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Abstract—Deep learning models can be fooled by small lp-norm
adversarial perturbations and natural perturbations in terms of
attributes. Although the robustness against each perturbation has
been explored, it remains a challenge to address the robustness
against joint perturbations effectively. In this paper, we study the
robustness of deep learning models against joint perturbations by
proposing a novel attack mechanism named Semantic-Preserving
Adversarial (SPA) attack, which can then be used to enhance
adversarial training. Specifically, we introduce an attribute ma-
nipulator to generate natural and human-comprehensible per-
turbations and a noise generator to generate diverse adversarial
noises. Based on such combined noises, we optimize both the
attribute value and the diversity variable to generate jointly-
perturbed samples. For robust training, we adversarially train the
deep learning model against the generated joint perturbations.
Empirical results on four benchmarks show that the SPA attack
causes a larger performance decline with small l∞ norm-ball
constraints compared to existing approaches. Furthermore, our
SPA-enhanced training outperforms existing defense methods
against such joint perturbations.

Index Terms—Adversarial Examples, Natural Perturbation,
Adversarial Perturbation, Robustness

I. INTRODUCTION

Deep neural networks (DNNs) have achieved significant
breakthroughs in a variety of domains and tasks, such as
computer vision [1], [2], and natural language processing
[3]. However, DNNs are found to be susceptible to adver-
sarial samples, which are crafted by adding small adversarial
perturbations to natural samples [4]. Later studies suggested
that such vulnerability of DNNs exists over a wide range
of security-sensitive applications [5], which highlights the
significance of building robust deep learning models.

Robust deep learning aims to make accurate predictions on
unseen samples with perturbations. Adversarial training [4],
[6] proves to be a most effective strategy against adversarial

*These authors contributed equally to this work.
†Corresponding author.
This paper is accepted by the 2023 International Joint Conference on Neural

Networks (IJCNN 2023).

Decision boundary

𝛼=1

𝛼∗=0.5

𝛼=-1 Original smallest 
adversarial noise 𝜹

𝜹∗ = 𝜹"#$.&	𝒛#𝒛!
𝒛)

𝒛*∗

𝒛+

Fig. 1: An illustration of SPA attack. The attribute value α (e.g.,
the extent of smiling) and adversarial diversity variable z are jointly
optimized in attribute space and adversarial space to find a valid
jointly-perturbed sample with smaller lp-norm adversarial noises δ.

samples [7]–[9] and is widely adopted for building robust
deep learning models [10]–[12]. The idea of adversarial train-
ing is to train the target model by incorporating adversarial
samples. The adversarial training process mimics adversaries
to constantly attack the target model. And the target model
gradually learns to be robust against all attacks (i.e., adver-
sarial samples) from the adversary. Therefore, it is essential
to find threatening adversarial samples with subtle adversarial
noise, which could effectively cause mis-predictions. This
work enhances the robustness of deep learning models against
different perturbations by proposing a novel and strong attack
mechanism for adversarial training.

Although most existing works on adversarial attacks aim
to find imperceptible lp-norm adversarial noises, adversarial
noises added to data are large to perceptible in many cases
(e.g., ε = 0.3 for MNIST [13] dataset). Otherwise, the
adversarial attack may fail. Therefore, existing works usually
consider a relatively large size of lp ball to achieve successful
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adversarial attacks. This work designs an attack mechanism to
find smaller yet viable adversarial perturbations.

Besides malicious adversarial perturbations, DNNs might
also encounter natural perturbations measured by attributes in
the real world. For example, object-level transforms, such as
the degree to which a person smiles, or geometric transforms,
such as the rotation of images, that commonly appear in
the real world are not accounted for by adversarial pertur-
bations. Natural perturbations along these attributes preserve
the semantic classification information and are thus semantic-
preserving. For instance, changing the extent of smiling of a
person in a gender classification task, or changing the rotation
angle of a digit in a digit classification task, generates a
natural-looking image and will not lead to a change of the
true class label. Yet, authors in [14], [15] find that intentional
perturbations along these attributes are also likely to cause
model performance to decline. Although such performance
decline is much smaller compared to that of adversarial
perturbations, natural perturbations can be used for attacks.
Moreover, it is shown that the robustness against natural
perturbations is independent of adversarial robustness [16].
That is, classifiers trained with only adversarial samples are not
robust against natural perturbations, and vice versa. Therefore,
we aim to train a target model that is robust against both types
of perturbations.

