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Abstract

To build light-weight network, we propose a new normalization, Fine-grained Batch
Normalization (FBN). Different from Batch Normalization (BN), which normalizes
the final summation of the weighted inputs, FBN normalizes the intermediate state
of the summation. We propose a novel light-weight network based on FBN, called
Finet. At training time, the convolutional layer with FBN can be seen as an inverted
bottleneck mechanism. FBN can be fused into convolution at inference time. After
fusion, Finet uses the standard convolution with equal channel width, thus makes
the inference more efficient. On ImageNet classification dataset, Finet achieves
the state-of-art performance (65.706% accuracy with 43M FLOPs, and 73.786%
accuracy with 303M FLOPs), Moreover, experiments show that Finet is more
efficient than other state-of-art light-weight networks.

1 Introduction

Since AlexNet [20] won ImageNet Large-Scale Visual Recognition Competition in 2012, deep neural
networks have received great successes in many areas of machine intelligence. Modern state-of-art
networks [35]] [8] [14] [38]] [50] become deeper and wider. The requirement of high computational
resources hinders their usages on many mobile and embedded applications. As a result, there has
been rising interest for the design of light-weight neural networks [[11]] [33]] [10] [39] [49] [33] [13]]
[48] [44] [37]. The objective of light-weight networks is to decrease the computation complexity
with low or no loss of accuracy.

To build light-weight networks, we propose a new normalization, Fine-grained Batch Normalization
(FBN). Batch Normalization (BN) [17] has become a standard component in modern neural networks.
There are lots of variants of Batch Normalization to meet diverse usage scenarios [16] [5] [41] [43]]
[22] . FBN aims to improve the training of light-weight networks, while keep the inference efficient.
As shown in Figure[l] different from BN, which normalizes the final summation of the weighted
inputs, FBN normalizes the intermediate state of the summation. At inference time, the normalization
can be fused into the linear transformation. Then there is no need for the intermediate state.

We propose a novel light-weight network based on FBN, called Finet. At training time, the convo-
lutional layer with FBN can be seen as an inverted bottleneck mechanism since the intermediate
channels are normalized and then summarized. However, this bottleneck has only one convolutional
layer. FBN can be fused into convolution at inference time. After fusion, Finet uses the standard
convolution with equal channel width, thus makes the inference more efficient.
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Figure 1: The difference between Batch Normalization (BN) and Fine-grained Batch Normalization
(FBN). Each small circle in the figure represents w;x;. Mathematically, (a) is equal to (b) because
of Associative Law of addition. (c) represents FBN which normalizes the intermediate state of the
summation. At inference time, the normalization can be fused into the linear transformation w;x;.
After fusion, (a), (b) and (c) are equivalent.

On ImageNet classification dataset, Finet achieves the state-of-art performance. With 43M FLOPs,
Finet achieves 65.706% accuracy, outperforming the corresponding model of ShuffleNetV2 (60.3%),
MobileNetV2 (58.2%), MobileNetV3 (65.4%). With 303M FLOPs, Finet achieves 73.786% accuracy,
outperforming the corresponding model of ShuffleNetV2 (72.6%), MobileNetV2 (72.0%). Moreover,
we compare the inference speed of Finet, ShuffleNetV2, MobileNetV2, MobileNetV3, and MnasNet
on three different mobile phones. The results show that Finet is more efficient than other state-of-art
light-weight networks. We also evaluate Finet on CIFAR-10/100 dataset, and present the influences
of different hyper-parameter settings. Finally, we show that FBN also improves the performance of
ResNet.

