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Abstract—Time Series Classification (TSC) has received much
attention in the past two decades and is still a crucial and
challenging problem in data science and knowledge engineering.
Indeed, along with the increasing availability of time series data,
many TSC algorithms have been suggested by the research
community in the literature. Besides state-of-the-art methods
based on similarity measures, intervals, shapelets, dictionaries,
deep learning methods or hybrid ensemble methods, several tools
for extracting unsupervised informative summary statistics, aka
features, from time series have been designed in the recent years.
Originally designed for descriptive analysis and visualization of
time series with informative and interpretable features, very
few of these feature engineering tools have been benchmarked
for TSC problems and compared with state-of-the-art TSC
algorithms in terms of predictive performance. In this article,
we aim at filling this gap and propose a simple TSC process to
evaluate the potential predictive performance of the feature sets
obtained with existing feature engineering tools. Thus, we present
an empirical study of 11 feature engineering tools branched with
9 supervised classifiers over 112 time series data sets. The analysis
of the results of more than 10000 learning experiments indicate
that feature-based methods perform as accurately as current
state-of-the-art TSC algorithms, and thus should rightfully be
considered further in the TSC literature.

I. INTRODUCTION

The goal of Time Series Classification (TSC) is to assign
a class label y from a set Y = {yi} of predefined labels to
an unlabeled time series X = [x1, x2, . . . , xm] which is an
ordered set of real values. The associated machine learning
task is to train a classifier function f on a labeled time series
data set D = {(X1, y1), (X2, y2), . . . , (Xn, yn)} in order to
map the space of possible input series to the class labels of Y .
Then, for an incoming unlabeled time series X , the prediction
of the assignment is given by f(X).

Formulated as such, TSC has been identified as a top-
10 challenging problem in data mining research [1] and
has received much attention in the literature. This particular
attention is due to the overwhelming amount of available time
series data [2]. Indeed, in many scientific fields, measurements
are taken over time. The resulting collection of ordered data

is represented as time series. Thus, times series data arise
from many real-world applications: e.g., in the UCR/UEA
archive [3], audio signal, electrocardiogram, encephalogram,
human activity, image or motion classification are among the
most frequent tasks. In order to solve these tasks, hundreds
of TSC algorithms have been suggested in the past two
decades [4]. Various paradigms have been exploited in the
TSC literature; from simple distance-based Nearest Neighbors
to deep learning architectures and complex hybrid ensem-
ble methods. The very latest contributions [5] indicate that
five methods, HIVECOTE (ensemble methods HC1 [6] and
HC2 [5]), convolutional kernels based ROCKET [7], tree
ensemble TS-CHIEF [8] and deep learning based Inception-
Time [9] achieve top predictive performance.

Besides the numerous TSC algorithms, another research
area has been developed in the recent years, namely time
series Feature Construction (FC). FC approaches are attractive
as they regroup methods for extracting informative and inter-
pretable summary statistics from time series. Features might
be diverse to capture various properties of the time series,
e.g., seasonality, trends, autocorrelation, etc, and thus can be
adapted to various application domains. The pioneering work
HCTSA [10] allows to extract more than 7000 unsupervised
time series features summarizing properties of the distribution
of values in a time series, correlation properties, entropy and
complexity measures, how properties of a time series change
over time, etc. Since then, several unsupervised feature en-
gineering tools have been independently developed in various
programming languages: e.g., C/Python-based CATCH22 [11];
Python-based FEATURETOOLS [12], TSFRESH [13], [14],
TSFEL [15]; and R-based TSFEATURES [16], FEASTS [17].
Originally designed for descriptive analysis and visualization
of time series, their use for TSC problems has been less
studied: e.g., B. Fulcher et al. [18] suggest a linear classifier
based on the feature set generated by HCTSA and on a much
smaller set, CATCH22 [11]. However, to our knowledge, no
extensive study has been led on the effectiveness of existing
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feature engineering tools for TSC problems and how they
compare with the leading TSC performers.

