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Abstract—Using a discriminative representation obtained by
supervised deep learning methods showed promising results
on diverse Content-Based Image Retrieval (CBIR) problems.
However, existing methods exploiting labels during training try
to discriminate all available classes, which is not ideal in cases
where the retrieval problem focuses on a class of interest. In
this paper, we propose a regularized loss for Variational Auto-
Encoders (VAEs) forcing the model to focus on a given class
of interest. As a result, the model learns to discriminate the
data belonging to the class of interest from any other possibility,
making the learnt latent space of the VAE suitable for class-
specific retrieval tasks. The proposed Class-Specific Variational
Auto-Encoder (CS-VAE) is evaluated on three public and one
custom datasets, and its performance is compared with that of
three related VAE-based methods. Experimental results show that
the proposed method outperforms its competition in both in-
domain and out-of-domain retrieval problems.

Index Terms—Variational Auto-Encoder, Image Retrieval,
Class-Specific Discriminant Learning

I. INTRODUCTION

CONTENT-Based Image Retrieval (CBIR) is the task of
searching for images with similar content to that of a

query image. Available methods for doing so can be broadly
categorized into those based on feature engineering and those
relying on deep learning models [1]. Methods belonging to
the first category adopt in their first stage explicit feature
extraction techniques (e.g. based on color [2], texture [3],
and shape [4]), along with keypoint-based image descriptions
and representations (e.g. the Scale Invariant Feature Transform
(SIFT) [5] combined with Bag of Words (BoW) model [6], or
the Fisher Vector (FV) representation [7]).

In recent years, deep learning models outperformed the
more traditional methods in diverse computer vision tasks,
including CBIR, with convolutional layers being widely used
for the feature extraction [8–11]. Such data-driven feature
extractors can be part of Convolutional Neural Network (CNN)
models which are either pre-trained on large image datasets
[10], e.g., like the ImageNet [12], or be fine-tuned on a target
dataset usually leading to improved retrieval performance [11].

A type of deep learning models which is well-suited for
CBIR is Variational Auto-Encoders (VAEs). Such models are
trained to reconstruct their input, and the representation learnt
in the latent space (output of the Encoder) can be used for
CBIR. Traditional VAEs have limitations when applied in
retrieval tasks, as they are not trained to discriminate between
different classes forming the retrieval problem. To address

this issue, one can train or fine-tune the model based on
other reconstruction losses. However, a balance needs to be
kept between generative and discriminative properties of the
adopted loss as highly discriminative data representations can
lead to losing valuable information which is important for
image retrieval, especially when retrieving images based on
queries belonging to classes outside of those appearing in
the training (out-of-domain retrieval) [13]. To address this
problem, a regularized discriminative deep VAE method was
proposed in [14] that models the latent generative factors
for each of the training classes. Although this method shows
good results in in-domain and out-of-domain image retrieval
tasks, it is well-suited for multi-class retrieval problems and
has limitations when it is applied to class-specific retrieval
problems.

In this paper, we consider class-specific retrieval problems
where one wants to retrieve images from a database based on
a query image which either belongs to a class of interest, or
not. In such a problem, the class of interest (called positive
class) is usually well populated and all other images belong
to multiple classes (forming the negative class of the class-
specific problem) which are underpopulated, or their labels
may not be available during the training phase. An example
application which falls within this problem description is that
of face retrieval where a specific person (e.g., the user of
a system) is well-represented in the database while the rest
of the facial images in the database can belong to other
individuals with only a few (or even one) images. Following
a multi-class formulation similar to that of [13] would lead
to a binary problem where the negative class is modeled to
be homogeneous, which generates problems as negative class
images can exhibit very large variations.

To address this, we propose a training loss to train class-
specific deep VAEs for CBIR. Instead of learning image rep-
resentations capable to discriminate between different classes,
the VAE is trained to discriminate between the class of interest
(positive class) and any other available possibility (samples
belonging to the negative class). This strategy encourages
the model to learn data representations which leads to a
homogeneous positive class in the latent space of the VAE
and discriminates this class from the data belonging to any
other classes forming the negative class. This would also
help the model to discriminate the positive class from other
classes unseen during training (out-of-domain retrieval). To
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Fig. 1. Forces caused by reconstruction, KLD, and repulsive losses in a) RD-VAE, b) binary RD-VAE, and c) CS-VAE.

demonstrate the performance of the proposed method over
different data types, it is extensively evaluated on three public
and one custom datasets. In addition, for each dataset, two
evaluation scenarios (namely in- and out-of-domain retrieval)
are considered. The performance of the method is compared
with three other VAE-based methods.