2 Related Work

2.1 Normalization

Batch Normalization [17] performs the normalization for each training minibatch along (N,H,W)
dimensions in the case of NCHW format feature. Normalization Propagation [4] uses a data-
independent parametric estimate of the mean and standard deviation instead of explicitly calculating
from data. Batch Renormalization [[16] introduces two extra parameters to correct the fact that the
minibatch statistics differ from the population ones. Layer Normalization [5] computes the mean and
standard deviation along (C,H,W) dimensions. Instance Normalization [41] computes the mean and
standard deviation along (H,W) dimensions. Group Normalization [43] is a intermediate state between
layer normalization and instance normalization. Extended Batch Normalization [22]] computes the
mean along the (N, H, W) dimensions, and computes the standard deviation along the (N, C, H, W)
dimensions. Weight Normalization [32]] normalizes the filter weights instead of the activations by
re-parameterizing the incoming weight vector. Cosine Normalization [23] normalizes both the filter
weights and the activations by using cosine similarity or Pearson correlation coefficient instead of dot
product in neural networks. Kalman Normalization [42] estimates the mean and standard deviation
of a certain layer by considering the distributions of all its preceding layers. Instead of the standard
L? Batch Normalization, [9] performs the normalization in L' and L> spaces. Generalized Batch
Normalization [46] investigates a variety of alternative deviation measures for scaling and alternative
mean measures for centering. Batch-Instance Normalization [28]] uses a learnable gate parameter to
combine batch and instance normalization together, and Switchable Normalization [24]] uses learnable
parameters to combine batch, instance and layer normalization. Virtual Batch Normalization [31]
and spectral normalization [27] focus on the normalization in generative adversarial networks.
Self-Normalizing [[18] focuses on the fully-connected networks. Recurrent Batch Normalization
[7] modifies batch normalization to use in recurrent networks. EvalNorm [36]] estimates corrected
normalization statistics to use for batch normalization during evaluation. [29]] provides a unifying view
of the different normalization approaches. [34], [25] and [6] try to explain how Batch Normalization
works.



2.2 Light-weight Network

MobileNet [11] is a light-weight deep neural network designed and optimized for mobile and
embedded vision applications. MobileNet is based on depthwise separable convolutions to reduce
the number of parameters and computation FLOPs. MobileNetV2 [33]] introduces two optimized
mechanisms: 1) inverted residual structure where the shortcut connections are between the thin
layers. 2) linear bottlenecks which removes non-linearities in the narrow layers. MnasNet [39] is
a neural architecture automated searched for mobile device by using multi-objective optimization
and factorized hierarchical search space. MobileNetV3 [10] is also a light-weight network searched
by network architecture search algorithm. EfficientNet [40] proposes a new scaling method that
uniformly scales all dimensions of depth/width/resolution ShuffifleNet [49] utilizes pointwise group
convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy.
ShuffifleNetV2 [33] proposes to evaluate the direct metric on the target platform, beyond only
considering FLOPs. Following several practical guidelines, a new efficient architecture based on
channel split and shuffle is presented. CondenseNet [[13] combines dense connectivity with learned
group convolution. IGCV [48]] [44] [37] propose interleaved group convolutions to build efficient
networks. SqueezeNet [15] aims to decrease the number of parameters while maintaining competitive
accuracy.

3 Fine-grained Batch Normalization

3.1 Batch Normalization

Batch normalization (BN) has become a standard technique for training the deep networks. For a
neuron, BN is defined as

N
7= waw—p)/o (1)
=1

where w; is the input weight, and x; is the input, N is the size of input, y is the mean of the neurons
along the batch dimension, and o is the standard deviation. For simplicity, we omit the epsilon in
the denominator, and the affine transformation after normalization. The non-linear function f(Z) is
performed after the normalization.