In this article, we address these shortfalls and suggest
several simple learning processes to assess the effectiveness
of feature construction for TSC. Our two-step learning pro-
cesses consist in : (i) transforming the original time series
data into feature-based tabular data using an unsupervised
feature engineering tool (or a combination of tools), and
(ii) learning a supervised classifier on the obtained tabular
data. Figure 1 summarizes the final results of three selected
processes compared with current leaders on 112 UEA/UCR
data sets. Using feature construction is then comparable with
the current state of the art TSC algorithms in terms of
predictive performance (exhaustive details of the experiments
are provided in Section III).

Fig. 1: Critical difference diagram of FC variants against
current state of the art on 112 UCR/UEA data sets. The
average rank is plotted and each contender is annotated by its
mean accuracy results. Thick lines linking group of classifiers
indicate no significant difference in predictive performance.
This demonstrates that suggested FC processes (in red) are
among the best TSC performers.

The rest of the paper is organized as follows: in Section II,
we position our feature construction approach w.r.t. related
work in TSC and feature engineering. The empirical evaluation
and comparison are reported in Section III. We conclude in
Section IV with some perspectives for feature construction in
TSC problems.

II. BACKGROUND

One of the simplest, but also very popular method for TSC
problems is k-Nearest-Neighbors coupled with a similarity
measure, e.g., Euclidean distance or dynamic time warping.
Following these baselines, the TSC literature has grown
tremendously. With the main focus on efficiency and predictive
performance, several paradigms have been exploited:

• similarity-based: generally coupled with 1-Nearest
Neighbor (1-NN), several similarity measures have been
experimented for TSC problems. Elastic similarity mea-
sures provide the best predictive performance as they
allow to tackle with local distortions and misalignments
in time series [19].

• interval-based: from random intervals extracted from
time series, a new feature vector is build and a traditional
classifier is trained. Successful representatives of this
type of method are the ones using multiple intervals and
ensemble classifier, see e.g. [20].

• shapelet-based: the search for sub-sequences highlighting
class separation not depending on when they occur in a
serie has attracted many research efforts since [21].

• dictionary-based: these algorithms build words from slid-
ing windows, then a classifier is learned on the trans-
formed data made of histograms of word counts [22]

• deep learning based: following the success of deep
learning for images and videos, several neural network
architectures have been suggested for TSC [23].

• ensemble-based: to combine the performance of existing
approaches, meta-ensemble classifiers have been designed
and achieved top predictive performance. For exam-
ple, the Collective of Transformation-based Ensembles
(CoTE [24]) and its successors HC1 [6] and HC2 [5]
fall in this category and are also providing structured
overviews of the TSC literature.

As the TSC literature already offers well-structured overviews
of existing TSC approaches, in the rest of the background part,
we will concentrate on the recent top performers. The fol-
lowing algorithms are also the contenders in the experimental
section.

A. Top TSC performers

ROCKET family One of the most promising method from
the past few years is the ROCKET (Random Convolutional
KErnel Transformation) model ([7]), which achieved SOTA
performances with just a fraction of the time needed for
competing approaches. The idea of ROCKET is to use a high
number of random convolutional kernels with random lengths,
dilations, padding and weights, then convolve them with the
time series samples to finally extract two features per kernel,
which are the max and the ppv (proportion of positive values)
for each sample. A linear classifier is then trained on generated
features, either a Ridge or a Logistic regression depending on
the data set size we are dealing with: logistic regression will
generally be preferred working with bigger data sets.

An extension of the ROCKET framework has been further
proposed by the authors in MiniROCKET ([25]), which is
now used as the default ROCKET variant in most analysis.
The goal of MiniROCKET is to reduce, and almost eradicate
randomness from the pipeline. In order to do this, authors
have restricted much more the kernels parameters and only
extract the ppv for each sample, making the algorithm al-
most deterministic. Hence, a pre-defined set of 84 kernels
has been chosen (among the 512 possible ones), which is
supposed to balance accuracy and computational cost. Within
this framework, MiniROCKET achieved about the same level
of accuracy as ROCKET but way faster (up to 75x faster on
larger data sets), making this approach even more competitive
when it comes to computation time and scalability.