The rest of this paper is structured as follows. In Section
II, related work on VAE-based image retrieval is briefly dis-
cussed. The proposed method is described in III. Experimental
evaluations are presented in Section IV. Finally, the paper is
concluded in Section V.

II. RELATED WORK

Several supervised and unsupervised VAE methods, such as
VAE [15] and regularized discriminative VAE (RD-VAE) [14],
have been proposed for CBIR tasks. However, these methods
have limitations in class-specific CBIR applications. A VAE is
commonly formed by an Encoder which receives an image as
input and outputs a representation of that image in a (usually
lower-dimensional) latent space, and a Decoder which receives
this image representation as input and tries to reconstruct the
input to the VAE image on its output. The parameters of both
the Encoder and the Decoder are jointly optimized to preserve
the maximum information when encoding and to have the
minimum reconstruction error when decoding. By considering
xi, i = 1, . . . , N as the input images in the training set, this
optimization is achieved by using the reconstruction loss and
the Kullback–Leibler divergence:

Lvae=MSEloss+αKLKLDunsup, (1)

KLDunsup=
∑
xi

(
(xi−µ)2+σ2−log(σ)−1

)
. (2)

The Kullback–Leibler divergence term (KLDunsup) forces the
data representations in the latent space to form a Gaussian
distribution having mean µ and variance σ. Using such an
unsupervised learning process to train the VAE determines
a Gaussian distribution that can be considered as the data
distribution of all the training data (irrespectively of which
class each training image may belong to) in the input of the
Decoder. Thus, applying CBIR using image representations

coming from the latent space of a VAE usually leads to low
performance.

To solve this limitation, a VAE-based regularized discrimi-
native deep metric learning method (RD-VAE) was proposed
in [14]. This method modifies the training loss of the VAE such
that samples belonging to the same class form homogeneous
clusters which are well-separated by clusters corresponding
to other classes. To do that, KLDunsup is replaced with a
supervised KLD, and a repulsive term (reploss) is added to
the loss function:

Lrd-vae=MSEloss+αKLKLDsup+reploss, (3)

KLDsup=
∑
xi

(
(xi−µli)2+σli2−log(σli)−1

)
, (4)

reploss=1/ρ
∑
xi

∑
xj 6=xi

max
(
0, ρ−‖ µli−µlj ‖22

)
2, (5)

where li denotes the class label of xi, KLDsup determines
a Gaussian distribution for each class, and reploss forces the
means of different class distributions away to be in a minimum
distance of ρ from each other. Those data representations are
also constrained by the MSEloss loss, meaning that they need
to preserve adequate input information in order to reconstruct
the input image in the output of the Decoder. Figure 1-a shows
a schematic 2D representation of RD-VAE at the latent space.

III. PROPOSED CLASS-SPECIFIC VAE

As described above, the class-specific image retrieval task
is defined as the task of retrieving images based on a query
image which either belongs to a class of interest, or not.
One could approach this problem by applying the RD-VAE
method described above, i.e., to consider the class of interest
as the positive class and form a negative class including all
images belonging to all other classes (binary RD-VAE, Figure
1-b). Since all VAE models determine the data representations
in the latent space through training, one would assume that
(using an adequately high number of network parameters and
extensively tuning them) it is possible to force all training
images forming the negative class (despite their possibly high
variations) to form a homogeneous cluster in the latent space.
However, this approach leads to increasing the complexity of



the model and may not be able to generalize well on unseen
(test) data.