3.2 Fine-grained Batch Normalization

We can divide the inputs and the weights of a neuron into G groups. Because of Associative Law of
addition, we have

N G N/G
Zwixi = Z Z Wy g5 (2)
i=1 g=1 j=1

where w; and wy; are the same weights, z; and x4; are the same inputs, but using different index
notation. Then Equation [T|can be re-written as

¢ N/G

T = (Z Z WyjTgj — 1)/ 3)

g=1j=1

In this paper, we propose Fine-grained Batch Normalization (FBN), which is defined as

G N/G
T= Z((Z Wy;Tgj — fg)/Tg) “)
g=1 j=1

where p 4 and o, are the mean and the standard deviation of the intermediate summation along the
batch dimension. Different from BN, which normalizes the final summation of the weighted inputs,



FBN normalizes the intermediate state of the summation. When training with BN, neurons can be
coordinated in a mini-batch. FBN makes the coordination more fine-grained. Figure [I]shows the
difference between BN and FBN. At training time, the intermediate state need to be stored and traced.
Thus FBN takes more memory resource for training. Though FBN needs to normalize more channels,
the computation overhead is trivial comparing to the convolution operation.

3.3 Inference and Normalization Fusion

At inference time, the mean and the standard deviation are pre-computed from the training data by
the moving average. The inference of BN is computed as

N
T = (Z wix; — W) /o (5)
i=1

where p refers to the moving average of the mean, o refers to the moving average of the standard
deviation. Since the mean and the standard deviation are pre-computed and fixed at inference time,
the normalization can be fused into the linear transformation, e.g. convolution operation. Re-write
Equation 5] as

N
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Let w; = 7;— and b' = ’;— then we can fuse the normalization into the linear transformation as

N
T = szxz -b (7

Here w is the new weight of the linear transformation, and b’ is the bias. Thus BN is fused into the
new linear transformation. Similarly, the inference of FBN is computed as
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where i, and oy are the moving average of the mean and the standard deviation of intermediate
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In summary, we can fuse FBN into the linear transformation at inference time. By this way, we do
not need to store the intermediate state of the summation. That is to say, there is no computation and
memory overhead at inference time.



4 Network Architecture

In this section, we describe the architecture of our light-weight network based on Fine-grained
Batch Normalization, called Finet. Figure [2| shows the building blocks of Finet. Similar as other
light-weight networks, we use the depthwise convolution to reduce the FLOPs and the parameters.
The main difference of our block is that we use FBN in the 1x1 pointwise convolution instead of
BN. As pointed in [47] [49] [48], wider layer makes more powerful representation, but brings more
FLOPs and parameters. There are many ways to reduce the FLOPs and parameters of wide layer, e.g.
bottleneck [8] or inverted bottleneck [33]], group convolution [49]]. Finet normalizes the intermediate
channels, which are G times wider than final channels. Take a convolutional layer as example, as
shown in Figure[3] we can use group convolution to implement FBN. The channels are expanded by
G times, then the expanded channels are normalized and summarized. It can be seen as an inverted
bottleneck mechanism. However, this bottleneck has only one convolutional layer. As pointed in [26]],
non-equal channel width and group convolution increase memory access cost. Fortunately, FBN can
be fused into convolution at inference time. After fusion, Finet uses the standard convolution with
equal channel width, thus makes the inference more efficient. That is very helpful for deploy on the
mobile and embedded device which has limit computation and memory resource, or online service
environment which is sensitive to the latency.
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Figure 2: The building blocks of Finet

Output channels

% Output channels
|
BN Output channels

Standard
Group Conv Group Conv Conv
1

Input channels Input channels Input channels

(a) (b) (©

Figure 3: The implementation of Fine-grained Batch Normalization. (a) FBN can be seen as an
inverted bottleneck mechanism at training time. (b) Normalization can be fused into convolution at
inference time. (c) The standard convolution can be used at inference time. (b) and (c) are equal.

FBN can also be treated as a procedure of splitting, transforming, and aggregating, which is the key
design philosophy of ResNeXt [45]. Different from ResNeXt which uses multi-layer network as the
transforming, we use normalization as the transforming. Comparing to ResNeXt, we do not need to
carry out splitting, transforming, and aggregating at inference time because of normalization fusion.



We can add Squeeze-Excite module [12] which is a light-weight attention mechanism and widely
used in other light-weight networks, e.g. Mnasnet [39]], MobileNetV3 [10]. For simplicity, we do not
use identity map in the block where the stride of depthwise convolution is 2.