One more ROCKET variant has been developed, this time
focusing on predictive performance rather than speed, namely
MultiROCKET ([26]). This algorithm is significantly improv-
ing the overall performance by extracting four features per
kernel: adding to ppv the mpv (mean of positive values), the
mipv (mean of indices of positive values) and the lspv (longest



stretch of positive values). Additionally, those pooling opera-
tors are extracted for one alternative time series representation,
the first order difference. This improvement comes at the cost
of training time, which is approximately 2x slower, generating
by default 5x more features than MiniROCKET.
InceptionTime, a Deep Learning approach The Incep-
tionTime algorithm is one of the current most accurate DL
architecture for TSC ([9]). InceptionTime is an ensemble
of five Inception networks which are using Inception-V4
modules ([27]) which themselves combine classic Inception
blocks as introduced in [28] and Residual Networks (ResNet)
([29]). The InceptionTime network architecture consists in two
residuals blocks, each of which containing three Inception
modules, it is then followed by a global averaging pooling
layer and a fully-connected layer with the softmax activation
function. For further information about DL for TSC, we refer
to the extensive analysis of [23], which review the main DL
algorithms for TSC.
Hybrid/Ensemble methods Ensemble approaches aim at
combining the performance of several classifiers to built
its own prediction. Those types of algorithms are currently
holding the state-of-the-art in term of accuracy on the usual
UEA & UCR benchmark.
The Time Series Combination of Heterogeneous and Inte-
grated Embedding Forest (TS-CHIEF) ([8]), the second most
accurate algorithm, builds random forest of decision trees
whose splitting functions are time series specific and based
on similarity measures, bag-of-words representations, and
interval-based transformations.
The Hierarchical Vote Collective of Transformation-Based
Ensembles HIVE-COTE (HC [6], HC2 [5]) is the current
best performer, training independently and combining several
classifiers, i.e., Shapelet Transform [30], Temporal Dictionary
Ensemble aka TDE [31], an ensemble of ROCKET estimators
called Arsenal and the interval based Diverse Representation
Canonical Interval Forest aka DrCIF [32].
Hybrid ensemble classifiers are the most accurate TSC algo-
rithms to date. However, the top performance comes at the
price of high memory and CPU resources. As a result, they
are generally at least an order of magnitude slower than the
other contenders (see Table III).

B. Feature Extraction tools for time series

Besides previous algorithms dedicated to TSC problems,
some research works proposed to automatically extract un-
supervised features from time series in order to analyze and
visualize the data. Most of them though, are rarely considered
it comes to classification task and are less mentioned in TSC
literature. In this part, we will briefly review the currently
available packages/methods which are extracting some un-
derstandable features from time series data and which could
actually be useful for classification.
Tsfresh, which stands for Time Series FeatuRe Extraction on
basis of Scalable Hypothesis tests, is a library proposing to
use 63 usual times series characterization in order to extract,
at most, around 800 features per sample ([13]). It actually