The Class-Specific VAE (CS-VAE) introduces a new KLD
term and a new repulsive term in the training loss of the VAE:

Lcs-vae=MSEloss+αKLKLD
cs
sup+rep

cs
loss, (6)

KLDcs
sup=

∑
xi∈lp

(
(xi− µlp)2+σlp2−log(σlp)−1

)
, (7)

repcsloss=1/ρ
∑
xi /∈lp

max
(
0, ρ−‖ xi−µlp ‖22

)
2. (8)

Optimizing the loss function in Eq. (6) forces the image
representations in the latent space of the positive class to form
a Gaussian distribution, defined by mean µlp and variance σlp .
Moreover, the image representations in the latent space of the
data belonging to the negative class are forced to be far away
(with a minimum distance of ρ) from the mean of the positive
class. Those data representations are also constrained by the
MSEloss loss, meaning that they need to preserve adequate
input information in order to reconstruct the input image in
the output of the Decoder.

Figure 1-c shows a schematic 2D representation of CS-
VAE at the latent space. As can be seen in that Figure, one
would expect that such image representations in the latent
space can have some favourable properties for class-specific
CBIR. Representations of images belonging to the class of
interest (positive class) are learnt to lay close to each other
in the latent space (i.e., to be similar to each other, meaning
that properties of those images in common are expected to
be highlighted). Representations of images not belonging to
the class of interest are forced to be well-discriminated in
relation to the class of interest and they are not forced to group
together, i.e., they are allowed to lay anywhere in the latent
space leading to representations of dissimilar input images of
the negative class to be far away from each other. This can
lead to better-preserving properties of images belonging to the
negative class and higher performance.

It should be noted that class-specific optimization crite-
ria have also been used in the past for determining data
representations based on linear [16, 17] and kernel-based
[18–21] Class-Specific Discriminant Analysis. Those methods
commonly optimize a class-specific variant of the Rayleigh
Quotient [22, 23] which tries to minimize the in-class scatter
to out-of-class scatter ratio in the projection space. Contrary
to this approach, the proposed CS-VAE exploits the KLD and
the repulsive terms in Eqs. (7) and (8) which, in combination
to the reconstruction error at the output of the Decoder, lead
to the optimization problem in Eq. (6) which is well-suited for
training deep learning models.

IV. EXPERIMENTS

To evaluate the performance of the proposed CS-VAE
method, we conducted experiments on four datasets. We used
the following three publicly available datasets:

T-shirt Trouser Pullover Dress Coat

Sandal Shirt Sneaker Bag Ankle boot

Fig. 2. Example images from the Fashion MNIST dataset.

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Fig. 3. Example images from the Cifar-10 dataset.

• Fashion MNIST [24]: It includes 70,000 fashion-related
gray-scale images with resolution of 28× 28 pixels. The
images belong to 10 classes, with 7,000 images per class.
60,000 images form the training set and the remaining
10,000 the test set. Figure 2 shows example images from
the dataset.

• Cifar-10 [25]: It includes 60,000 RGB-color images with
resolution of 32 × 32 pixels. The images belong to 10
classes, with 6,000 images per class. 50,000 images form
the training set and the remaining 10,000 the test set.
Figure 3 shows example images from the dataset.

• Yale [26]: It includes 165 gray-scale facial images of 15
different subjects (11 images per subject). The images
have 320 × 243 pixels resolution and are taken under
different lighting and facial expressions. Figure 4 shows
example images from the dataset.

To also evaluate the performance of the proposed method

Fig. 4. Example images from the Yale dataset.
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Fig. 5. Example images from the X-ray dataset.

on a problem coming from an industrial application, we also
used an X-ray image dataset of fibrous products. This dataset
was collected over an X-ray test on several defective and non-
defective fibrous product samples. The dataset contains four
classes including a Non-defective (ND) class and the following
three defective classes:

• D1: the drops of melted raw materials that are not
converted to fibers successfully;

• D2: binder bulks that are not evenly distributed over the
fibers;

• D3: a collection of several small shots of molten raw
materials close together.

Samples of these four classes are shown in Figure 5. In total,
271 gray-scale images with a resolution of 244 × 244 pixels
are available in this dataset. In our experiments, only the ND
class is considered as the class of interest, since this approach
resembles a real-life anomaly detection problem where the
defects need to be distinguished from the non-defective class
in order to retrieve the non-defective products.