Table [T] shows the overall architecture of Finet, for small and large levels of complexities. We
adopt the architecture similar with ShufflenetV2. The architectures of the series of MobileNet are
more heterogeneous, thus bring difficulties for optimization of performance and memory usage. For
Finet, there are two differences from ShufflenetV2: 1) the building blocks shown in Figure [2| are
used in each stage, 2) there is an additional fully connected layer before the classifier layer. The
fully connected layer is prone to overfitting since it takes much parameters. As a result, modern
heavy-weight convolutional networks [21] [8] [14] [38] try to avoid using fully connected layer
except the final classifier layer. However, light-weight networks usually suffer from underfitting
rather than overfitting. For light-weight networks, fully connected layer brings much parameters but
with little computation overhead. The latest light-weight network MobilenetV3 [[10] also uses an
additional fully connected layer to redesign expensive layers. Squeeze-Excite module also utilizes
the fully connected layer to enhance the representative ability with little computation overhead.

Table 1: Overall architecture of Finet, for small and large levels of complexities. The architecture is
similar with ShufflenetV2, except 1) the building blocks of Finet are used in each stage, 2) there is an
additional fully connected layer before the classifier layer.

. . . Output channels
Layer Output size | Ksize | Stride | Repeat Small | Large
Image 224x224 3 3
Convl 112x112 3x3 2
MaxPool | 56x56 | 3x3 | 2 ! 24| 24
28x28 2 1
Stage2 28x28 1 3 30 100
14x14 2 1
Stage3 14x14 1 7 60 200
7x7 2 1
Stage4 X7 1 3 120 400
Conv5 7x7 1x1 1 1 1024 1024
GlobalPool 1x1 X7 1 1024 1024
FC1 1x1 1 1024 1024
FC2 1x1 1 1000 1000

5 Experiment

5.1 ImageNet

ImageNet classification dataset [30] has 1.28M training images and 50,000 validation images with
1000 classes. We use Pytorch in our experiments. To augment data, we use the same procedure as the
official examples of Pytorch [1]. The training images are cropped with random size of 0.08 to 1.0 of
the original size and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio, and then resized
to 224x224. Then random horizontal flipping is made. The validation image is resized to 256x256,
and then cropped by 224x224 at the center. Each channel of the input is normalized into 0 mean and
1 std globally. We use SGD with 0.9 momentum, and 4e-5 weight decay. Four TITAN Xp GPUs are
used to train the networks. The batch size is set to 512. We use linear-decay learning rate policy
(decreased from 0.2 to 0). Dropout with 0.2 is used in the last two fully connected layers. We train
the networks with 320 epochs. For Squeeze-Excite module, we set the number of hidden unit to 200.

Figure ] and Table 2] show the results of ImageNet classification. The baseline network uses BN.
Actually, BN is equal to FBN when G = 1. As G increases, Finet achieves higher accuracy with
little overhead of FLOPs and parameters. Moreover, Squeeze-Excite module enhances the accuracy.
With Squeeze-Excite and G = 4, small Finet achieves 65.706% accuracy with 43M FLOPs, and large
Finet achieves 73.786% accuracy with 303M FLOPs. Finet outperforms ShuffleNetV2 (60.3% with
41M FLOPs, and 72.6% with 299M FLOPs) and MobileNetV2 (58.2% with 43M FLOPs, and 72.0%
with 300M FLOPs) which are also manual designed architectures. Finet takes more parameters than



ShuffleNetV2 and MobileNetV2. The last two fully connected layers take about 2M parameters.
Small version of Finet achieves higher accuracy than the corresponding model of MobileNetV3,
while MobileNetV3 and MnasNet achieve higher accuracies for the large version. MobileNetV3 and
MnasNet are auto-searched architectures. Neural Architecture Search (NAS) reduces the demand for
experienced human experts comparing to hand-drafted design. It can find the optimal combination of
existing technique units, but can not invent new techniques. Moreover, the searched architectures are
often more heterogeneous, and are less efficient than the homogeneous architectures, as shown in the
next Section[3.2]
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Figure 4: The validation accuracy of Finet with Squeeze-Excite, vs. numbers of training epochs

Table 2: The FLOPs, Parameters (Paras), and Accuracies (Acc) of different networks on ImageNet
validation data. BN: Batch Normalization, FBN: Fine-grained Batch Normalization, SE: Squeeze-
Excite.

