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Abstract—Deep learning (DL) models are widely used to
provide a more convenient and smarter life. However, biased
algorithms will negatively influence us. For instance, groups
targeted by biased algorithms will feel unfairly treated and even
fearful of negative consequences of these biases. This work targets
biased generative models’ behaviors, identifying the cause of
the biases and eliminating them. We can (as expected) conclude
that biased data causes biased predictions of face frontalization
models. Varying the proportions of male and female faces in
the training data can have a substantial effect on behavior on
the test data: we found that the seemingly obvious choice of
50:50 proportions was not the best for this dataset to reduce
biased behavior on female faces, which was 71% unbiased as
compared to our top unbiased rate of 84%. Failure in generation
and generating incorrect gender faces are two behaviors of
these models. In addition, only some layers in face frontalization
models are vulnerable to biased datasets. Optimizing the skip-
connections of the generator in face frontalization models can
make models less biased. We conclude that it is likely to be
impossible to eliminate all training bias without an unlimited size
dataset, and our experiments show that the bias can be reduced
and quantified. We believe the next best to a perfect unbiased
predictor is one that has minimized the remaining known bias.

Index Terms—Face Frontalization, Bias in Neural Network

I. INTRODUCTION

During the last decade, deep learning has demonstrated its
strong ability in various classification and regression prob-
lems. Deep learning algorithms are not only favored by
many researchers but also popular in industrial applications.
Nowadays, deep learning applications are common in real life,
such as language translation in Google and face recognition
in security. An effective application will make our life more
convenient; on the other hand, a problematic application in-
volving biased decisions can greatly reduce our experience. In
deep learning, biases and prejudice are defined as differential
decisions being made toward different groups and individuals
based on their features or characteristics [1].

Biases in datasets and pre-trained models can lead to biased
stereotypes in general public [2]. For example, before gender-
specific translation, the Google translate system only matched
masculine forms to the term ’doctor’ and feminine forms to
the term ’nurse’ when translating English to Turkish [2]. There
also exist similar issues in facial synthesis. In the middle of
2020, a Twitter hotspot arose discussing the skin-color biases
of the PULSE photo up-sampling model, where it recovers
any human faces with different skin colors into white skin.

Bias studies in different areas of deep learning are unbal-
anced. Several researchers emphasized that the area of bias in
classification algorithms is well researched, but little attention
has been paid to the study of bias in generative models [1], [7].
Paying attention to learning algorithms’ bias should also be an
obligation for computer science researchers from both ethical
and technical perspectives. Based on these motivations, we
extend our previous work on facial frontalization by exploring
the biases from a semantic latent space perspective [3]. Facial
frontalization refers to recovering the frontal face from a side-
pose image, and belongs to the novel view synthesis domain.
Two base frameworks in facial frontalization from previous
research are Pix2Pix (Pixel to Pixel generative adversarial
networks) and Cycle-GAN (Cycle-Consistent generative ad-
versarial networks) [4], [5]. The current state-of-the-art models
are Pairwise-GAN and FFWM (Flow-based Feature Warping
Models), and use different databases [3], [6]. We selected
Pix2Pix and Pairwise-GAN for our analysis.

The purpose of our work is to fill in a gap in the field
of group biases study associated with facial databases used
to train GAN models. From this baseline, we conducted
our experiments in several stages: First of all, we observed
the biased behaviors in facial frontalization models from the
gender biases perspective. Then, we investigated the causes
of the biases following guidelines [1], [7], [8]. Further, we
plan to extend the findings from facial frontalization models
to general face generation conditional-GANs.

Our main findings in this project are:
• There are two kinds of biased behaviors for representative

models in facial frontalization, including failure in gener-
ations and generating incorrect gender. The former refers
to the situation where the generated frontal face loses
partial or all facial features; the second means the gender
of generated frontal faces does not match the gender of
the side-pose source faces.

• Data biases lead to biased behaviors of GANs, which
means that the models are vulnerable to biased datasets,
and supports our initial hypothesis. In addition, only some
layers in Pairwise-GAN are particularly vulnerable to
biased datasets.

