
One Line To Rule Them All:
Generating LO-Shot Soft-Label Prototypes

Ilia Sucholutsky∗, Nam-Hwui Kim†, Ryan P. Browne‡ and Matthias Schonlau§
Department of Statistics and Actuarial Science, University of Waterloo,

Waterloo, Canada
Email: ∗isucholu@uwaterloo.ca, †namhwui.kim@uwaterloo.ca, ‡ryan.browne@uwaterloo.ca, §schonlau@uwaterloo.ca

Abstract—Increasingly large datasets are rapidly driving up
the computational costs of machine learning. Prototype gener-
ation methods aim to create a small set of synthetic observa-
tions that accurately represent a training dataset but greatly
reduce the computational cost of learning from it. Assigning
soft labels to prototypes can allow increasingly small sets of
prototypes to accurately represent the original training dataset.
Although foundational work on ‘less than one’-shot learning
has proven the theoretical plausibility of learning with fewer
than one observation per class, developing practical algorithms
for generating such prototypes remains an unexplored territory.
We propose a novel, modular method for generating soft-label
prototypical lines that still maintains representational accuracy
even when there are fewer prototypes than the number of classes
in the data. In addition, we propose the Hierarchical Soft-Label
Prototype k-Nearest Neighbor classification algorithm based on
these prototypical lines. We show that our method maintains
high classification accuracy while greatly reducing the number
of prototypes required to represent a dataset, even when working
with severely imbalanced and difficult data. Our code is available
at https://github.com/ilia10000/SLkNN.

I. INTRODUCTION

‘Less than one’-shot (LO-shot) learning is a recently
proposed setting wherein a model must learn to recognize
N classes from only M < N training examples [1]. The
underlying premise is that this extreme level of data-efficiency
may be attainable by assigning richer labels (or annotations)
to training examples. In particular, it was analytically proven
that it is possible to generate a small number M of soft-
label prototypes such that a kNN classifier fitted on these
prototypes could discern N > M classes. Reducing the
number of prototypes required to represent a training dataset
is especially valuable for instance-based algorithms like kNN
as the computational complexity at inference time depends on
the number of training examples the classifier was fitted on.
Unexpectedly, [1] showed in their main theorem that with just
two carefully-designed soft-label prototypes it is possible to
separate any finite number of classes. However, this particular
result requires that the classes being separated lie roughly on
a 1-dimensional manifold so that a soft-label prototype could
be assigned to each end of the manifold and used to separate
the classes in between.

While the results above have shown that LO-shot learning
is theoretically plausible, a practical algorithm for harnessing
its potential is yet to be developed. Thus, we propose the
first method for generating prototypical lines and a new

classification algorithm that can use them to perform LO-shot
learning in practice. Our key contributions can be summarized
as follows:
• We develop three methods for finding co-linear classes.
• We develop a method for producing ‘prototypical lines’

by optimizing the two soft-label prototypes assigned to
each set of approximately co-linear classes.

• We develop a novel classification algorithm, the Hierar-
chical Soft-Label Prototype kNN (HSLaPkNN), that can
use the prototypical lines produced by these two methods.

• We show that HSLaPkNN can perform LO-shot learning
with prototypical lines and determine the tradeoff between
dataset size reduction and classification accuracy. In partic-
ular, our method can retain over 90% of the classification
accuracy of 1NN while reducing the required number of
prototypes (prototypical lines) by up to 80%.

Our modular approach allows newly-developed algorithms for
each component to be swapped in without interfering with
the remaining components. This implies that our approach
accommodates a continuous performance improvement through
component-wise innovations. This is indeed an attractive feature
for researchers, as the progress on individual components
can by combined into the improvement of overall process.
The remainder of this paper is divided into four sections. In
Section II we detail our method, each of its components, and the
theory behind them. In Section III we describe our experimental
setup and results. In Section IV we discuss previous work in
related areas. In Section V we analyze the impact of our method
and suggest promising directions for future work.

II. LO-SHOT PROTOTYPE GENERATION ALGORITHM

Our method primarily consists of three modular components.
In the first component, we find the prototypical lines where
each line contains information on a subset of original classes
and every class belongs to one of the lines. Then, the second
component finds optimal prototypes for every class associated
with each line. Finally, the HSLaPkNN algorithm uses the lines
and prototypes to classify the dataset. In particular, we present
three different algorithms for finding the prototypical lines. We
present a visual illustration of each component in Figure 1.

