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Abstract—A Convolutional neural network (CNN) has emerged
as a widely used approach to computer vision tasks, including
object classification and detection tasks. The high requirement for
the model to be more computationally efficient on lower informa-
tion and communication technology (ICT) resource, e.g., mobile
terminals can benefit from model distillation. However, most
existing distillation methods suffer from a significant accuracy
reduction, which requires a large number of pre-training models
or doesn’t make good use of the more of the network information,
e.g., in the middle layers, during the distillation. In this paper,
we study how knowledge about traffic signs recognition could
be transferred to smaller models by distillation while cutting
channels. We present an optimized object detection network,
which uses a Region Proposal Network (RPN) weighted loss
and hard-soft distribution-wise distillation loss for structural
differences between teacher and student networks. We validate
the network on multiple real-world datasets, the experiments
demonstrate that the classification accuracy can be improved by
9% with about 16 times parameter reduction while the detection
network performance could be increased by 10.6% using an
optimized object detection network.

Index Terms—object detection, knowledge distillation, teacher
network, student network, pruning

I. INTRODUCTION

Classification and object detection tasks are fundamental in

the computer vision research area, one particularly promising

research direction is model compression for these tasks is the

problem of reducing the model size to show better or similar

evaluation results with fewer parameter amounts compared to

the original models, which could reduce models’ storage and

calculation pressure and is more easily to deploy.

Recent advances in computer vision have largely been

driven by deep neural networks (DNN) [1] to improve the

accuracy of object detection [2]and image classification task

[3] has been improved greatly by using DNN, which could

replace the use of traditional hand-crafted feature selection

methods [4].

This work is done during Meng Xu’s internship at Didi Chuxing.

TABLE I
COMMON CLASSIC CONVOLUTIONAL NEURAL NETWORK MODELS

Model name Model

size(MB)

Calculations

(million)

No. of parame-

ters(million)

AlexNet [5] >200 720 60

VGG16 [6] >500 15300 138

GoogleNet [7] 50 1550 6.8

Inception-v3 [8] 90-100 5000 23.2

Traffic sign recognition is an important part of road trans-

port applications to increase the safety of semi-autonomous

and autonomous vehicle travel, yet they are not so easy to

visually recognize and can consume a huge memory during

computation and storage. Along with the requirement of high

performance for object detection and classification tasks, low

latency and fast processing speed are needed for further appli-

cations, such as mobile apps and autonomous cars. Although

introducing more layers and more parameters often improves

the accuracy of a model, the use of large-scale data and more

complex DNN layered models increases the computation cost

and memory use, which makes big models computationally

too expensive to be deployed on lower resource devices such

as mobile devices and embedded devices. In addition, the

transportation and calculation speed of models are affected

due to redundant parameters. In fact, some parameters have

little influence in the calculation process, but may cause

problems such as gradient dispersion, overfitting, and accuracy

degradation. Table I. summarizes the model size, calculation

amount, and number of parameters used with some classic

DNN models.

With large CNN, models could obtain effective information,

which is important for smart traffic and is the basis for high-

level tasks. However, the task of recognizing traffic signs to

obtain current road conditions in autonomous driving mode
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has high real-time requirements, which needs small size mod-

els for computation and storage in mobile devices, such as

phones and embedded devices. Compressing models could use

fewer parameters and yet achieve a high accuracy in CNNs,

which can effectively deploy models in low ICT [9] resource

devices.

Model compression techniques have emerged to address

such issues, e.g., parameter pruning and sharing, low-rank

factorization [10] and knowledge distillation [11]. Knowl-

edge distillation is an effective technique to teach a small

network (student) using a larger neural network (teacher).

The small network is trained to mimic the large network’s

behaviour by adding supervision functions. However, most

existing compression methods suffer from a significant accu-

racy reduction, which requires a large number of pre-training

models or do not make good use of the loss in the middle

network supervision. So, we propose an optimized object

detection network, which uses RPN weighted loss and hard-

soft distribution-wise distillation loss for structural differences

between teacher and student network. We validate the network

on multiple real datasets, which shows the proposed method

could overpass the original methods in some performances.

The experiments systematically compared how different dis-

tillation parameters and strategy applications could affect the

distillation performance. Parts of the core code could be found

in https://github.com/MengXu-u/Knowledge-Distillation.