• Modifying the generator architecture of Pairwise-GAN
by cutting off the skip connection, leads to the model
behaving in a less biased fashion. As a result, one biased
behavior (failure in generation) can be largely eliminated.
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II. RELATED WORK

A. Biases and Prejudice in Deep Learning

An increasing attention to the bias and prejudice is emerging
in deep learning [1], [7]–[9]. Specifically, significant research
outcomes have been achieved in study of bias in language
translation [2], [12] and face recognition [13]–[16]. The biases
in deep learning indicate the decision made by algorithms has
different tendencies in each group or individual. They easily
occur at any stage of a deep learning life-cycle, including
data collection, model development, and entire system de-
ployment [1], [7], [8]. Historical bias is the already existing
unfairness in the data even if sampling with a perfect selection.
This type of prejudice resulting from either social or natural
factors [7], [8]. Representation bias occurs from sampling
data from different populations, which can lead to a severe
unfairness of domain-adoption algorithms. It is challenging to
achieve high diversity in a database. ImageNet as the largest
current dataset still lacks geographical diversity where the
majority of images are from North America and Western
Europe [1], [17]. Measurement bias describes the additional
prejudice in the collected data when choosing the feature or
labels through subjective ideas [7]. Historical bias occurs
when the same model is trained, deployed, or pre-trained
across different groups of samples. The biases from each group
will be aggregated [7]. Evaluation bias is caused by unfair
evaluation data and biased evaluation algorithms [7]. As a
result, a biased model will be published. Deployment bias
refers to the situation where the model is applied into different
scenarios from its original design and intention [7].

In terms of domain perspectives, one area of machine
learning has received particular attention from the research
community [1]. The percentage of bias study in classification
is higher than any other domain. In representation learning,
fairness research is still limited, especially in group fairness.
Moreover, another challenge in fairness research is equality
and equity [1]. Addressing equality was well developed, in
which it requires each group to receive the same amount of
resources and attention. On the other hand, little research has
been achieved in equity, which requires each group to succeed
by given appropriate resources. For instance, researchers were
conscious of gender classification biases but still paid little
attention to eliminating unfairness. This is one of our key
motivations in this research, to fill this equity gap.

B. Face Frontalization

Face frontalization synthesizes the front face from input
of either a left or right side-pose face. In practice, several
works showed that frontal synthesis significantly improves
the stability of face recognition on side-pose images [10],
[11]. At early stages in face frontalization, researchers tried
to use a variational auto-encoder (VAE) to generate frontal
face and improve its performance in this task [18]–[21].
With the publication of TP-GAN (Two Pathways Generative
Adversarial Networks) and CR-GAN (Complete Representa-
tions Generative Adversarial Networks), the research on face

frontalization shifted into conditional-GANs [10], [22]. Since
the high achievement in image translation by Pix2Pix (Pixel
to Pixel Generative Adversarial Networks) and CycleGAN
(Cycle-Consistent Adversarial Networks) [4], [5], recent pub-
lications in face frontalization were based on these two frame-
works [3], [6], [11], [28]. The current state-of-the-art model in
face frontaliztaion using the Color FRET database is Pairwise-
GAN (Pairwise Generative Adversarial Networks), constructed
by pair generators and a PatchGAN as the discriminator [3].
Compared to other models, the authors proposed to split two
domains (left pose and right pose) to synthesize faces. The
generator of Pairwise-GAN was also developed from Pix2Pix
by utilizing two U-Nets. Gleft is only responsible for the
left domain images, while Gright takes charge for the other
domain.

C. Semantic Latent Space

The latent space in GAN is the random noise sampled by
the generator, which is popular in exploring semantic latent
space [23]–[25]. In addition, several papers were published
on latent space in style transformation based on CycleGAN
architecture [5], [26], [27]. With the in-depth analysis of
latent space, one major branch of domain mappings was
developed into a combination of content transfer and style
transfer [26]. Compared to the one-step transfer in CycleGAN,
there are two steps in the novel solution. Mapping two different
domains into a shared semantic latent space are the prior stage,
followed by the style transfer from intermediate content space
into the target domain. A similar idea was also proposed
by [27] recently, which discovered that the semantic latent
space has time-varying factors and permanent factors during
the style transformation on time-specific problems. In [25], the
authors present work on GAN dissection from intervention and
dissection stages, which can independently control the object
in generated images through intervention in the latent space.