A. Component 1: Finding Lines

The objective of the first component of our prototype
generation method is to find subsets of classes that lie along the

ar
X

iv
:2

10
2.

07
83

4v
1

 [
cs

.L
G

]
 1

5
Fe

b
20

21

https://github.com/ilia10000/SLkNN

(a) Select a dataset

(b) Find lines corresponding to 1D manifolds

(c) Solve system to find two soft-label prototypes for each line

(d) Classify points based on nearest line and its two prototypes

Fig. 1: Prototype generation and classification process Hierar-
chical Soft-Label Prototype k-Nearest Neighbors (HSLaPkNN)

same 1-dimensional manifold. We can find subsets of this type
by grouping together classes that are approximately co-linear.
In other words, our objective is roughly to find the smallest
possible set of lines that cover (pass through) all classes. We
propose two methods for finding such lines.

1) Brute Force: One straightforward approach for finding
the best combination of M lines that pass through/near all
the classes is to generate all such combinations of lines, score
each one, and finally pick the best one. To reduce interactions
between different lines in Component 3, we first filter out all
combinations of lines where any of the lines intersect. For our
experiments with this approach, we score each line by first
finding all the classes that are closest to that line, and then
taking the sum of the absolute values of the shortest distances
from every point in those classes to the line. The scores are
summed across each combination of lines, and the combination
with the lowest score is chosen. This process is detailed in
Algorithm 1. Unfortunately, the complexity of this algorithm is
O(n2∗l) where n is the number of classes and l is the number
of lines. While computationally expensive, it is guaranteed to
find near-optimal lines. As a result, this method is best used
when there are either relatively few classes or only a small
number of lines is required to cover all of them. For datasets
with a large number of classes that cannot be covered with
a small number of lines, we instead propose an approximate
method.

Algorithm 1: Brute-force line-finding algorithm
Result: Best set of M non-intersecting lines (as pairs of

endpoints) for covering all classes
M = desired number of lines;
C = centroids of each class;
Lines = all combinations of two elements of C;
M_Lines = all combinations of M elements of Lines;
best_lines = None;
min_dist = -1;
for cur_lines in M_Lines do

if no_intersections(cur_lines) then
cur_dist=0;
for c in C do

nearest = nearest_line(c, cur_lines);
cur_dist += dist_to_line(c, nearest);

end
if cur_dist < min_dist or min_dist==-1 then

min_dist = cur_dist;
best_lines = cur_lines;

end
end

end
return best_lines;

2) Recursive Regression: The exhaustive enumeration like
the brute force approach can lose its viability quickly. Instead, a
preliminary clustering of the classes can produce a more elegant
algorithm for line-finding. Let N be the number of classes

present, and denote by c1, . . . , cN the class-wise centroids. We
want to find M lines. The set {c1, . . . , cN} is partitioned into
M clusters such that each cluster contains at least two centroids.
Our paper uses hierarchical clustering with the single linkage
[2], but a different method could be deployed based on the
investigator’s judgement. For the purpose of regression fit, we
selected the last feature of the dataset to be the ‘response’ and
the rest of the features to be the ‘covariate’. This means that,
for a centroid c, its last entry could function as a response
variate and the remaining entries would be the covariates.
However, the response-covariate configuration may be different
based on the context or other external information. As an
illustration, consider one of the clusters Gi with size ni, Gi =
{ci1, ci2, . . . , cini}, where each element in Gi is a centroid.
We partition Gi into Ai = {ci1, ci2} and Bi = Gi \Ai where
ci1 and ci2 are of maximum pairwise Euclidean norm between
the centroids in Gi. We fit a regression line βi on ci1 and
ci2. Then, for each c ∈ Bi, we estimate a line β̂ on Ai ∪ {c}.
Then, if ||β − β̂||2 is less than a pre-determined tolerance
ε > 0, then c is added to Ai and Bi is updated to Bi \ {c}.
Otherwise, c is not added to Ai and is discarded from Bi.
This forward selection process is repeated until Bi = ∅. This
procedure is applied to all Gi for i = 1, 2, . . . ,M . The results
are {A1, . . . , AM} and {β1, . . . , βM}, where each line βj (j =
1, . . . ,M) is segmented to have endpoints at the furthest-apart
pair of centroids that generated it. This method will be called
Recursive Regression (RR) hereafter.