provides 3 pre-defined features dictionaries whose length
ranging from 10 (minimal set-up, very efficient extraction)
to 800 features. The package also provides some relevance
filter based on some statistical tests to only keep the most
informative variables among the ones you have extracted. The
features computation can be parallelized, theoretically making
the method more scalable.
tsfel:The Time Series Feature Extraction Library is a more
recent work which, similarly extracts a bunch of features from
time series. Its specification is that it allows you to separate
your data into user-specified window length and provides some
better tools in order to analyse the temporal complexity of the
extracted features. In tsfel, one can compute features according
to their domain, the available domains are: temporal, spectral
and statistical one or to extract them all at once.
catch22 & hctsa: The CAnonical Time series CHaracteristics
(catch22) is a subset of 22 variables from the 7730 available
features in the hctsa toolbox ([18]), which is originally a
matlab package, able to extract up to nearly 7700 time series
features. This limited set of features has been empirically se-
lected over a large collection of datasets in order to choose the
most explanatory ones and are, as well, minimally redundant.
This approach take just a fraction of the computation time
needed to compute and analyse the all hctsa set of features.
Authors exhibit the fact that concerning classification, the
average performance reduction is only around 7% ([11]).
tsfeatures: Originally a R package ([16]), the tsfeatures library
is used to extract various type of features for time series data.
The package implements around 40 methods in order to extract
features, ranging from entropy to hurst exponent. A python
version of the package is also available, we did not perform
any time performances comparison between the two versions.
feasts: The Feature Extraction and Statistics for Time Series
(feasts) ([17]), looks very similar to tsfeatures. This R package
provides tools for the analysis and visualization of time series.
There is no python implementation of the package.
Featuretools is an open-source Python library, which per-
forms auto-features engineering based on relational tables.
The library is built upon a feature discovery algorithm called
Deep Feature Synthesis ([12]), which uses some aggregation
and transform functions applied over several related tables, to
create features. Working with temporal data with featuretools
is quite natural, it includes many date based operations as
well as some of the tsfresh functions. While the features
computation can be perform on multiple threads, the discovery
though, cannot ; which make the method not very scalable
when generating a large number of features. Additionally, one
can remark that there is no way to prevent features generation
from overfitting, generate very complex features may indeed
results in learning some training set specificities and thus
degrade classification performances.
Generalised signatures: The signature transform is an infinite
collection of statistics for sequential data representation and/or
feature extraction derived from rough paths theory. The signa-
ture can be thought as a moment generating function, as each
term in the collection has a particular (geometrical) meaning



as a function of data points. Usually, one compute the N trun-
cated signature of x = (x1, ..., xn), with xi ∈ Rd and linearly
interpolate x into the path f = (f1, ..., fd) : [0, 1] −→ Rd. The
signature of depth N of x is defined as follows:

Sig
N

(x) =


 ∫

· · ·
∫

0≤t1≤...≤tk≤1

k∏
j=1

df
ij

dt
(tj)dt1...dtk


1≤i1,...,ik≤d


1≤k≤N

(1)

The depth-1 terms (k = 1), for example, simply represent
the total increments (difference between end and start point)
over each dimension. When it comes to TSC, the generalised
signature pipeline ([33]), which has primarily been designed
for multivariate series (d > 1), computes the signature
transform over some hierarchical dyadic windows, to finally
concatenate the outputs into the feature vector. This approach
has shown to be competitive compared to state-of-the-art
classifiers.

III. EXPERIMENTAL VALIDATION

In order to explore the potential of feature construction for
TSC problems, the experiments carried out in this paper have
been designed to answer the following questions:

• (Q1) How do the various FC tools compare with each
other in terms of predictive performance and time effi-
ciency ?

• (Q2) In which extent using the new features perform
better than raw original data ?

• (Q3) Is it beneficial to combine several feature engineer-
ing tools ?

• (Q4) How does feature construction based methods com-
pare with state of the art TSC methods ?

Aiming at the full reproducibility of the experiments, we
first present the details of our experimental protocol then dis-
cuss the obtained results. A dedicated webpage with the source
code and scripts to run the experiments is also available 1.

A. Experimental protocol

Data sets. We have conducted our experiments on the usual
time series classification benchmark. We ran our experiments
on 112 data sets out of the 128 ones which are available in the
UCR Time Series Classification Archive ([3], [34]). Indeed,
data sets with missing values or with times series of unequal
length have been excluded from the current study, as well as
the Fungi data set which only contains one instance per class
in the training set.
Feature engineering tools. As one of the main goal is to
compare several feature extraction methods, it is more suitable
to separate the feature generation step from the classification
one. Thus, we decided to include in this study only the
unsupervised methods, which can be easily used with any
classifier (see Table I). We removed deep learning approaches
from our study, since generative models like AutoEncoders
require very high CPU resources – which leads to hardly
fair comparison – and, as highlighted in [23], their predictive

1https://github.com/aurelien-renault/Automatic-Feature-Engineering-for-TSC

performance on TSC problems is mitigated. In addition, based
on the TSF, CIF algorithms, as in [46], we have included two
methods for extracting some set of descriptive statistics on
random sampled intervals i.e. subseries. Nevertheless, since
we want to be able to use any off-the-shelf classifier, we are
extracting the whole set of features on all the sampled intervals
rather than learning one Decision tree on some features subsets
as is TSF, CIF.