III. METHODOLOGY

A. Dataset

We chose color FERET as our primary dataset, involving
11,338 facial images from 994 individuals. There are at least
5 different angles for each individual recorded in one time
session provided in the database. Before the experiments, we
analyzed the historical bias and representation bias [7]. The
historical bias in this database cannot be accurately identified
since the background of FERET as described on its official
website is limited. However, some existing social issues in
the dataset are inevitable as addressing such issues are not
mentioned as being considered in its construction. In terms
of representation bias, the object group in the Color FERET
database is ”ordinary people”. Among 994 individuals, there
are 594 males and 402 females, thus the ratio between males
and females is around 6 : 4. Although all images were captured
in the United States, the Color FERET database still has a high
diversity regarding human skin colors. With these properties,
the representation bias is significantly reduced.



TABLE I
DETAIL INFORMATION OF TRAINING-SETS AND TEST-SET

Name Male Amounts Female Amounts Ratio
Train set 100 1454 0 10 : 0
Train set 91 1454 162 9 : 1
Train set 82 1454 364 8 : 2
Train set 73 1454 624 7 : 3
Train set 64 1320 880 6 : 4
Train set 55 880 880 5 : 5

Test set 47 47 1 : 1

In [3], we published the first version of pre-processing
FERET data through MTCNN, which they did not achieve
ideal states as MTCNN frequently fails in detecting side-pose
faces. We selected Face++ (a commercial face analysis API)
to crop and resize images. Furthermore, only left and right
images around 67.5 degrees were filtered out so as to minimize
the noise caused by face angles. After the data pre-processing,
there are 4,982 images in total, being 2,491 pairs (one front,
one side pose). To reduce the distribution collision between
training-set and test-set, we selected one time session among
14 session to become the test-set, where the chosen session has
the largest style difference compared to the others. Therefore,
the test-set has 314 images (157 pairs), accounting for 6.3%
of the total data samples.

Gender bias exploration is the main target for this project.
Six training-sets with different percentages of male and female
images were constructed. The exact numbers of images are
shown in Table I. Note that the female images in the dataset
are not abundant, so we reduced the amounts of male images
into 47.

B. Explore Gender Biases in Face Frontalization

Since little research has been completed in generation
models from the group perspective [1] and the gender bias
is an important characteristic of human groups, we began our
experiment by analyzing the gender bias in face frontalization
models.

Model Architecture: Pix2Pix and Pairwise-GAN were
selected for our experiments, where the first is the baseline
model in facial synthesis and the latter one is the current
state-of-art model on the Color FERET database [3], [4]. The
visualizations of forward passing in Pix2Pix and Pairwise-
GAN are shown in Fig 1 and Fig 2. The generator (G) in
Pix2Pix is designed to map both left and right domains (X)
into the frontal domain (Y ), while there are two generators
(Gleft, Gright) in Pairwise-GAN responsible for the left or
the right domains (Xleft, Xright), respectively. Both of these
models utilize Patch-based discriminators (D) [4]. The loss
functions of Pix2Pix (Lpix2pix) were set as adversarial loss
and mean absolute loss, with suggested ratio λAdv : λL1 = 2 :
0.5. Regarding Pairwise-GAN (LPairwise−GAN ), we follow
the experimental results in [3] to use adversarial loss λAdv

′,
mean absolute loss λL1

′, identity loss λId, and pair loss λpair,
with a ratio of 10 : 3 : decay : decay, where the decay weight
of identity and pair Loss were [10, 5] and [10, 2].

LGAN (G,D,X, Y ) =Ex,y[logD(x, y)]

+Ex[1− logD(x,G(x))]
(1)

Lpix2pix(G,D) =λAdvLGAN (G,D,X, Y )

+λL1Ex,y[‖y −G(x)‖1]
(2)

LGAN
′(G,D,X, Y ) =λAdv

′LGAN (G,D,X, Y )

+λL1
′Ex,y[‖y −G(x)‖1]

+λIdEy[‖y −G(y)‖1]
(3)

LPairwise−GAN (Gleft, Gright, Dleft, Dright, Xleft, Xright, Y )

= LGAN
′(Gleft, Dleft, Xleft, Y )

+ LGAN
′(Gright, Dright, Xright, Y )

+ λpairExleft,xright
[‖Gleft(xleft)−Gright(xright)‖1]

(4)
Experimental Setup: Based on the two selected models

and training-sets, we conducted the first experiments. First, the
Pix2Pix and Pairwise-GAN were trained using 6 training-sets
with different ratios of male and female images to get 12 pre-
trained models. Then, they were all evaluated with the same
predefined test-set to evaluate the bias. Moreover, to make the
final results more robust, we also tried another different weight
initialization method for Pairwise-GAN, producing another
6 pre-trained models. Other hyper-parameters of these two
models were left as default. All generators and discriminators
were optimized with Adam; the learning rate was 0.0002;
exponential decay was enabled and set as 0.5. The training
epoch for Pix2Pix and Pairwise-GAN were adjusted to 125
and 250, respectively, to guarantee the same amounts of data
were used to train each generator.