In this work, we address the robustness against both pertur-
bations by proposing a novel generator-based adversary named
Semantic-Preserving Adversarial (SPA) attack that generates
jointly-perturbed samples. Figure 1 illustrates the idea of the
proposed attack. SPA attack maximizes the exposure of the
target model to variations in both attribute space and adver-
sarial space. The attack framework consists of an attribute
manipulator for natural perturbations and an adversarial noise
generator for diverse adversarial perturbations. By modify-
ing the class-irrelevant attributes of the images, SPA attack
searches semantic-preserving samples that are more vulnerable
to adversarial attacks. Then, SPA attack finds valid adversarial
noises under stringent lp norm-ball constraints by exploring the
adversarial diversity variable. Based on the proposed attack
mechanism, we further design a robust training approach,
which addresses a min-max optimization and adversarially
trains the target model against joint perturbations. Empirical
studies in Section V verify the effectiveness of our SPA attack,
and demonstrate that our SPA training can provide superior
protection against joint attacks compared to previous methods.

The major contributions are summarized as follows:

• We present a novel attack mechanism named Semantic-
Preserving Adversarial (SPA) attack that considers the
problem of robustness against joint perturbations in the
pixel space as well as a set of specified attributes in the
attribute space.

• We propose SPA training as robust training by solving a
min-max optimization problem and jointly exploring the
pixel space and the attribute space in novel ways without
access to the test domain.

• We introduce two surrogate functions for attribute ma-
nipulation on two classical semantic-preserving natural
perturbations: geometric transformations and objective-
level transformations.

• We empirically demonstrate the effectiveness of our pro-
posed approach on four public datasets.

The rest of this paper is organized as follows. We briefly
review the related work in Section II and provide the definition
of this problem in Section III. Then, we introduce our approach
for attack and defense in Section IV. Finally, we discuss the
experiment results on MNIST, FashionMNIST, CelebA, and
SICAPv2 datasets in Section V.

II. RELATED WORK

In this section, we investigate the related work on adversar-
ial attacks and training, attribute robust training, and attribute
manipulation.

A. Adversarial Attacks and Training

As a pioneering work, Szegedy et al. [17] initially observed
that deep learning models are vulnerable against imperceptible
adversarial perturbations. While adversarial training could be
formulated as a min-max optimization mathematically, it is
a huge challenge to solve the inner maximization (e.g., the
generation of adversarial examples). Goodfellow et al. [4]
proposed Fast Gradient Sign Method (FGSM) to generate
adversarial examples with the sign of gradient in a one-step
manner. However, the model trained with FGSM-generated ad-
versarial examples suffers from catastrophic overfitting [18],
[19]. For further enhancing the strength of attacks, an iterative
FGSM variant Basic Iterative Method (BIM), was proposed
in [5]. And CW attack [20] then took a direct optimization
approach to find adversarial samples, which broke the distil-
lation knowledge defense for the first time. Later, Madry et
al. [6] proposed PGD attack, which is considered to be one
of the most powerful first-order attacks for approximating the
optimal value of the inner maximization problem.

More recently, approaches based on learning-to-learn (L2L)
[21]–[23] are proposed to improve adversarial training.
L2LDA [24] further introduced a diversity variable to generate
diverse adversarial noises and update the adversarial noise
recursively. Their adversarially trained ResNet was shown to
outperform the ResNets trained by CW, L2L and PGD on
CIFAR-10. Such adversarial attacks perturb the pixel space un-
der lp norm-ball constraints, yet may fail when the constraints
get much more stringent. On the contrary, we approach the
problem of generating jointly-perturbed samples with smaller
adversarial perturbations. Following the literature, we use
several state-of-the-art attacks from CW [20] and L2LDA [24]
as our benchmarks.