Finally, we tested a large panel of libraries which are the
following:

• ROCKET and its variants ([7], [25], [26]),
• Intervals Transform (which simply apply a summary

transformation over multiple random intervals)
• Intervals Catch22 (catch22 features from random inter-

vals)
• TsFreh ([13]),
• Tsfel ([15]),
• Catch22 ([11]),
• TsFeatures ([16]),
• FeatureTools ([12]),
• Signature ([33])
• Feasts ([17]),
• HCTSA ([18]).

Experimental parameters and classifiers. In order to keep
the comparison as fair as possible, we evaluated the different
methods limiting the number of features to 1000. Of course,
not all libraries generate this number of extracted features
(see Table I), tsfresh for example, cannot generates more than
794 features without explicitly telling it what to compute.
When available, the transformations algorithms have been run
using the sktime package ([47]). Hyperparameters values
are reported in Table II. All experiments have been computed
using a single thread of a 4-core 2GHz Intel Core i5-1038NG7
CPU, except for hctsa which used 4 workers, with 16Go RAM.
Once all the features matrices have been computed, we applied
9 different classifiers, Random Forests (100, 500 trees), Lo-
gistic Regression (ℓ2, elasticnet penalties), XGBoost, SVM
(linear, rbf kernel), 1 Nearest Neighbors and Rotation Forest
with every other parameters being the default ones, from
the sklearn library ([48]), except for the Rotation Forest
classifier, which is in the sktime package [49].
Evaluation methodology. We use pre-defined train/test sets
available from the UCR archive and the accuracy as the
predictive performance evaluation measure. This way, the
comparison with state of the art methods like HC1, HC2,
TSChief and InceptionTime – which are computationally ex-
pensive – is feasible as we report the results from the original
papers. To compare different approaches over several data sets,
critical difference diagrams have been drawn using the post-
hoc Nemenyi rank based test. Although [50] suggests to use
the Wilcoxon signed-rank test with the Holm correction in
place of the Nemenyi one, the diagrams drawn this way have
been found to be unreadable quite often as it contained some
overlapping cliques, as the Wilcoxon signed-rank test is not
based on mean ranks, the analysis could have been confusing.
Though, we display, when needed, alongside critical Nemenyi

https://github.com/aurelien-renault/Automatic-Feature-Engineering-for-TSC


Category Transformers max features unsup embed clf repr sktime

Pre-defined

hctsa [18] 7730 ✓ ✗ ✓ ✗

tsfresh [13] 794 ✓ ✗ ✓ ✓

tsfel [15] 390 ✓ ✗ ✓ ✗

tsfeatures [16] 37 ✓ ✗ ✓ ✗

feasts [17] 33 ✓ ✗ ✓ ✗

catch22 [11] 22 ✓ ✗ ✓ ✓

Constructed
featuretools [12] inf ✓ ✗ ✓ ✗

fears [35] inf ✗ ✓ ✓ ✗

Signature gen. signature inf ✓ ✗ ✗ ✓

Convolution
shapelet [36] n shapelets ✗ ✗ ✗ ✓

rocket [7] inf ✓ ✗ ✓ ✓

Symbolic
(SFA)