In the paper, we make the following contributions:

• We critically review common methods for model com-

pression, and make a detailed classification with characteristic

analysis, and to find the inherent connection between them to

apply pruning as a part of the distillation method;

• We propose a novel framework combining distillation

and cutting channels, which uses a RPN weighted and hard-

soft distribution-wise distillation loss that measures structural

differences in teacher-student networks knowledge. As the

classification network is a part of object detection network,

thus we value the performance of VGG16 network on a simple

CIFAR-10 dataset and then value the object detection task

on the DIDI-TT dataset on the basis of classification task in

Faster-RCNN network [12];

• We show experimentally that our approach provides signif-

icant improvements across a variety of experiments and deep

network architectures (see section IV), and the improvement

rates surpass several popular distillation methods.

II. RELATED WORK

There are three currently used model compression methods.

The first one is to change the network’s architecture for model

compression, such as changing the network layers’ number,

etc.; the second method is to change the network’s weights

by quantization method to use low-bit data to compress the

model, or express the high-level features with its low-rank

features through matrix decomposition; the third method is to

merge forward operations to compress the model by merging

the Batch Norm layer with previous convolutional layer or

fully connected layer to reduce the amount of calculation. In

this paper, we focus on the first methods, that is, modifying

networks to reduce the model size to reduce the amount of

model calculation and model size.

Larger and more complex networks usually have a better

performance, but redundant information leads to a large com-

putation calculation and storage operations. The distillation

method is to use a large network with a good performance to

teach the a small network.

Knowledge distillation was originally proposed by Bucila,

Caruana, and Niculescu-Mizil [13], and the main inspiration

for this paper is from knowledge distillation [14] by Hinton,

Vinyals, and Dean, which compresses the knowledge of a large

and computational expensive model to a single computational

efficient neural network. Distillation has quickly gained pop-

ularity among deep learning and has a variety of applications,

e.g., transferring from one architecture to another network,

Romero et al.(2014) [15] proposed to transfer knowledge

by supervising the difference between teacher and student’s

intermediate layers.

Knowledge distillation is one approach that transfers knowl-

edge from the teacher model to the student model. FitNet [15]

makes the student mimic the full feature maps of the teacher.

Czarnecki et al. (2017) [16] minimized the teacher and student

derivatives loss and the predictions from teacher model while

Tarvainen and Valpola (2017) [17] choose averaging model

weights to train the network instead of using predictions from

the teacher network. Furlanello et al. [18] and Bagherinezhad

et al. [19] demonstrated that by training the student using soft-

max outputs of the teacher as ground truth over generations.

Yim et al. [20] transfers the output activations using Gramian

matrices and then fine-tunes the student network.

However, most previous methods only supervise the final

part of the teacher and student network. They did not make

good use of the network middle part. In this paper, we propose

a novel framework combining distillation and cutting channels.

We also give an algorithm which uses a RPN weighted and

hard-soft distribution-wise distillation loss function to measure

structural differences in teacher-student networks knowledge.

III. METHOD

The purpose of this research is to optimise road traffic sign

compression via knowledge distillation on classification and

object detection neural networks. The framework of the model

is depicted in Fig.1. The classification network is a part of the

object detection network, thus we evaluate the performance

on a VGG16 network on a light and simple CIFAR-10 dataset

and then evaluate the object detection task on the DIDI-TT

dataset on the basis of the classification task.

Our work differs from existing approaches in that we first

study how to improve the student performance given fixed

student and teacher network sizes. Second, by combining sev-

eral methods, such as cutting channels and layers, modifying

RPN network structure, propose teacher-student structural dif-

ferences etc., and introduces small images samples distillation

method in traffic scenarios to improve distillation performance.

Our method is based in part of the distillation idea of [21] [14].
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Fig. 1. The framework of the distillation model.

A. Distillation Applied to the VGG16 Classification Network

Distillation methods could be applied to classification net-

works. This paper designs a simple supervision method, using

hard labels and soft labels in the VGG16 network to train the

network. The probability value output from the softmax layer

of the network trained by the full teacher network (VGG16)

is used as the hard label. The probability value output of the

softmax layer of the network of the student network training

station is used as a soft label after the label distribution is

softened in (1). Compared with other logits to convert the

logit and zi of each class to probability qi, where T is the

temperature (and used to soften the model’s label distribution)

that is normally set to 1. By designing a loss function to

supervise the distribution of hard and soft tags, a student

network (small network) can be obtained under the supervision

of a teaching network. The training framework is shown in

Fig.2.