3) Distance-based Attraction: While the Recursive Regres-
sion is careful when adding classes to the distilling lines, a
possible shortfall is its dependence on the initial clustering
result, because the cluster-wise regression lines are not altered.
Moreover, the tolerance threshold ε can influence the number
of classes that are left out. To mitigate these issues, we
propose another clustering-based algorithm called Distance-
based Attraction (DA). The initial clustering stage is the
similar to that of RR, and we obtain M many line segments
β1, . . . , βM . Then, for each centroid ci (i = 1, . . . , N), we
compute the shortest distance from it to each line segment,
denoted by dβ1

, . . . , dβM
. Then, ci is assigned to the line

argminβ1,...,βM
{dβ1

, . . . , dβM
}. Notice that we do not require

a tolerance threshold, and that every class is guaranteed to be
assigned to a line. Once the assignment is completed, the line
segment for each cluster is re-calculated, as there may be a
new furthest-apart pair of centroids.

B. Component 2: Finding Optimal Prototypes for a Single Line

Once a suitable line segment is found, along with the classes
assigned to it, we can use the idea of the main theorem from [1]
to design two soft-label prototypes that will be placed at each
endpoint of the line segment. The soft labels of these two
prototypes must be designed in such a way that a SLaPkNN
classifier fitted on them would accurately separate the classes
lying along the line segment. Similarly to [1] we can formulate
this as an optimization problem where we want to maximize
each class’s influence over its interval of the line segment. We
approximate each class’s interval of the line segment as starting

Algorithm 2: Recursive Regression (RR) for line-
finding
Result: A set of M lines and classes assigned to each

line
C = centroids of each class;
M = number of preliminary clusters that contain at least

two different centroids from C;
Gi (i = 1, 2, . . . , M) = ith preliminary cluster;
ε = pre-determined positive maximum tolerance;
best_lines = ∅;
captured_groups = ∅;
for i in 1, 2, . . . , M do

A = set of two furthest centroids in Gi in terms of
Euclidean distance;

B = Gi \ A;
β = regression line fitted on two furthest centroids

in Gi;
while B 6= ∅ do

all_dist = {||β − βA∪{c}||2}c∈B where βA∪{c} is
the regression line fitted on A ∪ {c};

if all(all_dist > ε) then
stop

end
c∗ = minimizer among B of all_dist ;
A = A ∪ c∗;
B = B \ c∗;

end
best_lines = best_lines ∪ β;
captured_groups = captured_groups ∪
{classes_associated_with_A};

end
return best_lines, captured_groups;

from the midpoint between the class centroid and the preceding
class’s centroid, and ending at the midpoint between the class
centroid and the next class’s centroid. We approximate a class’s
influence over its interval by its influence at the centroid of
that interval. A class’s influence at a given point is equal to the
sum of the associated soft-label value divided by distance from
the prototype, for each prototype. For a point to be assigned to
a particular class, that class’s influence must be higher than all
the other classes’ influences at that point. To enforce this, at
each interval centroid we not only add a constraint forcing the
desired class to have the highest influence, but we also actually
maximize the difference between the influence of the desired
classes and the sum of the influences of all the other classes.
A key difference between the system we aim to solve and the
one solved in [1] is that we do not assume that classes will be
distributed symmetrically along the line segment. As a result,
we cannot use the simplifying constraints that the soft labels
of the two prototypes are symmetrical. Instead, we add the
additional constraint that the influence of neghboring classes
must be equal at the midpoint of their centroids. In order to
solve the resulting optimization problem we use the CVXPY