B. Attribute Robust Training

Recently, there has been an increasing interest in the ro-
bustness against natural perturbations in terms of attributes,
which are perceptible shifts in the data but still are natural-
looking, and enough to fool a classifier [25]. Liu et al. [26]



proposed to perturb physical parameters that underlay image
formation to produce natural perturbations sensitive to physical
concepts like lighting and geometry. [14] proposed to generate
natural perturbations by modifying multiple specified attributes
with a conditional generative model. [15] proposed to perturb
the attribute space to synthesize new images and maximize
the exposure of the classifier to the attributes space. However,
such attacks only cause limited performance decline and do not
result in severe model failure as pixel-level adversarial attacks
do [15], especially when few attributes are valid. Contrary
to these approaches, we address the robustness against both
perturbations by considering a novel and powerful attack
that jointly leverages attribute perturbations and adversarial
perturbations.

C. Attribute Manipulation

There are various approaches for manipulating attributes
in images. Conditional Generative Adversarial Networks [27]
use an encoder-decoder architecture to learn attribute invariant
latent representation and disentangle attributes for attribute
editing. Matrix Subspace Projection (MSP) [28] is proposed to
factorize the latent space for attribute manipulation effectively.
Spatial Transformer Networks (STN) [29] uses a localization
net to conduct precise spatial transformation.

III. PROBLEM FORMULATION

We begin by defining a classifier parameterized by θ as
fθ : X → Y , where X denotes the space of the image
data and Y denotes the label space. Labeled data (x,α,y),
where x denotes the input image, α denotes the annotated
attribute value, y denotes the class label. Table I summarizes
the notions used in this paper.

The objective of this paper is to build a classifier fθ that
is robust to both 1) adversarial perturbations, which are l∞-
bounded in the pixel space, and 2) natural perturbations along
specific attributes α that is specified a priori.

We categorize semantic-preserving natural perturbations
into two major types - (a) Geometric transformations, where
images are manipulated by affine transformations such as
rotation, scaling, and shifting. (b) Object-level transforma-
tions, where general attributes of the objects in images are
manipulated without changing the semantic information of the
class labels, such as changing the extent of smiling or hair
color of a person in a gender classification task. Geometric
transformations have explicit generative mechanisms, allowing
us to conduct accurate natural perturbations. However, we
do not have access to the true generative mechanisms for
objective-level transformations. Therefore, we need to ap-
proximate the objective-level transformations by training a
conditional generative model.

The classification loss of the target classifier fθ can be
defined as a cross-entropy loss:

L(x,y; θ) = yT log f(x; θ), (1)

where f(x; θ) outputs the predicted probabilities for x. We
simplify the loss as L(x) without causing confusion.

TABLE I: Notations

Notations Descriptions

x The input features
y The labels
α The attribute values
z The diversity variable of adversarial noises
fθ The classifier parameterized by θ
gφ The adversarial noise generator parameterized by φ
hψ The attribute manipulator parameterized by ψ
L The loss function
ε The l∞ norm of adversarial noise

This task can be formulated as a min-max optimization of
a saddle point problem:

min
θ∈Θ

E(x,y)∼D

[
max

x̃∈Xspa(x)
L(x̃,y; θ)

]
, (2)

where Xspa(x) is a set of admissible attacks of x with
natural perturbations in the attribute space along the specified
attributes α as well as lp-bounded adversarial perturbations in
the pixel space.

Eq. 2 solves a min-max optimization problem. The inner
maximization aims to generate jointly-perturbed samples with
both perturbations that maximize the classification loss, and
the outer minimization corresponds to finding model param-
eters that minimize the loss on jointly-perturbed samples
found by the inner maximization. The success of finding the
optimal θ∗ that minimizes Eq. 2 crucially relies on solving the
(non-concave) inner optimization problem. In this work, we
focus on the inner maximization problem of Eq. 2 to achieve
robustness against both perturbations. To conduct attacks,
we propose an architecture that generates and effectively
optimizes diverse natural and adversarial perturbations.