BOSS & cie ([37], [38], [39]) cl ✗ ✗ ✗ ✓

WEASEL [40] c2l ✗ ✗ ✗ ✓

(SAX) BOP [41] cl ✓ ✗ ✗ ✓

Intervals
TSF [42] 3r

√
m ✗ ✓ ✗ ✓

CIF [43] 25r
√
m ✗ ✓ ✗ ✓

Deep
Learning

AE/VAE [44]
latent dim

✓ ✗ ✗ ✗

TS2Vec [45] ✓ ✗ ✗ ✗

TABLE I: Comparison table of several time series transformation methods. (max features: maximum number of generated
features, unsup: unsupervised features extraction, embedded clf: use a specific classifier, i.e. can not be used with any off-the-
shelf classifier, repr: use of different TS representations, - sktime: present in sktime framework (0.13.0)

Methods Parameters Nb features
rocket n kernels : 500 1000

minirocket n kernels : 1000 924

multirocket
n kernels : 125

1008
n features per kernel : 6

intervals
n intervals : 100

1000agg : [mean,min,max, sum,med, std

count, skew, quant(0.25), quant(0.75)]

intervals c22 n intervals = 45 1000

featuretools

agg : [mean,min,max, sum,

50
median, std, count, skew]

transf : [D,DD,CUMSUM,

DCUMSUM,ACF, PS]

featuretools 1k col combinations : [add, substr,mult] 1000

signature
window name : dyadic

930
window depth : 4

hctsa n features : 1000 1000
catch22

default parameters

22
feasts 33

tsfeatures 37
tsfel 142-390

tsfresh 789

TABLE II: Libraries’ hyperparameters values

diagrams, the binary matrix showing explicitly the Holm
adjusted pairwise Wilcoxon comparison for each considered
methods (see subpart (b) of figures). In these charts, the small
black squares identify pairs of approaches that do not differ
significantly in performance.

B. Experimental results and Discussion

Performance comparison of feature engineering tools. Due
to space limitation, we only report charts for three classifiers:
Random Forests, Rotation Forests and Logisitc Regression.
For a default Random Forest classifier, the best performing
methods are the ROCKET-like methods, tsfresh, hctsa and the
random intervals extracting the catch22 features.(see figure 2).

When dealing with linear classifiers though, the ROCKET-
like approaches become significantly better than the other
tested methods as they are likely to generate independent
kernels (see Figure 3). On the other side, the tsfresh/hctsa
features are more likely to be correlated, which can partially
explain that best classifiers are non linear ones such as
Random Forest or XGBoost. It’s also worth noting that data
is standardized before being processed by linear classifiers,
as they usually embed penalization, which make some of the
extracted features useless.

We are also displaying the results obtained for the Rotation
Forest classifier [51] (see Figure 4), which is actually the best
performer for the great majority of the tested libraries, even if
generally less scalable.
Running times comparison. When considering computation
time, we observe a clear trend: as expected, all the ROCKET-
features based methods outperform the others in term of both
time per feature and overall run time. In average the ROCKET-
like methods take less than half a second for one given data set.
Among the less scalable methods, we find libraries as hctsa,
feasts or tsfeatures, as those are designed for analysis and



(a) Critical diagram labeled with mean accuracy

(b) Corrected pairwise comparison

Fig. 2: Random Forest

(a) Critical diagram labeled with mean accuracy

(b) Corrected pairwise comparison

Fig. 3: Logistic Regression

visualization rather than large scale extraction to be include in
a automatic classification pipeline. Hctsa average run time,
for example, is around 10 minutes for one data set (see
Figure 5a), feasts take more than 4 seconds to extract one
feature, which make them the worst scalable libraries among
the tested methods. Furthermore, one can notice that bringing
featuretools from 50 to 1000 generated features slow down
the algorithm, doubling the time/feature metric (see Figure
5b), which validate the previously mentioned hypothesis made

(a) Critical diagram labeled with mean accuracy

(b) Corrected pairwise comparison

Fig. 4: Rotation Forest

about the library scalability.