Algorithm 3: Distance-based Attraction (DA) for line-
finding

Result: A set of M lines and classes assigned to each
line

C = {c1, . . . , cN} = centroids of each class;
M = number of preliminary clusters that contain at least

two different centroids from C;
Gi (i = 1, 2, . . . , M) = ith preliminary cluster;
pre_lines = line segments generated from furthest-apart

pair of centroids from each Gi;
best_lines = ∅;
group_assignment = ∅;
for i in 1, 2, . . . , N do

index = argmin
j=1,...,M

(shortest_dist(ci, βj));

group_assignment = group_assignment ∪ {index};
end
for i in unique_elements(group_assignment) do

set = {cj : group_assignment[j − 1] = i};
β∗i = line_on_furthest_pair(set);
best_lines = best_lines ∪ β∗i ;

end
return best_lines, group_assignment;

library [3], [4]. The full algorithm for generating and solving
this optimization problem is specified in Algorithm 4.

C. Component 3: Classifying with Multiple Lines

The two prototypes assigned to the endpoints of a single
line are near-optimal for fitting a SLaP2NN classifier if that
line and its associated classes are isolated from all other
classes. However, in practice, lines could pass fairly close
to each other. As a result, the two nearest prototypes to a
particular point on a line may not end up being the two
prototypes assigned to the endpoints of that line. In order
to rectify this problem, we propose the Hierarchical Soft-
Label Prototype kNN (HSLaPkNN) classification rule. This
classifier performs two main steps when determining how to
classify a target point. First, it finds the nearest prototype
line to the target point. Second, it fits a SLaP2NN classifier
on the two endpoint prototypes assigned to that line. These
steps are detailed in Algorithm 5. We note that the algorithm
is intentionally designed to allow more than the minimum
required two prototypes per line in case the user wishes to
improve accuracy by adding additional prototypes.

III. EXPERIMENTS

We perform a variety of experiments to determine the tradeoff
between classification accuracy and dataset size reduction
offered by our prototyping algorithm and HSLaPkNN. For
every experiment, we also fit a normal 1NN classifier as
a baseline. Each type of experiment is summarized below
and some examples of the resulting classification decision
boundaries are visualized in Figures 2 and 3.

Algorithm 4: Generating system of equations and
constraints for two soft-label prototypes
Result: Two lists containing the soft labels

corresponding to the two prototypes
p1 = location of first prototype;
p2 = location of second prototype;
lineseg = [p1, p2];
centroids = centroids of each class assigned to line;
N = number of centroids assigned to line;
x = length 2N array of variables to optimize;
ε = 0.01;
projections = [];
dists = [];
middists=[];
for centroid in centroids do

projection = proj(centroids, lineseg);
projections.append(projection);
dist = dist(p1, projection);
dists.append(dist);
middists.append(dist/2);

end
A=[];
constraints=[];
for i in 0, 1, 2, . . . , N-1 do

vector = zeros(2*N) ;
vector[i] += 1/(dists[i]+ε-p1) ;
vector[N+i] += 1/(p2-dists[i]+ε) ;
q1 = x[i]/(dists[i]+ε-p1);
q2 = x[N+i]/(p2-dists[i]+ε);
for j in 0, 1, 2, . . . , N-1 do

if i 6= j then
vector[j] -= 1/(dists[i]+ε-p1);
vector[N+j] -= 1/(p2-dists[i]+ε);
q3=x[j]/(dists[i]+ε-p1);
q4=x[N+j]/(p2-dists[i]+ε);
constraint = q1+q2>=q3+q4+ε2;
constraints.append(constraint);

end
A.append(vector);

end
if i<N-1 then

q1 = x[i]/(mid_dists[i+1]-p1);
q2 = x[N+i]/(p2-mid_dists[i+1]);
q3=x[i+1]/(mid_dists[i+1]-p1);
q4=x[N+i+1]/(p2-mid_dists[i+1]);
constraint = q1+q2==q3+q4;
constraints.append(constraint);

end
end
constraints.append(x>=0);
constraints.append(x<=1);
constraints.append(sum(x[0:N])==1);
constraints.append(sum(x[N:2N])==1);
objective = Maximize(sum(A’x)+sum_smallest(A’x,2));
result = solve(objective, constraints);
return x.value[0:N], x.value[N:2N];

(a) Example result of Regular2 experiment

(b) Example result of Regular (5) experiment

(c) Example result of Imbalanced1 experiment

(d) Example result of Imbalanced2 experiment

Fig. 2: Examples of resulting HSLaPkNN decision landscapes.