IV. PROPOSED APPROACH

Conceptually, generating jointly-perturbed samples with
both natural and adversarial perturbations of an image can be
broken into two sub-problems: (a) effective navigation on the
attribute space and the lp-bounded pixel space, and (b) joint
optimization of attribute values and adversarial noises over
both attribute and pixel spaces. We address each problem in
detail below.

A. Joint Perturbation Models

First, let us consider the problem of generating jointly-
perturbed samples with both natural and adversarial perturba-
tions, via navigating on the attribute space and the lp-bounded
pixel space. We design a sequential architecture to perform
joint perturbation, as shown in Figure 2.

Attribute Manipulation. We adopt a differentiable attribute
manipulator hψ : X × A → X , conditioned on a semantic
attribute space A, to conduct attribute manipulation. hψ takes
an image x and an attribute vector α as input, and generates
perturbed image xattr with the specified attribute. hψ is
trained with the annotated training data (x,α).

For objective-level transformations, we leverage MSP [28]
to build hψ . An encoder network encodes the input image
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Fig. 2: An illustration of the Semantic-Preserving Adversarial (SPA) attack. The attribute manipulator hψ and the noise generator gφ
sequentially conduct natural perturbations and adversarial perturbations. The attribute value α (e.g., the extent of smiling) and adversarial
diversity variable z are jointly and iteratively optimized to generate jointly-perturbed samples.

into attribute-invariant features and attribute-related features.
Matrix subspace projection modifies the attributes of interest to
specified values α. Then, a decoder network decodes the mod-
ified features into the desired image with specified attributes.
For geometric transformations, the attribute manipulator is
built with STN [29]. The input images are first normalized by
STN with attributes predicted by an attribute predictor, which
is pre-trained with the annotated attributes in training data.
Then an STN is used to conduct affine transformation on the
normalized images to specified attributes.

Adversarial Noise Generation. To explore novel and hard
adversarial samples, we explicitly train an adversarial noise
generator gφ : X × Z → S to generate diverse adversarial
noises δ ∈ S , conditioned on a diversity variable z ∈ Z ,
where S the lp-ball with ε size and Z the diversity variable
space. For a stronger attack, the adversarial noise generator
gφ can be further enhanced by adding ∇xL(x) the gradient
of the image, y the class label, and δ the noise of the image
as input. Therefore, the adversarial noise can be recursively
generated by:

x̃(t+1) ← ProjS∪X (x
(t) + εstepgφ(x, z;y, δ

(t),∇xL(x̃(t)))),
(3)

where ProjS∪X (·) denotes the projection of its element to lp-
ball S and a valid pixel value range, δ(t) is the noise accumu-
lated up to t-th step, and εstep denotes the step size smaller
than ε. We adopt a diversity loss to encourage generating
diverse adversarial noises [24], [30]:

Ldiv =
1
T

∑T
1 ||x̃(t)(z1)− x̃(t)(z2)||1
||z1 − z2||1

, (4)

where x̃(t)(z) denotes the adversarial samples generated by
Eq. 3 with z, and z1, z2 are two i.i.d. samples of z.

Given the above models, we define a semantic-preserving
adversarial attack as the process of transforming an input
image x via attribute perturbation xα = hψ(x,α) and
adversarial perturbation δ = gφ(xα, z) to produce a new
sample x̃α = xα + δ, such that f(x̃α) 6= y. Therefore, we
reformulate Eq. 2 as an optimization of the following problem:

min
θ∈Θ

E(x,y)∼D

[
max

α∈A,z∈Z
L(xspa, y; θ)

]
(5)

s.t. xspa = ProjS∪X (hψ(x,α) + εgφ(hψ(x,α), z)),

Algorithm 1 Semantic-Preserving Adversarial (SPA) Attack

Input: Image x, ground-truth label y, pretrained attribute
manipulator and noise generator hψ, gφ.