The softening function obtains a soft label by describing

any similar structure between classes that need to be labelled.

For example, which of the wrong categories is the recognized

object more like? The neural network generates a class prob-

ability through the output layer of softmax.

qi =
exp(

zj
T
)∑

j exp(
zj
T
)
. (1)

Classification Distillation Network

Student Model: VGG-8

Teacher Model: VGG-16

Conv 1

Pooing

Conv 2

Pooing

Conv 5

Pooing

Dense

Dense

Dense

Dense

Dense

Dense

Conv 1-2

Pooing

Conv 1-1

Conv 2-2

Pooing

Conv 2-1

Conv 3-2

Pooing

Conv 3-1

Conv 3-3

Conv 4-2

Pooing

Conv 4-1

Conv 4-3

Conv 5-2

Pooing

Conv 5-1

Conv 5-3

Conv 2

Pooing

Conv 5

Pooing
Softmax (T=t)
Soft Label

Ground Truth
Hard Label

Category
Accuracy

Fig. 2. The architecture of the classification distillation network.

From (1), we see that the larger the T , the softer the soft

label distribution is. In the experiment, we tried a variety of

T values. In the end, we calculated the sigmoid cross entry

to supervise the loss with hard label and soft label. Equation

(2) gives the loss function, where yc represents the variant

0 or 1, yc assigns 1 when the label of the calculation and

sample is consistent, otherwise it assigns 0. pc is the prediction

probability that the sample is classified to label c.

L = −
M∑

c=1

yclog(pc). (2)

B. Distillation Applied to the Faster-RCNN Detection Network

The training process of our proposed distillation algorithm

based on a detection network is implemented based on a

Faster-RCNN detection algorithm. Faster-RCNN consists of

three modules: 1) shared feature extraction through convolu-

tional layers; 2) a target proposal generation Region Proposal

Network (RPN); 3) a Classification and Regression Network

(RCN), which returns detection scores and suggested spatial

adjustment vectors for each object. Both RCN and RPN use

the output of 1) as a feature, and RCN also takes the result of

RPN as an input. To achieve highly accurate object detection

results, it is critical to learn powerful models for all three

components.

Unlike the previous methods [15] [16] that supervise the

teacher and student network in the final part of the network

only, the distillation method we proposed uses supervision in

the middle of the network (in addition to at the end of the net-

work), the training framework is shown in Fig.3. The teacher

model of the large network (Faster-RCNN) is initialized by the

weighted pre-trained model of the trained detection network.

The small network is randomly initialized. When a complete

picture is transmitted to the network, it passes through CNNs

for teacher and student models to produce two different feature

maps. After the feature map is sent to the region of interest

(ROI) pooling layer through generating the suggestion box

by the RPN, it will generate losses under the supervision

of the ground truth label, thereby showing classification and

regression results.

The algorithm proposed in this paper is to monitor the

smooth L1 loss after the feature map is generated by the
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Algorithm 1 Compute the mimic loss to define the loss layer.

Require: self , bottom, top and propagate down
Ensure: len(bottom) == 2; Cbot1 == Cbot2;

1: Cbot1 ← count of the first bottom

2: Cbot2 ← count of the second bottom

3: diff ← bottom[0]− bottom[1]
4: top[0] ←

∑n

N=1
diff2

i /200/Cbot1

5: for i in range (2) do

6: if propagate downi is False then

7: continue

8: end if

9: if i equals 0 then

10: sign← 1
11: else if i not then

12: sign← 0
13: end if

14: bottom[i]diff ← sign ∗ diff ∗ top[i]diff/Cbot1

15: end for

CNN for large and small networks and then to calculate the

difference L2 [12] loss in the calculation results generated by

the ROI pooling layer. Algorithm 1 defines the loss function

using pseudocode.

The smoothed L1 loss function is smoother and more robust

than the basic L1 loss function. It can converge faster and

reduce the probability of gradient explosions. The feature

maps calculated by the teacher network and the student

CNNs, respectively, are calculated using the smoothed L1

loss function. The average value is calculated. The supervised

loss can make the small network more approximate to the

structure of the large network in the convolution calculation,

thereby transferring the model learning of a large network to

a smaller network. The L2 norm loss function is stable, the

calculation formula is shown in (3). Among them, yi represents

the network after the small network passes through the ROI

layer, and f(xi) is the network after the large network passes

through the ROI layer function.

