi) corresponds to the d dimensional vector of

the ith object. In the latter form, an n×n matrix D represents
the pairwise dissimilarities between the objects. A cluster is
shown by Cp, which is the set of the object indices that it
contains. The function dist(Cp,Cq) denotes the inter-cluster
distances that can be defined according to different criteria.

Agglomerative methods follow an iterative procedure
where at each step, two clusters (nodes) are combined to
build a larger cluster. The procedure continues until there
is only one cluster left. The algorithm at each step selects
the two clusters that have a minimal distance according to a
criterion, i.e., a specific definition of dist(., .). For example,
the single linkage criterion [38] defines the distance between
two clusters as the distance between the nearest members
of the clusters. Opposite to this strategy, the complete link-
age criterion [25] defines the distance of two clusters as the
distance between their farthest members, that corresponds
to the maximum within-cluster distance of the new cluster.
On the other hand, in average criterion [39] the average of
inter-cluster distances is used as the distance between the
two clusters. Some other methods, e.g., the centroid and the
median criteria, determine a representative for each cluster
and then compute the inter-cluster distances by the distances
between the representatives. For example, with the centroid
criterion the representatives are the means of the clusters
and at each step, the two clusters with closest centroids are
combined to construct a larger cluster.

Another category of agglomerative methods aim to opti-
mize a criterion such as homogeneity. An important instance
is the Ward method [43] which aims to minimize the total
within-cluster variance at each step. However, this criterion
can be written as

dist(Cp,Cq) = ∑
i∈Cp∪Cq

||Xi−mCp∪Cq ||2

− ∑
i∈Cp

||Xi−mCp ||2− ∑
j∈Cq

||X j−mCq ||2

=
|Cp||Cq|
|Cp|+ |Cq|

||mCp −mCq ||2 ,

where mCp denotes the centroid vector of cluster Cp.
Thus, the Ward method also at each step combines the

two clusters with a minimal distance, where the inter-cluster
distances are defined as the distances between the cluster
means normalized by a function of the size of the clusters.

2.2 Reliable agglomerative clustering strategy
We begin with analyzing the performance of the single linkage
method, in particular on the data with diverse densities. Such
an analysis can be applied to the other criteria as well. We first
consider the data shown in Figure 1(a), which includes two
clusters with different densities. The single linkage method
starts first from the dense data cloud at the left side (shown
by black points) and then performs grouping the members
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(a) (b) (c) (d)

Figure 1: The standard agglomerative clustering is sensitive to data diversity (Fig 1(a)). On the other hand, allowing each
object/cluster to connect to its nearest neighbor (regardless of if it happens in the nearest neighborhood of the other side too),
can lead to inappropriate results (Fig 1(b) and 1(c)). Therefore, extracting only reliable linkages (but all instead of the smallest)
avoids such situations (Fig1(d)).

of the cluster at the right side (shown by green points). Such
that if we stop the clustering early, then, we will have only
the members of the cluster at the left side grouped together.
The reason is that picking the smallest inter-cluster distance
(linkage) does not necessarily yield contributing every ob-
ject/cluster to building the dendrogram. In particular, as we
saw, this approach is sensitive to the density of the clusters
and tends to first extract the densest clusters. One way to over-
come this issue and take the variance of clusters into account
is to require each object/cluster to participate in building the
dendrogram. One might interpret the standard agglomerative
strategy for selecting the smallest inter-cluster linkage as i)
find the nearest neighbors of the current objects/clusters to
obtain the set of potential linkages1, and ii) then pick the
smallest linkage.

Therefore, one way to render contributing many ob-
jects/clusters in building the dendrogram is to choose all
the linkages instead of the smallest one, which makes the
dendrogram grow simultaneously from all the objects. How-
ever, allowing all the linkages corresponding to any nearest
neighbor might be inappropriate, as it can be sensitive to the
presence of outliers or to the clusters which are close but
have different densities. Two examples are illustrated in Fig-
ures 1(b) and 1(c). If we pick all of the linkages, the red object
at the top in Figure 1(b) would establish a linkage to the green
cluster (with the closest object of it) at the first level of the
dendrogram. However, we know that such a linkage should be
established at a higher level, after the members of the green
data cloud merge and build their own cluster first. Therefore,
this linkage is not a reliable linkage, as the two objects at its
two sides do not share similar properties and densities. On the
other hand, in Figure 1(c), the two green and black clusters
are close to each other, such that some objects of the green
data cloud choose the members of the black data cloud as the
nearest neighbors, instead of choosing from the green data