Output: SPA sample xspa.
1: Initialize α(0), z(0)

2: for i in range [0, I) do
3: x

(i)
attr ← hψ(x,α

(i)).
4: for t in range [0, T] do
5: x̃

(i,t+1)
attr ← ProjS∪X (x

(i)
attr+

εstepgφ(x
(i)
attr, z

(i);y, δ(t),∇xL(x̃(i,t)
attr)))

6: end for
7: x̃

(i+1)
attr ← x̃(i,T )

8: α(i+1) ← α(i) +∇αL(x̃(i+1)
attr )

9: z(i+1) ← z(i) +∇zL(x̃(i+1)
attr )

10: end for
11: xspa ← Repeat Step 3-6 with α = α(I), z = z(I).

B. Iterative Parameter Optimization

Having access to the attribute manipulator and the noise
generator, we focus on solving the inner optimization in Eq. 5.
Note that the success of robust training relies on generating
strong perturbations in terms of attributes and adversarial
noises. Algorithm 1 demonstrates the optimization of the
attribute value and diversity variable for finding SPA samples
xspa. Step 3-6 conducts attribute manipulation and adversarial
noise generation sequentially. Then, we project the adversarial
loss onto the attribute space and the diversity variable space,
by cascading the output of the attribute manipulator, noise
generator, and target classifier. The optimization is conducted
by back-propagation over the classifier fθ and perturbation
models hψ, gφ.

Algorithm 1 efficiently explores a larger parameter space
and generates stronger jointly-perturbed samples, compared to
previous methods [15], [24], especially under stringent con-
straints with small lp-ball and few valid semantic-preserving
attributes.

C. Semantic-Preserving Adversarial Training

With our proposed SPA attack, we solve the outer optimiza-
tion problem in Equation 5 by proposing a unified training
framework for the robustness against natural and adversarial



perturbations, by jointly optimizing the noise generator gφ
and the target classifier fθ. Before SPA training, The attribute
manipulator hψ is pretrained with the annotated training data
(x,αgt), where αgt the ground-truth attributes.

Algorithm 2 Semantic-Preserving Adversarial Training

Input: Image x, and label y, pretrained attribute manipulator
hψ .

1: xspa ← SPA Attack(x,y, hψ, gφ)
2: Randomly initialize α, z1, z2

3: x ← [x;x],α ← [α;α],y ← [y;y], z ← [z1; z2] ([·; ·] :
concatenation)

4: xattr ← hψ(x,α)
5: for t in range [0, T) do
6: x̃

(t+1)
attr ← ProjS∪X (xattr+

εstepgφ(xattr, z;y, δ
(t),∇xL(x̃(t)

attr)))
7: end for
8: Compute Ldiv with x̃(t)

attr, z following Eq. 4
9: Lcls ← 1

T

∑T
1 L(x̃

(t)
attr) + L(xspa)

10: φ← φ+∇φ(Lcls + λLdiv)
11: θ ← θ −∇θ(L(x) + L(x̃(T )

attr) + L(xspa))

The overall procedure is summarized in Algorithm 2. For
each batch, we first randomly sample attribute values for
attribute manipulation and two batches of diversity variables
for diverse adversarial noises. Then, we duplicate the batch
with different diversity variables. Then, we conduct attribute
manipulation on the training data and generate diverse ad-
versarial noise with different diversity variables. Then, we
generate SPA samples of training data following Algorithm 1.
We update the noise generator gφ with the classification loss
Lcls and the diversity loss Ldiv . Finally, we update the target
classifier fθ with the classification loss of real images, attribute
perturbed images, and SPA images.

V. EXPERIMENTS

In this section, we report the experimental results of our
proposed SPA attack and training on four public datasets.

A. Experimental Setups

Datasets. We evaluate our approach on MNIST [13], Fash-
ionMNIST [31], CelebFaces Attributes (CelebA) [32] and
SICAPv2 [33] datasets. 1) MNIST dataset consists of 70, 000
28 × 28 images with digits from zero to nine. 2) Fashion-
MNIST dataset consists of 70, 000 28 × 28 images with 10
classes of clothes. For both datasets, we consider rotation in
[−45, 45] degrees and scaling in [0.7, 1.3] times as natural
perturbations, separately.