(a) Critical diagram labeled with mean run time in seconds

(b) Critical diagram labeled with mean time/feature in seconds per
feature

Fig. 5: Computation time performances

C. Raw data, feature construction or both

In order to put some more perspective on our results we
analyze the performance when using only the raw time series,
i.e. each time point is considered as one feature, as well as the
concatenation of the raw data with the extracted features and
compare those with the previously obtained results, only using



the computed features. Considering these three strategies,
the first conclusion is that, extracting features, no matter
which method is used, outperforms practically every time a
classification only based on the raw time series. As well,
Figure 6 demonstrates that, on average, across all strategies
for all classifiers, adding the raw data to the feature matrix is
performing significantly better.

(a) Strategies comparison: raw data (RAW), with Feature (FTS) and
RAW+FTS, for all classifiers

(b) Strategies comparison for minirocket feature, for all classifiers

Fig. 6: Performance comparison: adding the raw time series
or not labeled with mean accuracy

A more in-depth analysis actually shows that this improve-
ment can be explained by the libraries which tend to generate
correlated features. Indeed, in those cases, the best classifiers
are the ones that are less sensitive to feature correlation and
redundancy, i.e. Random Forest or XGBoost; adding the values
of the time series (which could be correlated), when the length
of the considered time series remains under a certain threshold,
is improving performance in a significant way. However, as
the time series length grows, this adding tends to add more
noise and, at some point, harm performances, in Figure 7, we
are displaying the performance only considering data sets for
which the length of the time series are below/above the median
length of the UCR repository.

Additionally, one can notice that, only working with data
sets whose time series length are beyond the third quartile
(around 28 datasets), the overall performance is much de-
graded and adding the raw data is then ranked behind the FTS
strategy. The methods for which linear classifiers were the best
never benefit from the raw data: even if some classifiers handle
this incorporation better (adding a ℓ1 penalty for example),
they are able, at best, not to degrade the performance too much.

D. Combining libraries

In this part, we define one strategy in order to figure out
if performance can be improved by combining several feature
engineering tools. To keep things simple, the tested approach
consists in gradually stacking the different methods, ranked
by one given metric, here accuracy, obtained with a vanilla
Random Forest classifier. We are not considering the whole
set of ROCKET-like methods any longer, we decided to only
retain the 1000 features created by MiniROCKET in a fisrt
experiment, before completely deleting MiniROCKET features

(a) ts length < 315

(b) ts length > 315

(c) ts length > 720

Fig. 7: Accuracy results for all strategies on all classifiers
considering time series length

in a second one. Indeed, as ROCKET represents, a TSC
approach on its own, we wanted to address whether or not
our features set could still be competitive not using this great
performing classifier. Additionally, to reduce computation time
and redundancy, the expanded version of featuretools (with
1000 features) is also removed, as it did not provide any
more significant information than its lighter version (with 50
features).

(a) Rotation Forest, the best ranked strategy is called: Features

(b) Rotation Forest, without ROCKET methods, the best ranked
strategy is called: Features noROCKET

Fig. 8: Critical diagrams labeled with mean accuracy
Only the first and last library are displayed, one underscore stands for one
in-between library like in the following :
TSFRESH + + HCTSA = TSFRESH + INTERVALS C22 + HCTSA.

It seems intuitive that stacking the different features ones
onto others will probably add redundancy; in this way classi-
fier like random/rotation forest seem to better fit this purpose
([49]), we only reports the results for the Rotation Forest
in what follows as it provided best performance so far. For
this classifier, the best stacking strategy both in terms of
ranks and mean accuracy (see Figure 8a) is the ones using



8 tools from the all library set, excluding the ones which
are not performing well on their own i.e. catch22, feasts
and tsfeatures, which are also the ones creating a limited
number of features. When removing MiniROCKET features,
some of those libraries become informative and the best
strategy, without MiniROCKET, is now containing the all
libraries set, only excluding tsfeatures (see Figure 8b). The top
performers of both of these experiments are called Features
and Features noROCKET respectively in what follows. Those
strategies though, are not performing significantly better that
stacking the two or three best libraries ones onto others.