1The nearest neighbors are defined according to the dist(., .) function,
which can encode any criterion (e.g., single, complete, average, centroid and
Ward).

cloud. This occurs due to the different densities of the clus-
ters. Therefore, one should be careful in choosing any nearest
neighbor linkage. In these examples, the objects/clusters at
the two sides of a linkage have different properties and densi-
ties. In the example of Figures 1(b), the red object is an outlier
whose neighborhood is empty, unlike the neighborhood of the
object at the other side, which is significantly denser. Thus,
the red object establishes a linkage with one of the green
objects, but this object selects another object as its nearest
neighbor. In Figures 1(c), some of the green objects establish
linkage to some of the black objects, which have a different
(i.e., higher) densities around. Therefore, the black objects
do not select these green objects as their nearest neighbors.
This analysis leads to investigate the reliability of linkages
established by different objects/clusters, defined in Definition
1.
Definition 1. A linkage between two clusters Cp and Cq is

‘reliable’ if and only if both clusters are nearest neighbors of
each other, i.e., Cq ∈ nn(Cp) and Cp ∈ nn(Cq), where nn(Cp)
returns the nearest clusters of cluster Cp.2

Note that a cluster might have several nearest neighbors,
i.e., |nn(Cp)| ≥ 1.

Therefore, instead of establishing the linkage(s) from ev-
ery cluster/object, we select only a subset that are reliable.
Such an approach provides the clusters at the two sides of a
linkage to share consistent neighborhood and densities. Thus,
merging them to build a larger cluster becomes meaningful.
Then, it avoids non-robust linkages, for example merging the
outlier objects at the lowest levels (Figure 1(d)). Proposition
1 indicates that a linkage with a minimal length is reliable,
i.e., the standard agglomerative strategy which combines only
the nearest clusters at each step performs reliable selections.

Proposition 1. Given a set of clusters {Ci} and the respective
linkages between them, a linkage with minimal length (called
e∗) is a ‘reliable’ linkage.

2A cluster may include only one single object, i.e., each object is a cluster
at the lowest level of the dendrogram.
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Proof sketch. We denote the clusters at the two sides of e∗ re-
spectively Cp and Cq. Since e∗ has a minimal length among all
linkages, thus, it will also be the smallest linkage connected to
Cp and the same for Cq. Therefore, Cp is the nearest neighbor
of Cq and Cq is the nearest neighbor of Cp, which makes the
corresponding linkage (i.e., e∗) reliable.

However, a minimal linkage is not the only reliable link-
age, in particular when the data contain clusters with diverse
densities, as demonstrated in Figure 1(a). Thus, in order to
build the dendrogram in a density-aware and adaptive way,
at each level we may select all the linkages that are reliable.
Thereby, this strategy at each step first finds all the reliable
linkages, and then combines the respective clusters to build a
larger cluster at a higher level. Algorithm 1 describes the pro-
cedure in detail providing an implementation of the high-level
method in [3].

Algorithm 1 Reliable Agglomerative Clustering.
Require: Objects and the measurements.
Ensure: List of the clusters at different levels stored in

Cluster_List.
1: l = 0 // l specifies the current level
2: for all i ∈O do
3: Cluster_List[l].add({i})
4: end for
5: while |Cluster_List[l]|> 1 do
6: min_dist = []
7: for 0≤ p < |Cluster_List[l]| do
8: min_dist.add(min0≤q<|Cluster_List[l]|,q6=p

dist(Cluster_List[l][p],Cluster_List[l][q]))
9: end for

10: Initialize matrix G by 0.
11: for p,q ∈ {0, .., |Cluster_List[l]|−1}, p 6= q do
12: if dist(Cluster_List[l][p],Cluster_List[l][q]) =

min_dist[p] and
dist(Cluster_List[l][p],Cluster_List[l][q]) =

min_dist[q] then
13: G [p,q] = 1
14: G [q, p] = 1
15: end if
16: end for

{Extract the connected components of G}:
17: CC = connected_components(G).
18: for all cc ∈CC do
19: new_cluster =Cluster_List[l][cc]
20: Cluster_List[l +1].add(new_cluster)
21: end for
22: l = l +1
23: end while
24: return Cluster_List