A. In-domain CBIR experiments

To evaluate the performance of the proposed method in
CBIR based on query images belonging to classes included
in the training, we conducted experiments following the in-
domain experimental protocol. We compare the performance
of CS-VAE with that of three other VAE-based methods, i.e.,
VAE, RD-VAE, and binary RD-VAE. Since VAE and RD-VAE
methods are trained based on unsupervised and multi-class
optimization problems, respectively, one model is trained on
each dataset and the 11-recall point-based Average Precision
(AP) metric [27] is calculated for each class separately, as
well as the mean AP (mAP) over all classes. For Binary
RD-VAE and CS-VAE, a model is trained for each class-
specific problem by considering the corresponding class as the
class of interest, and AP is calculated for that class. We also
calculated the mAP of all class-specific models. We repeated
the experiments five times and we reported the mean and
standard deviation of AP values for all experiments.

For hyper-parameter selection on the experiments in Fashion
MNIST and Cifar-10 datasets, the training set is randomly split
into 80%/20% training/validation subsets, and the values of
the hyper-parameters of all models are selected based on their

performance on the validation set. Due to the small number of
samples per class in Yale and the X-ray datasets, we performed
5-fold cross-validation, where the performance of each model
having different hyper-parameter values is evaluated as the
average AP over all folds.

Considering Equations (1) - (8), hyper-parameter selection
is applied to select values for ρ and αKL, and for determining
the model architecture. We use a grid search strategy to select
the values of ρ and αKL for each dataset and each model
using the ranges ρ = {1, . . . , 10} and αKL = {0.1, . . . , 10}.
For instance, the mAP values over all classes on the Fashion
MNIST dataset are shown in Figure 6. It can be seen from
Figure 6-a, b, and c that there is a linear relation between
the hyper-parameters value and the models’ performance.
However, for CS-VAE, the optimal values of these two hyper-
parameters are in the range of the selected intervals.

The selected model parameters, including the model’s input
size, encoder and decoder architecture, the size of latent space,
and the two hyper-parameter values (ρ and αKL), for all
datasets and methods are shown in Table I. It can be seen
that to create the models’ encoders, 2D convolution layers,
batch normalization layers, and ReLU activation functions are
used, followed by flattening and two parallel linear layers to
have means and variances for each dimension of the latent
space. For the decoders, after linear and unflattening layers,
2D transposed convolution layers, batch normalization layers,
and ReLU activation functions are used, followed by a sigmoid
activation function to construct the output image.
Results: The performance (AP%) of each method on each
class of Fashion-MNIST, as well as the mAP over all classes,
are reported in Table II. From this table, it can be seen that
RD-VAE achieved much higher performance in comparison to
the VAE model. Such an improvement was expected due to
the separate Gaussian distributions defined by RD-VAE for
each class and the use of the repulsive loss to push them
away from each other in the latent space. The binary RD-VAE
reached a slightly lower performance compared to RD-VAE.
As it was explained in Section III, such a lower performance
is expected as a result of the model forcing all negative image
representations to form a homogeneous cluster in the latent
space, despite their possibly high variations in the input space.
Finally, CS-VAE managed to achieve the highest performance.

Figures 7-a and b illustrate the data representation obtained
by applying Principal Component Analysis on the image
representations in the latent spaces of the binary RD-VAE
and CS-VAE and keeping the top three eigenvectors. It can
be seen that for the binary RD-VAE, all samples belonging to
the negative class are pushed to cluster one side of the positive
class. CS-VAE, as also mentioned in Section III, allows the
representations of the negative images in the latent space to
freely be arranged, as long as they are adequately far away
(parameterized by the value of ρ) from the positive class’
mean.

The performance of all competing methods on the Cifar-
10 dataset is reported in Table III. As can be seen, similar
observations to those made for the results on Fashion MNIST
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Fig. 6. Performance (mAP%) on Fashion MNIST (in-domain retrieval) for different values of ρ and αKL: a) VAE, b) RD-VAE, c) binary RD-VAE, and d)
CS-VAE

TABLE I
MODEL AND SELECTED HYPERPARAMETER VALUES FOR EACH METHOD AND DATASET.