E. Comparison with state of the art TSC approaches

We are now interested in comparing the obtained per-
formance using our previously defined feature generation
libraries with state-of-the-art methods, we can see that our
methods are not the worst performers (See Figure 9). With
the Rotation Forest algorithm (with default parameters) our
main approach, noted Features, is ranked second among the
six others methods, with a the fourth mean accuracy on 112
data sets from the UCR Archive with default train/test splits.
Actually, under Nemenyi test, the method is the only one not
significantly performing worst than the current most accurate
method, namely HIVE-COTE 2.0 (HC2). Figure 10 gives
additional results by comparing Features to four of the best
TSC using 1vs1 scatter plots with standard ±5% to highlight
notable difference of performance.

As the selected approach contains in itself some SOTA
method with MiniROCKET features, we are also providing
results when optimizing combining strategy without it. The
Features noRocket approach is, under Holm’s correction, as
InceptionTime, not significantly worst than HC2: it remains
competitive, only loosing 0.2% of mean accuracy comparing to
its MiniROCKET version. Replacing MiniROCKET features
comes also at the price of around 12 hours more in total
training time from features extraction step.

Concerning scalability, Table III demonstrates that the op-
timal combination of features take a relatively long time
to train on the default splits, indeed, it includes the worst
scalable methods, i.e. the non-python ones such as hctsa
and feasts. When using only the python available libraries
(Features python), we are roughly dividing the total time by
2, it comes at the cost of exactly 0.1% of average accuracy,
not loosing any rank compared with the SOTA classifiers.
This approach though, becomes significantly worst than HC2.
Moreover, it is worth-noting that these train time values do
not include features extraction step on the test set, which
would actually considerably increase the total time (see Table
IV). That being said, even by considering complete feature
extraction on both train and test set, our approaches remain
substantially faster than HC2 for similar predictive perfor-
mance on the default split, according to both Nemenyi test
and Holm’s corrected Wilcoxon signed-rank test.

(a) Critical diagram labeled with mean accuracy

(b) Corrected pairwise comparison

Fig. 9: Predictive performance comparison with state-of-the-
art TSC algorithms

Algorithm Total (h) Average (min)
ROCKET 2.85 1.53

Features python 25.15 13.47

Arsenal 27.91 14.95

Features 46.16 24.73

Features noROCKET 47.62 25.51

InceptionTime 86.58 46.38

HC2 340.21 182.26

HC1 427.18 228.84

TS-CHIEF 1016.87 544.75

TABLE III: Run time to train on a single split on the 112 UCR datasets.
For all competitors algorithms, the value for each dataset is the median taken
over 30 different resamples. For our approaches, written in red, the value is
the one for the default train/test split.

Algorithm Extraction Extraction Classifier
train (h) test (h) Fit (h)

Features python 15.82 37 9.33

Features 34.05 79.58 12.11

Features noROCKET 38.74 90.1 8.88

TABLE IV: Run time details of the proposed approaches. Training time is
the sum of first and third column.

IV. CONCLUSION

In this paper, we aim at exploring the potential predictive
power of feature construction (FC) for time series classification
(TSC). To this end, we have designed simple processes to
branch existing feature engineering tools with standard clas-
sifiers. We have led extensive experiments resulting in the
comparison of 11 feature engineering tools branched with



Fig. 10: Scatter plot of accuracy results comparison: our approach “Features” vs state of the art TSC algorithms HiveCote2
(HC2), ROCKET, InceptionTime and TS-CHIEF

9 classifiers over 112 TSC problems – totalling more than
10000 learning experiments. The analysis of the experimental
results indicates that (i) using feature engineering leads to
better predictive performance for a given standard classifier,
(ii) combining several unsupervised feature engineering tools
with the rotation forest classifier is comparable with the best
TSC performers in terms of predictive performance while
demanding reasonable computing resources. The predictive
and efficiency results of the suggested approaches also indicate
that feature construction fot TSC is a valuable option to pursue.
Indeed, it might be naturally extended to multivariate TSC
problems – extracting the same feature set over each dimension
or, e.g., randomly sampling some subsets of features in the
case of high dimensional data sets. Also, another perspective
would be to filter redundant or correlated features to speed up
the learning phase.
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