In this algorithm, Cluster_List is used to store the clus-
ters at different levels, such that Cluster_List[l][p] gives the

pth cluster at the level l. The variable l indicates the cur-
rent level while building the dendrogram. At the beginning,
each individual object constitutes a separate cluster at level
0. Next, the distance of each cluster at the current level l
(stored in Cluster_List[l]) to its nearest neighbor is computed
and stored in min_dist. Function dist(,) computes the inter-
cluster distance between the two input clusters, according to
a predefined criterion, e.g., single, complete and so on. Then,
in graph G ∈ {0,1}|Cluster_List[l]|×|Cluster_List[l]| (whose nodes
represent the cluster indices at Cluster_List[level]) an edge
is established if and only if the two respective clusters are
nearest neighbors of each other (i.e., the linkage is reliable).
Note that a cluster might have several nearest neighbors, i.e.,
several clusters might have the same (smallest) distance from
that. At the next step, the connected components of the graph
G are extracted, where each of them represents a new cluster
at a higher level. Thus, the clusters at the same connected
components are combined to build a new single cluster at the
higher level. This procedure (i.e., finding the nearest neigh-
bors and combining them to build new higher-level clusters)
continues until only one cluster is left at the highest level.

Notice that the several improvements developed for the
standard strategy can be applied to this strategy as well. The
computational complexity of this strategy is similar to the
complexity of the standard variant. Both strategies establish
in total n−1 linkages. For this, they compute the inter-cluster
distances (linkages) according to a priori fixed criterion, and
for each selected linkage, they merge the respective clusters
and update the new inter-cluster linkages. Therefore, the op-
erations and the computations are similar, whereas the choice
of specific linkages and/or the order might differ which can
lead to different dendrograms. Selecting all reliable linkages,
instead of the smallest one, may reduce the overall number of
steps, but it might need more merges at each step. However,
as mentioned, the total number of merges is the same for both
strategies.

On the other hand, as mentioned, an important computa-
tional advantage of the reliable strategy is the possibility of
early stopping. It builds and develops several clusters simulta-
neously, whereas the standard approach develops fewer clus-
ters at the same time. Thus, if we stop at early/intermediate
steps, it is more likely that we obtain good representatives of
different clusters. But, with the standard strategy, it could hap-
pen that only a few clusters are developed and the rest have
not even been started yet. This might happen in particular
when the clusters have diverse densities and shapes. There-
fore, early-stopping, to reduce the computational time, can
be more effective with reliable agglomerative clustering. For
example, the early clusters can be exposed to the user to select
only the interesting and relevant ones to develop further.

Algorithm 1 enables every object to potentially participate
in building the dendrogram from the beginning, depending
on having a reliable linkage. In other words, establishing and
selecting a linkage and therefore growth of a cluster depends
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only on the relation of an object/cluster to its neighbors, inde-
pendent of the relations of the other object/clusters with each
other. However, this is not the case for the standard agglom-
erative clustering. Thus, if we stop the algorithm early, then,
we will possibly have representatives of many clusters which
correspond to the denser and more important (informative)
parts. On the other hand, the outlier objects do not occur in the
nearest neighborhood of many other clusters or objects. Thus,
they join the other parts of the dendrogram only at the higher
levels. Thereby, Algorithm 1 can be employed to provide a
systematic way to separate structure from noise and outlier
objects at different resolutions. The probability of object i
being an outlier is proportional to the level at which the object
joins to the other objects/clusters, i.e.,

Pr[i ∈ outlier] ∝ l∗(i) ,

where l∗(i) specifies the level at which object i joins to one
of the other clusters/objects for the first time. The higher l∗(i)
is, the larger the outlier probability is. We postpone the detail
to future work.

We may parametrize this strategy by a parameter such as
α which specifies the ratio of the (smallest) reliable linkages
to be established at each step. A value close to zero then
corresponds to the standard variant, whereas α = 1 will be
equal to the reliable strategy described in Algorithm1. In
this way, we can provide even a richer family of alternative
strategies for performing agglomerative clustering.