Small Large

FLOPs Paras Acc FLOPs Paras Acc

(Million) | (Million) (%) (Million) | (Million) (%)
baseline (BN) 42.6 2.388 61.710 301.8 4.434 71.256
Finet (FBN,G=2) 42.6 2.392 62.988 301.8 4.448 72.410
Finet (FBN,G=4) 42.6 2.402 63.338 301.8 4.477 72.746
baseline+SE (BN) 43.0 2.809 64.632 303.2 5.812 72.790
Finet+SE (FBN,G=2) 43.0 2.813 65.322 303.2 5.827 73.642
Finet+SE (FBN,G=4) 43.0 2.827 65.706 303.2 5.855 73.786

ShuffleNetV?2 [26] 41 1.4 60.3 299 3.5 72.6

MobileNetV2 [33] [3]] 43 1.66 58.2 300 3.4 72.0

MobileNetV3 [10] 44 2.0 65.4 219 54 75.2

MnasNet [39] - - - 312 3.9 75.2

5.2 Inference Speed

We evaluate the inference speed of different light-weight networks on three mobile phones: Samsung
Galaxy s10e, Huawei Honor v20, and Vivo x27. Galaxy s10e and Vivo x27 equip the mobile
SoC of Qualcomm SnapDragon. SnapDragon uses a heterogeneous computing architecture to
accelerate the Al applications. Al Engine of SnapDragon consists of Kryo CPU cores, Adreno
GPU and Hexagon DSP. Honor v20 equips HiSilicon Kirin SoC. Different from SnapDragon, Kirin
introduces a specialized neural processing unit (NPU) to accelerate the Al applications. The detailed
configurations of the devices are shown in Table 3]

We use Pytorch Mobile [2] to deploy the networks on mobile phones. We compare the large versions
of Finet, ShufflenetV2, MobileNetV2, MobileNetV3, and MnasNet. Normalization are omitted since
it can be fused into convolution operation at inference time. Each model infers 1000 validation



Table 3: The configurations of the measured devices

Device Soc CPU Al Accelerator RAM
Adreno 640 GPU

Galaxy s10e | Snapdragon 855 | Kryo 485, 2.84 GHz, 7nm Hexagon 690 DSP 6GB

Honor v20 Kirin 980 Cortex-A76, 2.6 GHz, 7nm | Cambricon NPU 8GB

Vivo x27 | Snapdragon 710 | Kryo 360, 2.2 GHz, 10nm | /*dren0 616 GPU '} g 5p

Hexagon 685 DSP

images sequentially, and the average throughput is counted. Table ] shows the results of different
models. On all of the three phones, Finet without Squeeze-Excite module is the fastest model, and the
second fastest model is Finet with Squeeze-Excite module. The heterogeneous models (MobileNetV2,
MobileNetV3, and MnasNet) are slower than homogeneous models (Finet, ShufflenetV?2)

Table 4: Inference speed (images per second)

Galaxy s10e | Honor v20 | Vivo x27
Finet, without SE 7.80 6.34 2.45
Finet, with SE 7.69 6.17 2.37
ShufflenetV2 7.35 5.99 2.09
MobileNetV?2 3.98 3.65 1.42
MobileNetV3 5.65 4.82 1.79
MnasNet 3.77 3.74 1.48