Algorithm 5: Hierarchical Soft-Label Prototype k-
Nearest Neighbor (HSLaPkNN) classification rule
Result: Predicted classes of every target point in P
P = list of target points for classification;
lines = list of M pairs of prototypes;
Preds = [];
for p in P do

nearest = nearest_line(p, lines);
soft_pred = [0]*N;
for prototype in nearest do

proto_loc = prototype[0];
proto_lab = prototype[1];
dist = dist(proto_loc, p);
soft_pred += proto_lab/dist;

end
hard_pred = argmax(soft_pred);
Preds.append(hard_pred);

end
return Preds;

• Regular1: Brute force line-finding is used to find three
lines in a 10-class dataset consisting of 1000 points with
two feature dimensions. Each class consists of 100 points.

• Regular2: Brute force line-finding is used to find four
lines in a 10-class dataset consisting of 1000 points with
two feature dimensions. Each class consists of 100 points.

• Regular (5): Brute force line-finding is used to find two
lines in a 5-class dataset consisting of 1000 points with
two feature dimensions. Each class consists of 200 points.

• Giant: Distance-based attraction is used to find some
number of lines that cover all classes in a 100-class dataset
consisting of 2000 points with two feature dimensions.
Each class consists of 20 points. For this experiment we
also record the average number of lines found along with
the other metrics.

• Imbalanced1: Brute force line-finding is used to find three
lines in a 10-class dataset consisting of 550 points with
two feature dimensions. Five classes consist of 10 points
each, and five classes consist of 100 points each.

• Imbalanced2: Brute force line-finding is used to find three
lines in a 10-class dataset consisting of 550 points with
two feature dimensions. Class i consists of 10i points for
i = 1, 2, ..., 10.

• Small: Brute force line-finding is used to find three lines
in a 10-class dataset consisting of 100 points with two
feature dimensions. Each class consists of 10 points.

• Penguins: Distance-based attraction is used to find some
number of lines that cover all classes in the 5-class
version of the Palmer Penguins dataset [5]. We use the
four continuous explanatory variables (bill length, bill
depth, flipper length, body mass) as the features, and the
combination of ‘species’ and ‘island’ as the class.

• EColi: Distance-based attraction is used to find some
number of lines that cover all classes in the 5-class version

of the E. Coli dataset (‘ecoli’) from OpenML [6]. We use
the six continuous explanatory variables (mcg, gvh, lip,
aac, alm1, alm2) as the features.

We repeat each experiment involving simulated data 100
times with a different random seed and record the mean and
standard deviation of the classification accuracy in Table I
along with other details about each experiment. In order to
understand the tradeoff between dataset size reduction and
classification accuracy, we also calculate the ratio of the number
of prototypical lines used by HSLaPkNN compared to 1NN,
as well as the ratio of their classification accuracies when
fitted on these prototypes. We summarize these results in
Table II. Notably, our method retains upwards of 90% of the
classification accuracy of 1NN while reducing the number of
nearest prototypes (prototypical lines) that must be considered
at inference time by as much as 80%.

(a) Example result of Giant experiment with 25 lines found

(b) Example result of Giant experiment with 30 lines found

Fig. 3: Examples of resulting HSLaPkNN decision landscapes.

Our method is most interpretable when working with datasets
that have two-dimensional feature sets due to the ease of
visualizing the resulting decision landscapes. However, our
method can also work with higher-dimensional datasets as
seen by the results with the Palmer Penguins dataset and
E. Coli dataset. In order to better understand the effect of
data dimensionality on the performance of our method, we
perform an additional set of experiments where we hold all
other hyperparameters of the algorithm and data-generation
constant but increase the dimensionality of the datasets.