3 Reliable Minimum Spanning Trees

Minimum spanning trees (MSTs) are used in several appli-
cations such as transportation, computer and telecommuni-
cation networks [17], image segmentation [12], taxonomy
learning [38] and power systems [29]. It is known that the
single linkage method is equivalent to the Kruskal’s algo-
rithm [24] for computing a minimum spanning tree [16]. Con-
sistently, we study that Algorithm 1 with the single criterion
also yields a minimum spanning tree (Theorem 1), which then
its construction is adaptive w.r.t. the diverse density of the
underlying data.

Before proving Theorem 1, we first introduce some nota-
tions. Consider a forest (collection) of trees {T0,T1, ...}. The
distance (the edge weight) between the two trees Tp and Tq is
computed according to the single criterion, i.e.,

∆pq = min
i∈Tp

min
j∈Tq

Di j.

The nearest tree from tree Tp, i.e. T ∗p , is obtained via T ∗p =
argminTq ∆pq,q 6= p. Moreover, e∗p shows the edge corre-
sponds to the nearest tree from Tp, i.e.,

e∗p = argmin
e∈E

∆pq,q 6= p ,

where E is the set of all current inter-tree edges.

Theorem 1. The dendrogram generated by Algorithm 1 with
the single linkage criterion computes a minimum spanning
tree.

Proof sketch. Consider a forest of trees T0,T1, · · · . According
to the connectivity condition of the final minimum spanning
tree, every tree Tp should be connected via an edge to the
rest of the MST. This edge should be e∗p, i.e., an edge (link-
age) with minimal weight among the edges of Tp, to keep the
spanning tree minimal. Otherwise, if a larger edge is selected,
then, the resultant spanning tree will have a larger total weight
(i.e., a contradiction occurs). The linkage suggested by Algo-
rithm 1 (with the single criterion) satisfies this condition: The
selected linkage is the smallest linkage connected to both Tp
and T ∗p (the tree at the other side).

Hence, at the beginning, we consider each object as a sepa-
rate tree, where all must belong to the final minimum spanning
tree. Then, according to the aforementioned argument and
based on induction, the edges selected at each step belong to
the final MST. Thus, the final tree will be a minimum spanning
tree.

In this context, the generalized greedy algorithm [15] pro-
vides a general framework for computing minimum spanning
trees, by showing that the edge ep∗ is a consistent choice with
a final minimum spanning tree. Thereby, a greedy MST al-
gorithm, at each step, i) picks Tp and T ∗p , i.e., two candidate
trees where at least one is the nearest neighbor of the other, ii)
combines them via the smallest edge e∗p to build a larger tree,
and iii) removes the selected trees Tp and T ∗p . The procedure
continues until only a single tree with n nodes remains, which
is a MST.

Different algorithms, e.g. Kruskal’s and Prim’s [33], dif-
fer only in the way they pick the candidate trees at each
step. Kruskal’s, at each step, picks a pair of trees that have a
minimal distance among all pairs of trees. However, Prim’s
produces the MST via growing only one tree, say T0, by itera-
tively attaching a singleton tree which has minimal distance
to that, until it contains all the singleton trees.

Algorithm 1 with the single criterion yields an alternative
viewpoint on the construction of MSTs. According to the gen-
eralized greedy algorithm, to combine two candidate trees, it
is sufficient that one of them occurs in the nearest neighbor-
hood of the other. However, Algorithm 1 requires that both
trees mutually occur insides the nearest neighborhood of each
other. As shown, e.g. in Figures 1(b) and 1(c), such a strat-
egy yields a robust and adaptive minimum spanning tree. In
summary,

I. the standard agglomerative method, in a very strict way,
selects only one reliable linkage at each step, the one which
has a minimal length (weight).

II. On the other hand, the generalized greedy algorithm for
MST construction allows one to select any edge which occurs
inside the nearest neighbors of one of the trees, regardless of
being reliable or not (which might not be robust).
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III. Algorithm 1 follows an intermediate strategy. It sug-
gests to select all the reliable linkages (edges) which yields
adaptation and flexibility (compared to the former approach)
and robustness (compared to the latter approach).

IV. Parameterization of Algorithm 1 (by α, as discussed
before) can lead to an even larger family of different (reliable)
minimum spanning tree algorithms.