S =
n∑

i=1

|Yi − f(xi)|. (3)

By reducing the two weighted losses, the small network is

trained. We first calculate the loss of teachers and students

networks separately, and then combine the two losses into

one loss for optimization, and end-to-end update can obtain

better accuracy. In the process, the intermediate results of the

teacher network are learned step by step, and finally the target

detection results are output through the fully connected layer.

In subsequent experiments, we can obtain better distillation

model parameters by adjusting the ratio of the two losses.

IV. EXPERIMENTS

In this section, we use three real datasets to conduct the

experiments and perform the distillation on the classification

network and detection network separately to verify the effec-

tiveness of distillation on different kind of networks. All the

TABLE II
TRAFFIC SIGN DATASET ILLUSTRATION

Type Name Sample

No u-turn p5

No motor vehicles p10

No right turn p19

No left turn p23

No parking pn

No entry pne

TABLE III
A SUMMARY OF DIDI-TT DATASET ATTRIBUTES

Attribute Description

Light Record different lighting scenes

Record method Hang the signs in a row, record 6 signs at a

time, then cut out each one

Number 500 images per hour

Time images recorded and a total 60000 images

from 6 a.m. to 6 p.m.

Angle

Left-right: -90° +90°
Up-down: -90° +90°
Record different angles of the sphere

datasets are divided into a training set, validation set and test

set by the dataset publishers.

A. Dataset Description

1) CIFAR-10 dataset: The CIFAR-10 dataset [22] consists

of 32 × 32 RGB images. The task for the dataset is to

classify images into 10 image categories. CIFAR-10 contains

10 classes. This dataset is used in the classification distillation

experiments.

2) VOC dataset: PASCAL VOC 2007 [23] is a relatively

small dataset that contain less object categories and labeled

images, which suits traffic scenarios. We have done several

experiments on this dataset to validate our proposed distillation

method and for comparison with other methods.

3) DIDI-TT dataset: The DIDI-TT dataset used in this

research contains generic traffic signs collected from different

lighting conditions and camera angles. The dataset was taken

from 1 November to 1 December in Haidian district, Beijing

city, China, and mainly came from mobile terminals including

Huawei Honor, Xiaomi 5, Samsung S7e devices. The types

and the collection attributes are shown in Table II. It concludes

six categories with all location information of the image. The

DIDI-TT data set is made into a VOC data format, where the

attribute values are described as follows in Table III.

B. Distillation Applied to the VGG16 Classification Network

1) VGG16 Classification Network: The VGG16 network is

a simple network focusing on building convolutional layers

which does not have too many hyperparameters. First, a 3 ×
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3 filter with a stride of 1 is used to construct the convolution

layer, and the padding parameter is a parameter in the same

convolution. Then a 2 × 2 filter with a stride of 2 is used to

build the maximum pooling layer.

2) Baseline Distillation Experiment: Distillation classifica-

tion experiments were performed on VGG16 using the CIFAR-

10 dataset. Then we simply modified the network structure

of VGG16, i.e., we used the original VGG16 network and

the modified 8-layer VGG network, which is implemented

by a part of the convolution layers in VGG16. The VGG8

network architecture is: conv1, conv2, conv3, conv4, conv5.

The fully connected layers and channels remain constant,

Table IV shows the experiment result that the accuracy of large

network and small network is 78.2% and 75.7% respectively.

TABLE IV
RESULTS OF THE BASELINE CLASSIFICATION EXPERIMENTS WITH 60000

ITERATIONS

Name Iteration Loss Accuracy

Train VGG16 60000 0.739256 78.20%

Train VGG8 60000 0.893016 75.70%

3) Distillation Experiment for Different Channel Number

and Learning Rate Reduction Strategies: After only 60,000

iterations of the network, the effect is not ideal, so a method

of continuous training is adopted for the network. The results

were obtained under different initialization methods, channel

number and learning rate strategies. Table V shows that as

the amount of calculation decreases (the number of layers, the

number of channels), the accuracy rate decreases. There is no

significant difference in the impact of the different learning

rate reduction strategies on the results.