Fig. 1. Pix2Pix Framework

Fig. 2. Pairwise-GAN Framework



Fig. 3. Left subplot: distribution of side-Pose images (blue points) and
front face images (orange points). Right subplot: distribution of left-side pose
(brown points) and right-side pose (light blue points). The cluster centres
of left-side images and right-side images are symmetric: (0,−25, 000) and
(0,+25, 000).

C. Explore Latent Space on Different Predictions

In the first experiment, the test-set for trained models is
located at a similar distribution to the training-set, in which the
purpose was to explore the bias from normal semantic latent
space. In the second experiment, the test-set to was expanded
into a more broad latent space.

At the initial stage, we analyzed the mechanism of style
transformation models from an intuitive viewpoint. In the left
subplot of Fig. 3, the distribution of each front face and
side-pose face was plotted through top-2 PCA components.
From the left subplot, side-pose images are aggregated on the
edge of a sector, while the front faces are evenly scattered
in the middle and present a diamond shape. Specifically, the
distribution of two different side poses are aggregated into
two clusters, where few of them are overlapped, as shown in
the right subplot. Intuitively, the insightful view of domain
mapping is to find the transformation function that is able
to map the distribution of one domain into another one. For
instance, face frontalization models are trained to map the blue
points into orange points correctly. Therefore, it is meaningful
to test different distribution data (latent space) for the pre-
trained models to analyze the bias further. This experiment
can validate whether biases can be transferred from data into
trained GANs.

Experimental Setup: Since we only modified the test-set
for this experiment, 18 pre-trained models from the first ex-
periment were selected to be tested. One test-set was sampled
from random integer values in a normal distribution whose
range is from 0 − 255. Another test-set was sampled from
grey-scale values, because our intent was to analyze whether
different biased models were sensitive to different grey values.
The images of the test-sets and their distribution are visualized
in Fig. 4 and Fig. 5. Note that each evaluation sample for each
pre-trained model will be tested more than 10 times to obtain
robust results.

D. Exploring the biased layer(s)

After the previous experiments on bias exploration, we
found that both Pix2Pix and Pairwise-GAN were vulnerable to
the dataset bias. In the third experiment, we further analyzed
the bias deeply to identify which layers were sensitive to the

Fig. 4. The pixel values in the upper row are in normal distributions. The
bottom row displays nine gray-scale images where the step of nearby value
is 32.

Fig. 5. Through PCA transformation, the positions of nine gray-scale images
are located close to a linear line. The coordinates of gray-scale value from
0 to 255 are: (37145,−8729), (29856,−7202), (22566,−5674),
(7988,−2619), (698,−1091), (−6590, 435), (−13880, 1963),
(−20942, 3442). The positions of five random-value images are overlapped
into a point with location around (8199,−2741).

biased data. The purpose of this experiment was to provides a
guideline on improving the stability of models to resist biased
datasets.

We investigated the variance of the latent space (L.S.) to
inspect the biases in layers, since it can be used to evaluate
the spread range of a variable. The formula to calculate the
variance of jth layer from ith model is listed below. From the
distribution map, as shown in Fig. 3, the side-pose domain
is more sparsely distributed, compared to the frontal domain.
Therefore, a hypothesis was posed that the variance should be
decreasing overall. Furthermore, the encoder should aggregate
the diversity of vector values since it aims to converge the
data. Recovering different sample features is the objective of
decoders, in which the variance should be increasing.

V ar(Lj ,Mi) = E[(Lj(L.S.j−1)− E[Lj(L.S.j−1)])
2]

where L.S.0 = input, L.S.1 = L1(L.S.0)
(5)

Experimental Setup: We selected Pairwise-GAN in this
experiment as it had a better performance compared to the
Pix2Pix [3]. The hyper-parameters of Pairwise-GAN remained
unchanged from the previous experiments. We enhanced the
training process, adding calculation of the variance on each
latent semantic vector. The entire mechanism is shown in flow
chart 6. We used the test-set in experiment III-B to examine
the latent vector during training and prediction.