Fashion MNIST CIFAR-10 Yale X-ray
Model Input: 1×28×28

Encoder:
C2d(1, 16, k=3, s=1)
BN2d(16), ReLU()
C2d(16, 32, k=3, s=2)
BN2d(32), ReLU()
C2d(32, 64, k=3, s=1)
BN2d(64), ReLU()
C2d(64, 128, k=3, s=2)
BN2d(128), ReLU()
Flatten()
Linear(in=2048, out=256)
BN1d(256), ReLU()
Linear(in=256, out=30)
Linear(in=256, out=30)
Decoder:
Linear(in=30, out=256)
BN1d(256), ReLU()
Linear(in=256, out=2048)
BN1d(2048),, ReLU()
UnFlatten()
CT2d(128, 64, k=3, s=3)
BN2d(64), ReLU()
CT2d(64, 32, k=3, s=2)
BN2d(32), ReLU()
CT2d(32, 16, k=3, s=1)
BN2d(16), ReLU()
CT2d(16, 1, k=2, s=1)
Sigmoid()

Input: 3×32×32
Encoder:
C2d(3, 32, k=3, s=1)
BN2d(32), ReLU()
C2d(32, 64, k=3, s=2)
BN2d(64), ReLU()
C2d(64, 128, k=3, s=1)
BN2d(128), ReLU()
C2d(128, 256, k=3, s=2)
BN2d(256), ReLU()
Flatten()
Linear(in=6400, out=1024)
BN1d(1024), ReLU()
Linear(in=1024, out=30)
Linear(in=1024, out=30)
Decoder:
Linear(in=30, out=1024)
BN1d(1024), ReLU()
Linear(in=1024, out=6400)
BN1d(6400), ReLU()
UnFlatten()
CT2d(256, 128, k=3, s=2)
BN2d(128), ReLU()
CT2d(128, 64, k=3, s=1)
BN2d(64), ReLU()
CT2d(64, 32, k=3, s=2)
BN2d(32), ReLU()
CT2d(32, 16, k=3, s=1)
BN2d(16), ReLU()
CT2d(16, 3, k=(4, 4), s=1)
Sigmoid()

Input: 1×244×244
Encoder:
C2d(1, 32, k=3, s=3)
BN2d(32), ReLU()
C2d(32, 64, k=3, s=3)
BN2d(64), ReLU()
C2d(64, 128, k=3, s=3)
BN2d(128), ReLU()
Flatten()
Linear(in=10368, out=256)
BN1d(256), ReLU()
Linear(in=256, out=30)
Linear(in=256, out=30)

Decoder:
Linear(in=30, out=256)
BN1d(256), ReLU()
Linear(in=256, out=10368)
BN1d(10368), ReLU()
UnFlatten()
CT2d(128, 64, k=3, s=3)
BN2d(64), ReLU()
CT2d(64, 32, k=3, s=3)
BN2d(32), ReLU()
CT2d(32, 1, k=4, s=3)
Sigmoid()

Input: 1×244×244
Encoder:
C2d(1, 32, k=3, s=3)
BN2d(32), ReLU()
C2d(32, 64, k=3, s=3)
BN2d(64), ReLU()
C2d(64, 128, k=3, s=3)
BN2d(128), ReLU()
Flatten()
Linear(in=10368, out=256)
BN1d(256), ReLU()
Linear(in=256, out=10)
Linear(in=256, out=10)

Decoder:
Linear(in=10, out=256)
BN1d(256), ReLU()
Linear(in=256, out=10368)
BN1d(10368), ReLU()
UnFlatten()
CT2d(128, 64, k=3, s=3)
BN2d(64), ReLU()
CT2d(64, 32, k=3, s=3)
BN2d(32), ReLU()
CT2d(32, 1, k=4, s=3)
Sigmoid()

VAE αkl = 10 αkl = 10 αkl = 5 αkl = 2

RD-VAE
ρ = 10
αkl = 10

ρ = 10
αkl = 10

ρ = 10
αkl = 10

ρ10 =
αkl = 10

Binary
RD-VAE

In-domain: ρ = 10
Out-of-domain: ρ = 10
In-domain: αkl = 10
Out-of-domain: αkl = 10

In-domain: ρ = 10
Out-of-domain: ρ = 10
In-domain: αkl = 10
Out-of-domain: αkl = 10