5.3 CIFAR

CIFAR-10 [19]] is a dataset of natural 32x32 RGB images in 10 classes with 50, 000 images for
training and 10, 000 for testing. CIFAR-100 is similar with CIFAR-10 but with 100 classes. To
augment data, the training images are padded with O to 36x36 and then randomly cropped to 32x32
pixels. Then randomly horizontal flipping is made. Each channel of the input is normalized into O
mean and 1 std globally. Large Finet is evaluated in this section. To adapt Finet to CIFAR datasets,
the stride of Conv1 is set to 1, and omit the MaxPool in Table [T} We use SGD with 0.9 momentum,
and Se-4 weight decay. All models are trained on one TITAN Xp GPU. The batch size is set to 128.
Learning rate is set to 0.1, and decreased 10 times at epoch 100 and 150. We train the networks with
200 epochs. For Squeeze-Excite module, we set the number of hidden unit to 200.

Table [5] shows the accuracies of Finet on CIFAR-10/100 with different groups. FBN achieves better
accuracy than BN (when G = 1, FBN is equal to BN). When G = 8, Finet achieves the highest
accuracy of 93.674% on CIFAR-10, and 77.202% on CIFAR-100. The affine transformation in
normalization is define as y = & + (3, where 7y and 3 are learned parameters for each channel in
convolutional networks. Since the intermediate channels of FBN are wider than BN, there are more
parameters in the affine transformation. To analyze how FBN improve the performance, we also
evaluate FBN without affine transformation. In that case, there is no extra parameter comparing to
BN. As shown in Table[5] FBN still achieves better accuracy than BN without affine transformation.
Table [6] shows the accuracies of Finet on CIFAR-10/100 by fixing the number of input channels per
group. Because the layers have different channel numbers, the group number G changes across layers
in this setting. Generally, less input channels per group make more fine-grained training and increase
the accuracy.

Table 5: The accuracies (%) of Finet on CIFAR-10/100 with different groups

G=1 G=2 G=4 G=6 G=8
with affine 92.584 | 93.082 | 93.532 | 93.286 | 93.674

without affine | 91.958 | 93.162 | 92.478 | 92.564 | 93.430
with affine 75.624 | 76.752 | 76.856 | 76.716 | 77.202

without affine | 74.216 | 74.382 | 74.486 | 74.772 | 74.734

CIFAR-10

CIFAR-100

Finally, we evaluate ResNet18 and ResNet50 with FBN on CIFAR datasets. The batch size is set to
64 since training ResNet with FBN consumes a lot of GPU memories. Even decreasing the batch



Table 6: The accuracies (%) of Finet on CIFAR-10/100 with different input channels per group

C/G=20 | C/G=50 | C/G=100
CIFAR-10 | 93.470 | 93.606 93.122
CIFAR-100 | 76.926 | 76.850 75.674

size, there is no enough memory for training ResNet50 with G = 4 on single TITAN xp. Thus we
only evaluate ResNet50 with G = 2. Table[7]shows the accuracies of Resnet18 and ResNet50 with
FBN on CIFAR-10/100. The results show that FBN also achieves better accuracy than BN (G = 1)
for training heavy-weight networks.

Table 7: The accuracies (%) of ResNet with FBN on CIFAR-10/100

G=1 G=2 G=4
ResNetl18 | 94.512 | 95.012 | 94.962
ResNet50 | 94.644 | 95.040 -
ResNet18 | 76.866 | 77.754 | 77.726
ResNet50 | 77.796 | 78.122 -

CIFAR-10

CIFAR-100

6 Conclusion

In this paper, we propose a new normalization, Fine-grained Batch Normalization (FBN), and a novel
light-weight network based on FBN, called Finet. At training time, the convolutional layer with
FBN can be seen as an inverted bottleneck mechanism. At inference time, Finet uses the standard
convolution with equal channel width after normalization fusion, thus makes the inference more
efficient. We show the effectiveness and efficiency of Finet in our experiments.
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