IV. RESULTS AND DISCUSSION

A. Evaluation Methods

Unfair evaluation leads to misrepresentative conclusions [7];
thus, choosing evaluation methods is a vital step. To observe



Fig. 6. Top subplots describe the overall work-flow during training and
prediction. The bottom subplot describes how to calculate the layer variance.

the biased behaviors of face frontalization models, we defined
two measurements. The first measure is to check whether
the generative model can recover a facial image with facial
features (Face Recovery Rate). The second criterion is to
classify whether the gender of generated images matches
the gender of the ground-truth image (Gender Match Rate).
In the first two experiments, there were respectively 3, 768
and 20, 160 predicted images to be examined for gender.
Therefore, gender classification algorithms were examined
and analyzed: ”PY-agender” and ”Face ++ API”. Among 1000
front faces, the first failed to detect 31 cases, while ”Face ++”
achieved a 0 failure rate. Furthermore, in the false positive
rates, Face ++ behaved more accurately than PY-agender.
Thus, we selected Face ++ as the measurement tool. However,
we note that in common gender classification algorithms, the
accuracy of prediction results is unbalanced between different
genders; in particular, female images can easily be classified
into the male gender. This we consider as a limitation in our
evaluation work, and illustrates the difficulties in achieving
unbiased results.

B. Gender Bias in Face Frontalization Analysis

The first stage of the overall experiment was to explore the
gender biases in two face frontalization models. In summary,
Pix2Pix and Pairwise-GAN were trained on six different
training-sets with different initialization strategies, producing
18 pre-trained models. The result of our first stage experiments
are shown in Fig. 7 and Fig. 8.

In Fig. 7, the x-direction from left to right represents the
descending percentage of female images in training-sets; the
y-direction indicates the face recovery rate. With the ascending
proportion of male images in training-sets, recovery rates of
male side-pose images fluctuates around 99.6%. However,
the recovery rates of female side-pose images trends in a
decrease; primarily, when zero female images are involved in
the training-set, around 4% of female side-pose images cannot

Fig. 7. Face Recovery Rate of Different Pre-trained Models

be used to generate a face image. From the face recovery
perspective, our models show a huge difference in biased
behaviors only when the percentage of female images is lower
than 20% in training-sets.

Fig. 8. Gender Match Rate of Different Pre-trained Models

The situation changes when analyzing the gender match
rate. In Fig. 8, the x-direction represents the descending
percentage of female images in training-sets; the y-direction
indicates the gender match rate. With an increasing percentage
of male images in training-sets, the gender match rate of a
generated frontal image from a male side-pose image fluctu-
ates around 94%. On the other hand, the gender match rate
from female side-pose images drops heavily down with the
descending number of female images in training-sets. To be
specific, if the model is trained on all-male images, only 8.9%
of generated female images are correct in gender. In other
words, if the pre-trained model receives a female side-pose im-
age, there is 91% probability that the predicted frontal image is
male. We also observe that the matching rate of female images
is 20% lower than male images even when models are trained
on an equivalent proportion of males and females in a dataset.
This is most likely caused by the incorrect gender-classified
results from the classification algorithm. In summary, face
frontalization models are vulnerable to extremely biased data.
In particular, the most severe behavior of a biased model is to
recover an incorrect gender face from a side-pose image.

C. Explore semantic latent space on different prediction data

Based on the first experiment, we explored the latent space
more by including 5 random noise from Gaussian distributions
and 9 gray-scale images from black to white in the test-set
(Fig. 4). Analysis strategies followed the previous experiment,
which is to investigate two criteria.



From the face generation perspective, one series of recov-
ered images is displayed in Fig 9. If the input image is random
noise, all no pre-trained models can generate close to human
face images, and only the contour of faces can be identified. If
the input images are gray-scale images, the model can generate
a facial image with a high probability. Compared to light gray-
scale images, it is easier for models to generate face images
from dark images. In Fig. 9, we can observe that in test images
with RGB value from 0 to 128, the predicted images are close
to one person. If the RGB value is large than 128, the predicted
results are close to another person. With ascending value in
test images, generated images become lighter as well.

Fig. 9. One Prediction Result on Test-set 4.