Experiment Points Lines HSLaPkNN (µ± σ) 1NN (µ± σ)
Regular 1000 3 0.814 ± 0.063 0.895 ± 0.045
Regular 1000 4 0.837 ± 0.06 0.894 ± 0.045

Regular (5) 1000 2 0.909 ± 0.077 0.951 ± 0.05
Small 100 3 0.82 ± 0.06 0.90 ± 0.05

Imbalanced1 550 3 0.815 ± 0.098 0.896 ± 0.059
Imbalanced2 550 3 0.813 ± 0.081 0.895 ± 0.054

Giant 2000 23.82 0.835 ± 0.042 0.996 ± 0.004
Penguins 342 1 0.4327 0.5029

EColi 327 2 0.8135 0.8654

TABLE I: Experimental results on a variety of simulated
datasets comparing the performance of HSLaPkNN fitted on
our soft-label prototypes to vanilla 1NN fitted on class centroids.
Lines refers to the average number of lines found for the dataset.
Experiments involving synthetic data (all except Penguins and
EColi) are repeated 100 times with different random seeds
during data generation to produce the standard deviations.

Experiment Points Lines Prototypes ratio Accuracy ratio
Regular 1000 3 0.3 0.91
Regular 1000 4 0.4 0.936

Regular (5) 1000 2 0.2 0.948
Small 100 3 0.3 0.911

Imbalanced1 550 3 0.3 0.909
Imbalanced2 550 3 0.3 0.909
Giant (100) 2000 23.82 0.238 0.838

Penguins 342 1 0.2 0.86
EColi 327 2 0.4 0.94

TABLE II: Experimental results on a variety of simulated
datasets comparing the performance of HSLaPkNN fitted on
our soft-label prototypes to vanilla 1NN fitted on class centroids.
Prototypes ratio refers to the ratio of the number of prototypical
lines used by HSLaPkNN to the number of prototypes used by
1NN. Accuracy ratio refers to the ratio of the mean classification
accuracy of HSLaPkNN to the mean classification accuracy of
1NN.

Table I summarizes the mean and standard deviations of the
classification accuracy achieved by HSLaPkNN and vanilla
1NN on these experiments with synthetic datasets containing
80 classes. Table IV summarizes the associated prototype
and accuracy ratios. Each experiment uses the distance-based
attraction line-finding method and is repeated 100 times with
a different random seed used to generate the data each
time. Because we hold all hyperparameters constant, our
method exhibits lower classification accuracy on this set of
experiments. Curiously, we notice that our method exhibits
greater variability in classification accuracy when used with
higher-dimensional datasets. We believe that this may be caused
by the sparsity introduced at higher dimensions (i.e. the curse of
dimensionality) but further investigation is required to confirm
this.

IV. RELATED WORK

A. Finding co-linear classes

The search for observations lying on a line can be dated
back to the analysis of multicollinearity in linear regression
[7]. Conventionally, multicollinearity is a topic of concern in
modelling due to it resulting in a verbose model. However,

Dimension Lines HSLaPkNN (µ± σ) 1NN (µ± σ)
2 23.3 0.497 ± 0.034 0.782 ± 0.021
3 22.7 0.692 ± 0.046 0.974 ± 0.01
4 22.6 0.717 ± 0.055 0.997 ± 0.002
5 22.0 0.701 ± 0.062 0.999 ± 0.001
6 22.3 0.692 ± 0.068 1 ± 0
7 21.8 0.67 ± 0.067 1 ± 0.0
8 21.4 0.653 ± 0.062 1 ± 0.0
9 21.5 0.637 ± 0.073 1 ± 0.0
10 21.5 0.63 ± 0.07 1 ± 0.0

TABLE III: Experimental results on simulated datasets of differ-
ent dimensionalities comparing the performance of HSLaPkNN
fitted on our soft-label prototypes to vanilla 1NN fitted on class
centroids. Each dataset contains 2000 points across 80 classes.
Experiments are repeated 100 times with different random seeds
during data generation to produce the standard deviations.

Dimension Lines Prototypes ratio Accuracy ratio
2 23.3 0.291 0.635
3 22.7 0.284 0.71
4 22.6 0.283 0.719
5 22.0 0.275 0.701
6 22.3 0.279 0.692
7 21.8 0.273 0.67
8 21.4 0.268 0.653
9 21.5 0.269 0.637

10 21.5 0.269 0.63

TABLE IV: Experimental results on simulated datasets with
increasing feature dimensionalities comparing the performance
of HSLaPkNN fitted on our soft-label prototypes to vanilla
1NN fitted on class centroids. Each dataset contains 2000 points
across 80 classes. Prototypes ratio refers to the ratio of the
number of prototypical lines used by HSLaPkNN to the number
of prototypes used by 1NN. Accuracy ratio refers to the ratio
of the mean classification accuracy of HSLaPkNN to the mean
classification accuracy of 1NN.