TABLE V
RESULTS OF THE BASELINE CLASSIFICATION EXPERIMENTS FOR SEVERAL

TRAINING CONDITIONS

Name
Initialization

Channel
Lr

Loss Accuracyparameters policy

VGG16
conv xavier

1 - - 89%fc xavier

VGG8 conv xavier 1 step 0.51 86.92%

VGG8 fc gaussian 1 step 0.76 85.23%

VGG8 1/2 step 0.82 81.14%

VGG8 1/4 poly 0.88 81.15%

VGG8 1/4 poly 0.8 77.49%

VGG8 1/8 poly 0.86 73.20%

4) Distillation Experiment for Different Temperatures, Loss

Functions Types and Ratios: Distillation experiments were

performed in the CIFAR-10 dataset. The large network is a

complete VGG16 network, the small network is a VGG8 net-

work, and the number of channels is set to 1/8 of the original

network. The experiment results at different temperatures, loss

function types, and the accuracy of the soft label to hard label

ratio. Table VI shows some results with different loss function,

temperatures and ratio.

TABLE VI
RESULTS OF THE DISTILLATION CLASSIFICATION EXPERIMENTS

No. Loss function Temperature
Ratio

Accuracy(hard-soft with
temperature)

1 sigmoidcross 10 0.7*10*10 / 0.3 73.30%

2 sigmoidcross 10 0.5*10*10 / 0.5 83.40%

3 sigmoidcross 10 0.7 / 0.3 75.60%

4 sigmoidcross 10 0.3 / 0.7 71.40%

5 sigmoidcross 10 0.3*10*10 / 0.7 72.10%

6 L2 10 0.7*10*10 / 0.3 76.10%

7 L2 10 0.7 / 0.3 74.80%

8 Sigmoidcross 20 0.7 / 0.3 83.50%

9 Sigmoidcross 20 0.7*20*20 / 0.3 84.20%

10 sigmoidcross 50 0.7 / 0.3 73%

11 sigmoidcross 50 0.7*50*50 / 0.3 73.40%

12 sigmoidcross 5 0.7*5*5 / 0.3 72.80%

13 sigmoidcross 5 0.7 / 0.3 73.90%

14 sigmoidcross 5 0.7*10*10 / 0.3 73.30%

15 sigmoidcross 1 0.7 / 0.3 83.90%

16 sigmoidcross 1 0.5 / 0.5 73.90%

17 sigmoidcross 2 0.7 / 0.3 73.70%

18 sigmoidcross 2 0.7*2*2 / 0.3 74.70%

19 sigmoidcross 2 0.7 / 0.3 73.30%

20 sigmoidcross / 0.7 / 0.3 83.40%

Experiments number 1-7 focused on the effect of distillation

at a temperature of 10, and found that using a sigmoidcross

[24] loss function under the same ratio conditions gave better

results. Experiments number 8 and 9 found if that when the

same temperature and loss function are squared, better results

can be obtained. Other experiments have found that using a

temperature of 20 can get the best results. Comparing different

ratios [25], it is found that the hard target uses a larger ratio

and that the hard target and soft target ratio is 0.7:0.3.

5) Classification Distillation Results Discussion: From the

classification we can see the baselines of the large network

(VGG16) and small network (VGG8-conv1/8) are 86.91% and

73.2%, respectively. The learning ability of the small network

can be increased to 84.2% by distillation, which is equivalent

to a case where the model parameters are reduced by about

16. Next, the accuracy rate has dropped by only 2%, which

is 11% higher than the accuracy rate of the small network

itself. This shows that distillation is very effective in image

classification tasks.

We compare different strategies for classification distillation

to highlight the effectiveness of our proposed framework. We

choose VGG16 as the teacher model and channel cut VGG8

as our student model. We can conclude that the classification

distillation using our proposed method can lose the least model

information, that is, the least reduction in accuracy. A clear

reduction in training model and accurate percentage of the

model parameters is shown in Table VII.
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TABLE VII
CLASSIFICATION DISTILLATION COMPARISON OF THE NEW METHOD

AGAINST THE BASELINE

Name Teacher

Model

Student

Model

Accuracy

Decrease

Parameter

Decrease

Ours

VGG16 VGG8/8
-2.71% -43.77%86.91% 84.20%

VGG16 VGG8/4
-13.71% -46.88%86.91% 73.20%

Mutual [26]

WRN-28-10 ResNet-32
-9.21% -48.63%78.69% 69.48%

MobileNet ResNet-32
-4.53% -34.85%73.65% 69.12%

C. Distillation Applied to the Faster-RCNN Detection Net-

work

Fig. 3. The framework of the detection distillation model.