The second goal is to measure the gender of generated
images among different pre-trained models, whose results are
shown in table II and table. III. Since the random noise cannot
be recovered as human faces, they are removed from following
analysis. Note that the outputs of left generator and right
generator in Pairwise-GAN may exist minor difference, which
leads to mixed results of gender classification. We classified
these models in the last row of two tables. Table II describes
the prediction on 9 gray-scale types from models trained on
different train-sets. If the pre-trained models are trained on
an equivalent number of female images and male images, a
high proportion of prediction results are classified as female.
With the ascending percentage of male images in training-
sets, the probability of generating a male image is higher than
generating a female image. This indicates the same conclusion
as the first experiment, in which biases in training-sets are
transferred into pre-trained models. Besides, we can also infer
that unbiased train-set and extremely biased train-set result
stable prediction from two generators of Pairwise-GAN. The
second table. III summarizes the predicted results of pre-
trained models on 9 gray-scale test-set. For instance, when the
test image is black (RGB = 0), predicted frontal faces from 5
pre-trained models appear both gender among 52 test samples,
where some are classified as male and others are classified as
female. Images with lower RGB values (dark images) have
a slightly higher probability of being generated as a female
frontal face. In addition, around 90% of pre-trained models
recover a male image from an image with high RGB values.

The previous finding summarises that all pre-trained models
are sensitive to the RGB value of input images. Therefore, we
also evaluated the RGB values in training-sets. The average
RGB values of entire images and facial parts are calculated,
which the second measurement is able to indicate the skin
color of test images. The average RGB values of male images
and female images in training-sets are 117.4 and 105.4.

TABLE II
INFLUENCE OF TRAINING-SET TO BIAS OF PRE-TRAINED MODELS

Male in train-set (%) 50 60 70 80 90 100
Female in train-set (%) 50 40 30 20 10 0
# of pre-trained models 3 3 3 3 3 3

# of test-set types 9 9 9 9 9 9
Output male 5 14 15 15 27 27

Output female 21 4 8 4 0 0
Mixed cases 1 9 4 8 0 0

TABLE III
INFLUENCE OF TEST-SET TO BIAS OF PRE-TRAINED MODELS

Test-set type 0 32 64 96 128 160 192 224 255
# of models 18 18 18 18 18 18 18 18 18

Output male 6 7 6 6 16 15 15 15 13
Output female 7 7 7 7 1 2 2 2 2
Mixed cases 5 4 5 5 1 0 0 0 2

Moreover, when just the faces are cropped from the images,
the average RGB values of male faces and female faces in
training-sets are 92.3 and 94.5. This indicates that the RGB
values of entire images are more important for these models
than the facial part. In addition, this suggests that models in
face frontalization are vulnerable to the skin and hair color of
training-sets as well.

D. Results on the biased layer study

In the third stage, we evaluate which layers are vulnerable
to biased data by calculating the variance of each layer.
The results are shown in Fig. 10. The x-direction represents
different layers of Pairwise-GAN from right to left, consisting
of one input layer, seven decoder layers, one middle layer, and
seven encoder layers. The variance of the last layer is also the
variance of the output layer. The y-direction indicates variance
values. The six lines in plot reflect the variance changes of the
six pre-trained models.

The variance value decreases from 0.012 to 0 from the input
layer to the middle layer. The value increased to around 0.0005
in the encoder. More importantly, there are five points in the
diagram where six pre-trained models have a large substantial
difference: decoder layer 2, decoder layer 6, encoder layer 3,
encoder layer 5, and encoder layer 6. In particular, the fifth
encoder layer and sixth encoder layer directly lead to the biases
to the output. More specifically, biased models behave with
very high variance in the sixth encoder. This indicates that
as deconvolution operations in this layer map the vector from
the last layer into a broader space, this contains more noise.
Furthermore, we can also conclude that only some layers in
Pairwise-GAN are significantly vulnerable to biased data.

Based on the clear results above, we conducted the fourth
experiment, to attempt to make the model more stable to
the biased data by modifying the generator’s architecture in
Pairwise-GAN. In the original generator, there exist connec-
tions between the shallow layers of the decoder and deep
layers of the encoder. In detail, both regular features and biased
noise can pass through the skip-connection, which cause an



Fig. 10. Variance Changes in Each Layer of Pairwise-GAN

TABLE IV
FACE RECOVERY RATE AND GENDER MATCH RATE

Male in train-set(%) 50 60 70 80 90 100
Female in train-set(%) 50 40 30 20 10 0

Face male 0.99 1 1 1 1 1
Recovery Rate female 1 1 1 1 1 1

Gender male 0.96 0.90 0.94 0.96 0.99 1
Match Rate female 0.74 0.84 0.79 0.63 0.30 0.02

agglomeration effect. For instance, biases in the sixth encoder
can be tracked to come from the encoder layer 5 and decoder
layer 5. Furthermore, the variance differences between middle
layers is lower compared to other layers. It is better for the
encoder to receive inputs from low-feature layers rather than
encoder layers.