We note that the final MST obtained by Algorithm 1 could
be the same as the Kruskal’s MST. However, the order of
selecting the edges differs. Thus, in particular, if we stop early
constructing the MST, then the available solution could be
different.

4 Experiments

We experimentally evaluate the performance of the reliable
agglomerative strategy on a variety of real-world datasets and
compare it against the standard approach. In these datasets,
each object (i.e., document, image, etc) is represented by a
vector according to the respective features. For the text doc-
uments, we use the tf-idf vectors. We compute the pairwise
dissimilarities between the objects according to squared Eu-
clidean distance measure.

Data The first datasets are selected from the UCI data repos-
itory [11].

1. Ecoli: contains the information of 336 protein localiza-
tion sites in 7 categories.

2. Hayes Roth: is related to a study on human subjects
which contains 160 instances and 3 classes.

3. Iris: contains the information of 150 iris plants grouped
in 3 classes.

4. Lung Cancer: includes 3 types of 32 instances of patho-
logical lung cancer.

5. Perfume: consists of odors of 20 different perfumes
(classes), where there are in total 560 measurements.

6. Seeds: includes 210 measurements of geometrical prop-
erties of kernels belonging to different varieties of wheat.

7. Wine: contains 178 measurements of a chemical analysis
of different types of wines.

We also use the three main subsets of 20-newsgroup data
collection:

1. COMP: a subset of 1,955 documents in five groups:
‘comp.graphics’, ‘comp.windows.x’, ‘comp.os.ms-
windows.misc’, ‘comp.sys.ibm.pc.hardware’,

‘comp.sys.mac.hardware’.

2. REC: a subset of 1,590 documents in four groups re-
lated to race and sports: ‘rec.autos’, ‘rec.motorcycles’,

‘rec.sport.baseball’, ‘rec.sport.hockey’.

3. SCI: a subset of 1,579 documents in four groups re-
lated to science: ‘sci.crypt’, ‘sci.electronics’, ‘sci.med’,

‘sci.space’.

In addition, we investigate the performance of different
strategies on real datasets collected by a document processing
corporation. The original dataset (called Real I) contains the
vectors of 675 scanned documents each represented in a 4,096
dimensional space. This dataset contains 56 clusters which
several of them have only one or few documents. Then, by
removing the clusters with only one or two documents, we
obtain a new dataset, called Real II (634 documents) . Finally,
we obtain Real III by keeping the clusters that have at least 5
documents (592 documents).

Evaluation To investigate the quality of a dendrogram,
cophenetic correlation [40] is sometimes employed specially
in biostatistics which measures the correlation between the
dendrogram and the base dissimilarities between the objects.
However, this evaluation measure has several issues, e.g. i) it
considers only the direct distances and discards the manifolds
or the elongated structures, and ii) its value is very sensitive to
the way the inter-cluster distances are computed. For example,
the two single and Ward criteria might lead to the same den-
drograms, but their cophenetic correlation could significantly
differ, since they compute different types of distances between
the clusters (which constitute the elements of a dendrogram).
However, in our experiments, we have access to the ground-
truth, i.e. to the true labels of the objects. Thus, we may use
early stopping up to K clusters or eliminate the last K− 1
linkages from a dendrogram to produce K clusters. There
exist more involved methods to convert a dendrogram into a
set of K clusters, but they require fixing critical parameters
in advance which finding their correct values is non-trivial in
an unsupervised setting such as clustering. With both strate-
gies, ties might occur when producing exactly K clusters. We
tackle the problem in the same way as the common imple-
mentations do, e.g. we break the ties according to the order
(index) of the clusters, where all other tricks are applicable
to both approaches as well. Moreover, we observe such ties
usually occur at the lower levels of the dendrogram, i.e., for a
very large K. For a rather small K, which is the case in many
clustering problems, such ties are very rare. In real data it
does not often happen that many real clusters are mutually
the nearest neighbors of each other. Having multiple reliable
linkages to establish occurs at the low or intermediate levels.
Thus, at the higher level, where we remove the linkages, ties
are not common.