In-domain: ρ = 10
Out-of-domain: ρ = 10
In-domain: αkl = 10
Out-of-domain: αkl = 10

In-domain: ρ = 10
Out-of-domain: ρ = 10
In-domain: αkl = 10
Out-of-domain: αkl = 10

CS-VAE

In-domain: ρ = 1
Out-of-domain: ρ = 1
In-domain: αkl = 1
Out-of-domain: αkl = 2

In-domain: ρ = 2
Out-of-domain: ρ = 5
In-domain: αkl = 10
Out-of-domain: αkl = 2

In-domain: ρ = 10
Out-of-domain: ρ = 10
In-domain: αkl = 5
Out-of-domain: αkl = 5

In-domain: ρ = 10
Out-of-domain: ρ = 5
In-domain: αkl = 5
Out-of-domain: αkl = 10

C2d: 2D convolution, CT2d: 2D transposed convolution, BN2d: 2D Batch Normalization, BN1d: 1D Batch Normalization.



TABLE II
EVALUATION RESULTS ON FASHION MNIST DATASET FOR IN-DOMAIN

RETRIEVAL.

AP% (mean± std)
VAE RD-VAE Binary RD-VAE CS-VAE

C1 48.48±0.33 89.32±0.46 82.77±2.10 89.94±1.08
C2 65.14±1.61 96.78±0.19 96.55±2.34 97.50±0.32
C3 34.96±0.88 89.20±0.66 83.72±1.28 89.14±1.25
C4 42.22±0.42 91.22±0.35 87.87±0.53 92.72±0.39
C5 36.20±0.41 87.48±0.18 81.02±0.52 90.16±0.84
C6 47.04±2.56 96.86±0.29 97.67±0.23 98.02±0.11
C7 28.68±0.22 76.78±0.55 68.15±0.82 82.22±0.74
C8 56.50±0.99 96.62±0.30 97.37±0.17 97.56±0.30
C9 45.08±3.31 96.82±0.07 97.50±0.23 97.44±0.23
C10 54.08±2.51 96.52±0.19 96.45±0.25 96.76±0.16
Mean 45.83 91.75 89.02 93.14

a b

Positive class              Negative class

Fig. 7. Image representations of Fashion MNIST obtained by applying PCA
on the latent space (three eigenvectors): a) binary RD-VAE, and b) CS-VAE

can be made here too.
By observing the results reported for the Yale dataset in

Table IV it can be seen that, although CS-VAE still achieves
the highest performance, the binary RD-VAE outperforms the
RD-VAE method. This can be due to lower variations in the
images belonging to the negative class.

Experimental results on the X-ray dataset are reported in
Table V. As described in Section IV, on this dataset only
the ND class is considered as the class of interest and,
therefore, only one model is trained for each method and
the AP%s values of all methods are reported. Similarly to
Fashion MNIST and Cifar-10, CS-VAE achieved the highest
performance followed by RD-VAE.

TABLE III
EVALUATION RESULTS ON CIFAR-10 DATASET FOR IN-DOMAIN

RETRIEVAL.

AP% (mean± std)
VAE RD-VAE Binary RD-VAE CS-VAE

C1 19.10±0.32 71.62±0.55 59.57±2.35 76.95±3.48
C2 15.17±0.21 77.77±0.87 68.47±3.85 83.92±2.98
C3 17.07±0.16 59.67±0.53 45.77±0.31 63.07±3.52
C4 13.50±0.12 53.07±0.72 40.12±1.14 58.95±0.26
C5 18.62±0.13 63.05±0.68 49.95±0.81 69.22±3.01
C6 14.77±0.19 62.10±0.50 47.42±0.92 66.57±2.41
C7 19.90±0.25 74.12±0.10 67.17±1.97 81.17±2.99
C8 15.50±0.14 69.57±1.09 61.87±0.86 77.00±1.70
C9 19.45±0.27 78.32±0.95 71.07±0.92 85.75±2.15
C10 16.22±0.14 75.15±1.34 62.47±3.67 81.32±1.86
Mean 16.93 68.44 57.39 74.39

TABLE IV
EVALUATION RESULTS ON YALE DATASET FOR IN-DOMAIN RETRIEVAL.