In the next step, evaluations of the modified model were
analyzed by following the template in the first experiment.
The results are shown in Table IV. Compared to the previous
model, the modified model can predict a face image from a
female side-pose image even trained on a dataset with all-male
images. However, there is only a relatively small improvement
in the gender match rate. If the pre-trained model receives
a female side-pose image, there is a 97.7% probability that
the predicted frontal image is a male image. In summary, the
modified model has reduced vulnerability in the recovery rate
and gender match rate. The model trained on an extremely
biased dataset still can generate a human face; however, we
had not yet found a method for models to resist all bias.

E. Results on the biased filter study

We designed a filter analysis algorithm to investigate the fil-
ters on 6 pre-trained Pairwise-GANs from experiment B & D,
where they were trained on the different ratios of male and
female images. From the fig.11, filters from model trained on
unbiased dataset are symmetrically distributed on both sides
of 0 PCA value with few outliers. Thus, we treated the
range of filters in unbiased model as the reference standard
to detect outliers. Compared to filters in the unbiased pre-
trained model, filters from other pre-trained models tend to
have narrow distribution and more outliers. Besides, filters
from high-variance layers have more outliters, such as decoder
layer 5 and encoder layer 6 (Fig. 11). In the meantime, we also

found that PCA distribution of filters from extremely biased
models were close to filters trained on unbiased models.

Fig. 11. Scatter Filters in Encoder− 6. A Circle point refers to a filter that
is normal; a crossing point refers to a filter is outliers.

Algorithm 1 Filter Analysis
1: Input:
M : load six pre-trained Pairwise-GAN

2: repeat
3: initialize placeholder layer lj
4: initialize placeholder data
5: for model mi ∈ M do
6: Load lj in mi, get filter fj from lj
7: where fj : [height, width, in cha, out cha]
8: Average pooling on in cha dimension
9: Flattens fj with shape [height× width, out cha]

10: Append fj in data
11: end for
12: get data : [height× width, out chai × 6]
13: perform PCA on data get [1, out chai × 6]
14: Scatter data: x-dir: 6 model in lj ; y-dir: PCA value in

top direction; point: top PCA feature of each filter
15: until all layers in encoder and decoder have been iterated

V. CONCLUSION

Inspired by the study on biases in the Google translate
system and PULSE (facial synthesis), we explore biases of
facial synthesis. There is very limited research literature on
generation models with respect to group biases. We conducted
experiments on exploring gender bias in the face frontalization
task. More specifically, we selected for investigation two
representative models: Pix2Pix and Pairwise-GAN. At the
beginning stage, we explored the biased behaviors for these
models from the gender perspective. To further explore the
model behaviors, more latent space in test-sets was evaluated.
Based on these findings, we investigated the cause of model
vulnerability to biased data by studying the latent space and
kernel of the generator, and proposed suggestions that can
strengthen the model’s resistance to biased data.

In the first two experiments, we conclude that both Pix2Pix
and Pairwise-GAN are ”fair” algorithms in gender bias, but



they are vulnerable to biased training data. This is com-
mensurate with GAN theory, as the distribution transaction
functions are learnt during the training process. If the training-
set contains biases, the transaction function will introduce the
biases to the pre-trained models. Furthermore, we found that
biased pre-trained models always predict biased results even if
the test-set is a different distribution from the training-set. This
finding is similar to human beings; biased viewpoints tend to
let people fall into a biased habits.

In conclusion to the second stage of experiments, our pur-
pose was to find the reason for the biases. Through calculating
the variance in latent space, we concluded that some layers of
Pairwise-GAN are particularly vulnerable to biased training
data. We deduced that skip-connection in the generator can
transmit the layer biases from the decoder into the encoder,
therefore, we proposed a modified generator of Pairwise-GAN
by cutting off three skip-connections. The model behaves in
a more stable fashion where one biased behavior (failure in
generation) is eliminated, and the other (gender balance) is
improved.

In further, other facial datasets will involve in validating our
findings. We also plan to extend the conclusions from Pix2Pix
and Pairwise-GAN to other conditional-GANs, proposing a
general conclusion. Furthermore, we still have confidence in
minimizing known bias under a limited size dataset.
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