identifying co-linear observations could be useful in finding
an efficient representation. If the classes in a dataset could be
grouped by various co-linear structures, then a representation of
arbitrarily many classes using a much smaller number of lines
may be possible. This is the motivation behind the RR and DA
algorithms presented in this paper. There has been significant
past work on covering points with various geometrical objects
[8]–[15]. Our approach draws contrast from these methods in
that we seek to use lines as a satisfactory approximation of a
multi-class dataset, instead of a precise covering of all points.

B. Prototype selection and generation

Dataset Distillation (DD), the process of reducing a large
dataset into a small sample of representative observations, has
paved the way toward “learning more from less”. In one of
the most recent advances in DD, [16] showed that, with soft
labelling, learning the classes in a dataset from fewer than
one observation per class is possible. In particular, Soft-Label
Dataset Distillation (SLDD) was used to create a dataset of
just five distilled images, which is less than one per class,
that trained neural networks to over 90% accuracy on MNIST.
While there exist a range of methods on selecting or generating

prototypes from large data sets such as [17]–[25], the novelty
in our work lies in the development of practical algorithms for
generating LO-shot prototypes using a small number of simple
geometric objects (ie. straight line segments) to distill a large
number of classes, thereby enabling the discovery of unseen
classes in a straightforward manner.

V. CONCLUSION

We have proposed an algorithm for finding LO-shot proto-
types in practice. The algorithm is intentionally designed to be
modular so that each component can be improved independently.
Next steps include finding better algorithms for detecting co-
linear classes in datasets, improving the formulation of the
soft-label optimization problem, and generalizing the method
to work with a greater variety of classifiers.

Our proposed algorithm currently makes distributional
assumptions about the datasets and classes to which it is
applied. In particular, it assumes that each class is fairly
contiguous and disjoint. When these assumptions are violated,
even existing hard-label prototype methods need to increase
the number of prototypes they produce in order to maintain
classification accuracy. [26] dissect this phenomenon for a
particularly pathological case where the number of hard-label
prototypes required to represent a dataset may be quadratic in
the number of classes and [1] show that the required number
of soft-label prototypes is constant. We believe an interesting
direction would be to relax these assumptions for our soft-label
prototype generation algorithm, perhaps by treating clusters in
the data as sub-classes and optimizing for them separately rather
than treating the entire class in a monolithic way. While this
would likely increase the average number of classes assigned
to each line, and may even increase the total number of lines
required to achieve good coverage, it would likely result in
higher performance on a larger variety of datasets.

We note that our proposed algorithm builds directly on the
result from [1] regarding classes lying on a 1-dimensional
manifold. However, it is possible that the underlying theory
could be extended to classes lying on higher dimensional
manifolds. In particular, we conjecture that, given some
distributional assumptions, if a finite set of classes lies on
an M-dimensional manifold, only M+1 soft-label prototypes
are required to separate them. If this conjecture holds, then
our proposed algorithm could be extended to work with M-
dimensional manifolds. However, the key problem that would
need to be solved is how to automatically detect subsets
of the training dataset that lie on various manifolds with
differing dimensionalities, and then optimize the selection of
these subsets so as to minimize the total number of soft-label
prototypes required to represent the dataset. When optimizing
soft labels for these higher-dimensional manifolds, maintaining
stability and robustness to noise may become increasingly
important as there may be many more potentially unstable
solutions than in the 1D case. Thus the optimization problem
may require either a secondary objective that rewards stability
or additional constraints that try to enforce it directly.

REFERENCES

[1] Ilia Sucholutsky and Matthias Schonlau. ’less than one’-shot learning:
Learning n classes from m< n samples. arXiv preprint arXiv:2009.08449,
2020.

[2] Brian S Everitt, Sabine Landau, Morven Leese, and Daniel Stahl. Cluster
analysis 5th ed, 2011.

[3] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of Machine Learning
Research, 17(83):1–5, 2016.