1) Faster-RCNN Detection Network: In this part, the dis-

tillation algorithm has been applied to a Faster-RCNN based

object detection network. The front end of the RCNN network

is a classification network. The object detection distillation

network was trained by supervising the loss of the rear output

of large networks and small networks that reduce the number

of channels and layers. The distillation algorithm cuts off 1/2,

1/4, 1/8 of the number of channels of the network. The number

of channels in the last layer conv 5-3 does not change and

is kept at 512. All experiments were conducted with 70000

rounds of training on the DIDI-TT dataset.

2) Baseline Experiment Distillation: Fig.4 shows the base-

line experiment for models that change the network structure,

the learning rate needs to be adjusted to be non-zero, the

initialization strategy in CNN layer and FC layer is Xavier

and Gaussian respectively. We found that the results of each

network did not perform well without using a pre-trained

model.

In this experiment, S1, S4, S6-8 use the pre-trained model,

S3 uses the model that we trained for 70000 iterations, and

S2 doesn’t use a pre-trained model. The channel of student

network in S3-5 is half of the other experiments, e.g., S6-

8, and the learning rate of S4 is adjusted as 1 and 2. S6-

8 represent the networks which have been activated and

calculated. S6 is student convolution and backend that is

Fig. 4. Object detection baseline results for several training conditions.

TABLE VIII
NEW METHOD VERSUS BASELINE COMPARISON EXPERIMENT USING THE

TT100K DATASET

Network
Theretical

Accuracy Benchmark
Fine-grained

computation accuracy

0.534G 0.4322 1.42s

p5 57.57%

p10 21.79%

mobilenet v1 p19 36.88%

prune 75 p23 27.30%

pn 93.47%

pne 22.31%

1.44G 0.4673 1.82s

p5 58.18%

p10 21.73%

mobilenet v1 p19 32.31%

prune 0.5 p23 33.95%

pn 94.76%

pne 39.48%

mobilenet v1 2.88G 0.6029 3.64s

p5 76.42%

p10 35.43%

p19 53.30%

p23 53.39%

pn 93.64%

pne 49.57%

mobilenet v2 1.53G 0.6956 3.40s

p5 80.30%

p10 58.36%

p19 64.53%

p23 64.53%

pn 93.23%

pne 56.44%

TABLE IX
OBJECT DETECTION DISTILLATION OVERALL RESULTS

Name Model Original

Model

mAP

Base-Pretraining Teacher VGG16 68.05%

Base Teacher VGG16 39.51%

Distillation Student VGG16/2 64.40%

Distillation Student VGG16/4 58.00%

Distillation Student VGG16/8 47.77%
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TABLE X
OBJECT DETECTION DISTILLATION PARAMETER COMPARISON

Attributes Original

model

Distillated

model

Optimized

percent

Theoretical Computation 948M 431M -54%

Process speed 2.1s/picture 1.2s/picture -43%

Parameter number 24M 12M -50%

mAP 68.05% 64.40% -5.40%

trained. S7 is the distillation network and teacher’s network

backend that is trained. S8 stands for distillation network and

student’s network backend that is trained. As a supplementary

verification experiment, we selected different networks to

compare theoretical calculations, accuracy, and fine-grained

performance of the six selected categories, the comparison

experiment is shown in Table VIII.

3) Proposed Different Loss Weight and Channel Distilla-

tion Experiment: We compared the distillation mAP under

different loss weight and different channel number in Fig.5.

mAP is computed from the average precision over all classes,

mAP =
1

C

C∑

i=1

APi. (4)

where C is the total classes number of the objects and APi is

the i − th class AP value. Through horizontal comparison,

it is found that as the number of channels decreases, the

performance of the model decreases. RF indicates that the

ROI − pooling + full connection layer is initialized, and

T +RF indicates that the teacher +ROI − pooling + full
connection is initialized. After joining the teacher network, all

the mAP increase are better than 10% compared with student

networks, indicating the benefits of using distillation.