AP% (mean± std)
VAE RD-VAE Binary RD-VAE CS-VAE

C1 72.20±1.75 98.21±1.98 99.12±1.09 99.20±1.16
C2 74.40±0.74 98.18±1.39 98.92±0.92 99.20±0.91
C3 74.46±1.20 99.52±2.47 100.0±0.00 100.0±0.00
C4 73.32±1.49 99.33±0.38 99.94±0.08 99.84±0.16
C5 73.50±1.11 99.21±1.08 99.98±0.04 99.96±0.08
C6 73.45±0.98 99.03±0.84 99.52±0.66 99.94±0.04
C7 72.68±0.74 98.97±1.89 99.56±0.34 98.48±1.57
C8 74.45±1.97 98.12±0.33 98.90±1.24 99.64±0.53
C9 76.62±2.05 98.30±1.60 98.44±1.48 99.64±0.43
C10 75.91±1.98 98.52±0.67 99.78±0.34 99.96±0.08
C11 77.01±1.40 99.35±0.81 99.72±0.24 99.06±1.17
C12 77.21±0.70 99.01±0.32 99.34±1.12 99.90±0.15
C13 72.23±0.41 99.15±1.09 99.82±0.14 98.70±1.08
C14 74.05±0.76 98.63±0.84 98.10±1.90 99.44±0.30
C15 73.05±1.12 99.24±1.60 99.50±0.63 99.00±1.42
Mean 74.30 98.85 99.37 99.46

TABLE V
EVALUATION RESULTS ON X-RAY DATASET FOR IN-DOMAIN

IMPLEMENTATION.

AP% (mean± std)
VAE RD-VAE Binary RD-VAE CS-VAE

ND 39.05±0.54 75.27±3.03 68.30±1.20 94.50±1.69

B. Out-of-domain CBIR experiments

To evaluate the performance of the proposed method in re-
trieving images belonging to classes that are not present in the
training phase, we also conducted out-of-domain experiments.
To do this, only half of the available classes in the dataset are
used to form the negative class in the training phase, which is
selected randomly. For testing, we used all available classes
in the dataset to form the negative class. Therefore, before
splitting the training data into training and validation sets, half
of the classes (excluding the class of interest) are randomly
discarded. Then, the same experimental protocols and hyper-
parameter selection processes as in the in-domain experiments
are used. The selected hyper-parameters are shown in Table I.
Results: The performance of binary RD-VAE and CS-VAE
on all datasets is reported in Table VI. In all cases, we see
an accuracy drop compared to the in-domain experiments.
However, this performance drop is higher for the binary RD-
VAE. This shows that the proposed CS-VAE is more capable in
learning better latent space representations for data belonging
in unseen during training classes.

TABLE VI
EVALUATION RESULTS FOR OUT-DOMAIN IMPLEMENTATION.

mAP%
Binary RD-VAE CS-VAE

Fashion MNIST 71.39 80.19
Cifar-10 54.02 69.32
Yale 97.85 98.59
X-ray 71.55 93.85



V. CONCLUSION

In this paper, a variant of the VAE was proposed which
is suited for class-specific content-based image retrieval. The
proposed method models the optimization problem of the VAE
to determine a latent space in which the class of interest is
well-discriminated by samples belonging to any other class.
To do this and for preserving as much information as possible
in order to achieve a good reconstruction in its output, the
model learns a discriminative data representation using KLD
and repulsive losses forcing the data belonging to the class
of interest to form a Gaussian distribution, while forcing all
other samples far away from the mean of this distribution.
This method was extensively evaluated over several public
and custom datasets on both in-domain and out-of-domain
retrieval tasks. Three related VAE-based methods were used
for comparisons and the proposed method outperformed them
in all cases.
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lection of classifiers for content based image retrieval,”
International Joint Conference on Neural Networks,
pp. 1–8, 2021.

[10] S. Pang, J. Ma, J. Xue, J. Zhu, and V. Ordonez,
“Deep feature aggregation and image re-ranking with
heat diffusion for image retrieval,” IEEE Transactions
on Multimedia, vol. 21, no. 6, pp. 1513–1523, 2018.
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