We compare the true and the computed clusters according
to three criteria:
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Table 1: Performance of standard (stnd) and reliable (rlbl) agglomerative strategies w.r.t. Mutual Information. The reliable strategy often yields the
improvment of the results.

single complete average centroid Ward
dataset stnd rlbl stnd rlbl stnd rlbl stnd rlbl stnd rlbl
Ecoli 0.0564 0.0564 0.6235 0.6235 0.5907 0.6812 0.0462 0.0383 0.5473 0.5445

Hayes Roth 0.0161 0.2336 0.0354 0.2338 0.1629 0.2338 0.0000 0.0030 0.0249 0.0808
Iris 0.5821 0.5821 0.6963 0.6963 0.6301 0.6301 0.7934 0.7934 0.7578 0.7578

Lung Cancer 0.0149 0.0149 0.1537 0.2070 0.0239 0.1413 0.0000 0.0000 0.1766 0.1684
Perfume 0.7024 0.7024 0.7332 0.7332 0.7601 0.7595 0.7544 0.7664 0.8246 0.8246

Seeds 0.0283 0.0283 0.6029 0.6029 0.6083 0.7055 0.6034 0.6140 0.7243 0.7243
Wine 0.0237 0.0237 0.4307 0.4307 0.3223 0.3452 0.3251 0.3251 0.4097 0.4097

COMP 0.0604 0.0604 0.1459 0.1459 0.0453 0.1611 0.0312 0.0341 0.1021 0.1140
REC 0.0228 0.0402 0.1793 0.1793 0.0330 0.2375 0.0161 0.0315 0.2574 0.2574
SCI 0.0617 0.0617 0.0823 0.0823 0.0387 0.1557 0.0339 0.0651 0.1997 0.3042

Real I 0.5782 0.5782 0.7114 0.7114 0.7813 0.8237 0.0785 0.0670 0.5976 0.7546
Real II 0.5711 0.5711 0.7430 0.7430 0.7704 0.8130 0.0458 0.0268 0.6542 0.8274
Real III 0.5389 0.5389 0.7581 0.7581 0.7209 0.7733 0.0132 0.0145 0.7156 0.8697

Table 2: Performance of standard (stnd) and reliable (rlbl) strategies with different criteria w.r.t. Rand score, where the reliable strategy usually
gives superior results.

single complete average centroid Ward
dataset stnd rlbl stnd rlbl stnd rlbl stnd rlbl stnd rlbl
Ecoli 0.0386 0.0386 0.6908 0.6908 0.6974 0.7509 0.0297 0.0252 0.4686 0.3914

Hayes Roth 0.0185 0.2086 0.0327 0.2451 0.1620 0.2451 0.0000 0.0058 0.0496 0.1073
Iris 0.5638 0.5638 0.6423 0.6423 0.5659 0.5659 0.7592 0.7592 0.7312 0.7312

Lung Cancer 0.0371 0.0371 0.2809 0.3533 0.1327 0.1170 0.0000 0.0000 0.3388 0.1698
Perfume 0.4667 0.4667 0.5096 0.5096 0.5651 0.5600 0.5600 0.5749 0.6590 0.6590

Seeds 0.0025 0.0025 0.5461 0.5461 0.5543 0.7320 0.5664 0.5626 0.7132 0.7132
Wine 0.0054 0.0054 0.3708 0.3708 0.2926 0.3204 0.3266 0.3266 0.3684 0.3684

COMP 0.0531 0.0531 0.1331 0.1331 0.0040 0.1459 0.0119 0.0138 0.0290 0.0296
REC 0.0262 0.0742 0.0905 0.0905 0.0025 0.2266 0.0014 0.0052 0.2162 0.2162
SCI 0.0884 0.0884 0.0108 0.0108 0.0034 0.0782 0.0493 0.0588 0.0908 0.1688

Real I 0.4296 0.4296 0.4133 0.4133 0.4687 0.5699 0.0401 0.0403 0.2649 0.4969
Real II 0.4409 0.4409 0.4142 0.4142 0.5581 0.6685 0.0283 0.0198 0.3193 0.6176
Real III 0.4235 0.4235 0.4414 0.4414 0.6850 0.6443 0.0123 0.0151 0.4101 0.7042

1. Normalized Mutual Information [41], which measures
the mutual information between the true and the esti-
mated solutions.

2. Normalized Rand score [21], which computes the simi-
larity between the two solutions.

3. V-measure [34], which obtains the harmonic mean of
homogeneity and completeness.

We compute the normalized variant of these measures, such
that they yield zero for randomly estimated solutions and
thereby any positive score indicates a (partially) consistent

solution.