Fig. 5. Loss weight and channel distillation experiments result.

4) Detection Distillation Results Discussion: In the detec-

tion task, we finally obtained a comparison by trying multiple

initialization methods, multiple small network layer attempts,

multiple loss position designs, multiple loss weight designs,

and multiple model initialization positions. We achieved good

experimental results, that is, by using existing loss joins,

ROI-pooling can effectively compress network parameters and

achieve better model results. The Table IX below uses the pa-

rameters of each model. The network results after reducing the

parameters and adding distillation are better than not using the

pre-trained model. In the distillation experiment, the baselines

of the large network (VGG16) and small network (VGG16/8)

are 47.9% and 37.18%, respectively. The learning ability of

the small network can be increased to 47.8% by distillation,

which is equivalent to reducing the model parameters by about

8% under the circumstances, the accuracy of mAP (mean

average precision) is improved by about 10% compared with

the small network itself, and it is almost the same as the

mAP size of the large network that does not apply the pre-

trained model, which indicates that distillation has successfully

pre-trained for the detection task. The model is transferred

to other smaller networks, which proves the idea of transfer

learning and also proves that distillation is also effective for

detection tasks. Table X shows the parameter comparison of

a base VGG16 model with pre-training against the VGG16/2

distillation model. Table XI shows mAP and the increase for

TABLE XI
OBJECT DETECTION DISTILLATION COMPARISON ON THE VOC DATASET

Name
Teacher Student mAP mAP (%)

Model Model (%) Increase

Ours

VGG16
trained

- 68.05 /

VGG16 - 39.51 /
VGG16 VGG8/4 64.4 24.89

VGG16 VGG16/4 58 18.49

VGG16 VGG16/8 47.77 8.26

Fine-grained [27]

Res101 - 74.4 /
Res101h 67.4 /
Res101h Res101h-I 71.2 3.8

VGG16 - 70.4 /

VGG11 59.6 /
VGG11 VGG11-I 67.6 8

Res101 - 74.4 /

Res50 69.1 /
Res50 Res50-I 72 2.9

Efficient [21]

Tucker - 54.7 /
Tucker AlexNet 57.6 2.9
Tucker VGGM 58.2 3.5
Tucker VGG16 59.4 4.7

AlexNet - 57.2 /
AlexNet VGGM 59.2 2
AlexNet VGG16 60.1 4.7

VGGM - 59.8 /
VGGM VGG16 63.7 2.9

several teacher-student model pairs on VOC object detection

database. We compare different strategies for distillation. Our

method selects VGG16 without a pretrained model as the

teacher model and cut the channel of VGG8 and VGG16 as

the student model. We could find that the distillation model

mAP surpasses the teacher model. Other choices reflect similar

trends. The blank square means that only the teacher model

participate in the calculation.
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V. CONCLUSIONS AND FURTHER WORK

In this paper, we have proposed a novel framework for

classification and object detection distillation tasks which

are separately based on VGG16 network and Faster-RCNN

network, which combines distillation and cutting channels

and a Region Proposal Network (RPN) weighted and hard-

soft distribution-wise distillation loss that measure structural

differences in teacher-student networks knowledge, and this

method is useful to reduce parameters while get efficient mod-

els. Demonstrating the knowledge distillation on VGG16 as

the backbone of Faster-RCNN network, we conduct learning

loss of the student and teacher network (after ROI pooling), it

is obvious that there are improvements over different hyper-

parameters experiments in both the classification and object

detection tasks.

In traffic sign identification scenarios, smaller size of models

are useful when applied to aid vehicle navigation in real-time

situations. We apply the distillation algorithm to experiments

using real-world datasets, and perform a series of processing

on small target images of traffic signs. Compared with previous

distillation methods [21] [27], our distillation algorithm is

superior to other algorithms in terms of performance. We find

that the distillation algorithm has obvious positive parameter

reduction effects and an increased accuracy for classification

problems and detection problems, thus it can be used to

support the transfer of learning between different size CNNs

[20]. A direction for future work is to increase the performance

in the classification and object detection tasks, which could

also be deployed to various learning schemes, such as auto

machine learning [28], reinforcement learning [29]. In this

work we combined part of a pruning method with distillation,

which could also be expected to integrate the compression

methods via both knowledge distillation and other compressing

techniques, such as network quantization.
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