[4] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen
Boyd. A rewriting system for convex optimization problems. Journal of
Control and Decision, 5(1):42–60, 2018.

[5] Allison Marie Horst, Alison Presmanes Hill, and Kristen B Gorman.
palmerpenguins: Palmer Archipelago (Antarctica) penguin data, 2020.
R package version 0.1.0.

[6] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
Openml: Networked science in machine learning. SIGKDD Explorations,
15(2):49–60, 2013.

[7] David A Belsley, Edwin Kuh, and Roy E Welsch. Regression diagnostics:
Identifying influential data and sources of collinearity, volume 571. John
Wiley & Sons, 2005.

[8] Stefan Langerman and Pat Morin. Covering points with lines. In 11th
Fall Workshop on Compu-tational Geometry, 2001.

[9] Stefan Langerman and Pat Morin. Covering things with things. Discrete
& Computational Geometry, 33(4):717–729, 2005.

[10] Magdalene Grantson and Christos Levcopoulos. Covering a set of points
with a minimum number of lines. In Italian Conference on Algorithms
and Complexity, pages 6–17. Springer, 2006.

[11] Burkay Genç, Cem Evrendilek, and Brahim Hnich. Covering points with
orthogonally convex polygons. Computational Geometry, 44(5):249–264,
2011.

[12] Adrian Dumitrescu and Minghui Jiang. On the approximability of
covering points by lines and related problems. Computational Geometry,
48(9):703–717, 2015.

[13] Paz Carmi, Matthew J Katz, and Nissan Lev-Tov. Covering points by
unit disks of fixed location. In International Symposium on Algorithms
and Computation, pages 644–655. Springer, 2007.

[14] P Mahapatra, R Sinha, Partha P Goswami, and Sandip Das. Covering
points by isothetic units squares. 2007.

[15] Hee-Kap Ahn, Sang Won Bae, Erik D Demaine, Martin L Demaine,
Sang-Sub Kim, Matias Korman, Iris Reinbacher, and Wanbin Son.
Covering points by disjoint boxes with outliers. Computational Geometry,
44(3):178–190, 2011.

[16] Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation
and text dataset distillation. arXiv preprint arXiv:1910.02551, 2019.

[17] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active
learning with statistical models. Journal of Artificial Intelligence
Research, 4:129–145, 1996.

[18] Simon Tong and Daphne Koller. Support vector machine active learning
with applications to text classification. Journal of Machine Learning
Research, 2(Nov):45–66, 2001.

[19] Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core vector
machines: Fast SVM training on very large data sets. Journal of Machine
Learning Research, 6(Apr):363–392, 2005.

[20] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset
constructions for machine learning. arXiv preprint arXiv:1703.06476,
2017.

[21] Ozan Sener and Silvio Savarese. Active learning for convolutional neural
networks: A core-set approach. arXiv preprint arXiv:1708.00489, 2017.

[22] James C Bezdek and Ludmila I Kuncheva. Nearest prototype classifier
designs: An experimental study. International Journal of Intelligent
Systems, 16(12):1445–1473, 2001.

[23] Isaac Triguero, Joaquin Derrac, Salvador Garcia, and Francisco Herrera.
A taxonomy and experimental study on prototype generation for nearest
neighbor classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(1):86–100, 2011.

[24] Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera.
Prototype selection for nearest neighbor classification: Taxonomy and
empirical study. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(3):417–435, 2012.

[25] Matt Kusner, Stephen Tyree, Kilian Weinberger, and Kunal Agrawal.
Stochastic neighbor compression. In International Conference on
Machine Learning, pages 622–630, 2014.

[26] Ilia Sucholutsky and Matthias Schonlau. Optimal 1-nn prototypes for
pathological geometries. arXiv preprint arXiv:2011.00228, 2020.

	I Introduction
	II LO-Shot Prototype Generation Algorithm
	II-A Component 1: Finding Lines
	II-A1 Brute Force
	II-A2 Recursive Regression
	II-A3 Distance-based Attraction

	II-B Component 2: Finding Optimal Prototypes for a Single Line
	II-C Component 3: Classifying with Multiple Lines

	III Experiments
	IV Related Work
	IV-A Finding co-linear classes
	IV-B Prototype selection and generation

	V Conclusion
	References