Results Tables 1, 2 and 3 show the performance scores in or-
der w.r.t. Normalized Mutual Information, Normalized Rand
score and V-measure, where the best results for each dataset
are bolded. We observe that on different datasets, the reliable
agglomeration strategy always contributes to the best results.
In most cases, it improves significantly the best results of the
standard strategy, and in fewer cases it yields consistent re-
sults with that. Moreover, in few cases it could happen that for
a non-optimal criterion, the reliable variant yields (slightly)
worse results. However, such a criterion is not the best choice
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Table 3: Performance of standard (stnd) and reliable (rlbl) strategies w.r.t. V-measure. The reliable strategy provides better results compared to the
standard variant.

single complete average centroid Ward
dataset stnd rlbl stnd rlbl stnd rlbl stnd rlbl stnd rlbl
Ecoli 0.1355 0.1355 0.6789 0.6789 0.6683 0.7115 0.1008 0.0819 0.6123 0.5658

Hayes Roth 0.0579 0.3472 0.0556 0.3010 0.2164 0.3010 0.0000 0.0203 0.0412 0.0995
Iris 0.7175 0.7175 0.7221 0.7221 0.7046 0.7046 0.8057 0.8057 0.7701 0.7701

Lung Cancer 0.0287 0.0287 0.1810 0.2303 0.0742 0.1743 0.0000 0.0000 0.2140 0.2030
Perfume 0.8117 0.8117 0.8251 0.8251 0.8437 0.8417 0.8380 0.8442 0.8796 0.8796

Seeds 0.0663 0.0663 0.6152 0.6152 0.6204 0.7094 0.6150 0.6260 0.7309 0.7309
Wine 0.0615 0.0615 0.4423 0.4423 0.4049 0.3920 0.4277 0.4277 0.4161 0.4161

COMP 0.0351 0.0351 0.1857 0.1857 0.0754 0.1922 0.0515 0.0558 0.1323 0.1468
REC 0.0307 0.0614 0.2310 0.2310 0.0609 0.2737 0.0308 0.0569 0.3124 0.3124
SCI 0.0518 0.0518 0.1337 0.1337 0.0714 0.2005 0.0270 0.0339 0.2546 0.3407

Real I 0.7708 0.7708 0.8484 0.8484 0.8409 0.8714 0.2181 0.2016 0.7932 0.8421
Real II 0.7570 0.7570 0.8221 0.8221 0.8361 0.8725 0.1384 0.0925 0.8023 0.8614
Real III 0.7197 0.7197 0.8155 0.8155 0.8427 0.8408 0.0510 0.0594 0.8238 0.8951

and the respective scores are not high compared to the alter-
natives. For example, on Real I and Real II with the centroid
criterion, the standard strategy yields slightly better scores
than the reliable strategy. However, the centroid criterion is
not the best option and yields anyway very low scores. With
a more appropriate criterion (e.g. average and Ward), the reli-
able strategy gives significantly higher scores. Note that the
different evaluation measures are often consistent, but in some
cases they might disagree. For example, on the Seeds dataset,
Normalized Mutual Information suggests the Ward criterion
as the best option, but Normalized Rand score selects the av-
erage criterion, although Ward still yields high scores. Finally,
it is notable that we observe similar experimental runtimes
for the two strategies, as they perform similar operations. For
example, on the COMP dataset and with the single criterion,
the runtimes of the standard and reliable strategies are 0.9135
and 0.9208 seconds. With the average criterion, the runtimes
respectively are 0.5338 and 0.5326 seconds.

5 Conclusion

We investigated an adaptive and density-consistent strategy
for agglomerative clustering, wherein at each step we estab-
lish all the reliable linkages, instead of establishing only the
smallest one (consistent with the high-level method in [3]).
The two clusters connected by a reliable linkage share sim-
ilar properties, such that they select each other as a nearest
neighbor. This strategy enables the dendrogram to be adaptive
w.r.t. the diverse densities of different clusters and supports
early stopping the clustering procedure. In the following, we
studied how reliable agglomerative clustering with the sin-
gle criterion can be used to produce a minimum spanning

tree. Finally, we performed experiments on several real-world
datasets to investigate the performance of the reliable agglom-
erative strategy.
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