We also conduct experiments on two real-world datasets. 3)
CelebA dataset has more than 200K 64×64 celebrity images,
each with 40 attribute annotations. We consider the ”smiling”
attribute as the target attribute for natural perturbation and train
a classifier to predict ”gender”. All training data are resized to
32×32. 4) SICAPv2 is a medical dataset collected for prostate
cancer diagnosis. There are 3773 non-cancerous patches and

3641 cancerous patches with Gleason grading equal 4. We
resize the images to 64 × 64 and consider the rotation in
[−45, 45] degrees as natural perturbations. We set the size
of l∞ ball as ε = 0.1 for MNIST and FashionMNIST, and
ε = 0.01 for CelebA and SICAPv2 datasets, which is 3×
smaller than that of previous works.

Model Parameters. We employ ResNet-20 as the target
classifier. We randomly initialize the classifier and the gener-
ator and jointly train both of them by Adam with a learning
rate of 0.01 beta of [0.9, 0.99] and weight decay of 0.0001 for
20K iterations, with a batch size of 100. For SPA attack, after
the classifier is pre-trained, the generator is updated for 100K
iterations, with a batch size of 100. We set εstep = 1/4ε.
We update the attribute and adversarial noise to generate
SPA samples for ten steps. Both attribute value and diversity
variable are optimized by Adam over the cross-entropy loss.

Baselines. To measure the robustness of the SPA-trained
classifier, we compare our approach against the classifiers
that are trained upon state-of-the-art adversarial training meth-
ods. We employ two gradient-based methods CW [20] and
PGD [6], and a generator-based method L2LDA [24] for
adversarial training. We also compare our approach against
an attribute robust training method AGAT [15].

To evaluate the effectiveness of the SPA attack, we compare
our SPA attack with a natural perturbation method SAA [14],
and three adversarial perturbation approaches CW, PGD, and
L2LDA.

Furthermore, to demonstrate the effectiveness of the pro-
posed joint optimization of attribute values and diversity
variables, we also compare with hybrid approaches which
combine existing adversarial attack approaches, including CW,
PGD and L2LDA with random attribute perturbation, denoted
as CW-Attr, PGD-Attr and L2LDA-Attr, correspondingly.

TABLE II: Impact of the perturbation models on SPA attack on
FashionMNIST dataset with ”rotation” attribute, in terms of accuracy.
× denotes removing the model hψ or gφ.

Attack
Defense Naive AGAT CW SPA

SPA (hψ × gφ×) 0.9337 0.9153 0.9241 0.9251
SPA (hψ X gφ×) 0.7451 0.8541 0.7544 0.8849
SPA (hψ × gφX) 0.0737 0.1298 0.5190 0.8428
SPA (hψ X gφ X) 0.0093 0.0189 0.5092 0.7996

TABLE III: Impact of the parameter optimization on SPA attack on
FashionMNIST dataset with ”rotation” attribute, in terms of accuracy.
α and z refer to the attribute value and the diversity variable in
Algorithm 1. × denotes using fixed random α or z.

Attack
Defense Naive AGAT CW SPA

SPA (α× z ×) 0.0541 0.0863 0.5144 0.8327
SPA (α X z ×) 0.0144 0.0311 0.5102 0.8209
SPA (α× z X) 0.0284 0.1045 0.5084 0.8255
SPA (α X z X) 0.0093 0.0189 0.5092 0.7996



Fig. 3: Impact of attack iterations on classification accuracy on
CelebA dataset with ”Smiling” attribute. We perform SPA attack
method on naive, AGAT [15], and SPA-trained classifiers.

B. Ablation Study

To understand (a) how the perturbation models impact the
performance of SPA attack, and (b) how the optimization of
the attribute value α and the diversity variable z improves the
quality of SPA samples, we conduct ablation studies on the
FashionMNIST dataset, using STN-based attribute manipula-
tor. Note that STN conducts precise natural perturbation along
with attributes and thus will not unintentionally introduce an
adversarial noise. Therefore, the noise δ generated by the noise
generator is the overall adversarial noise added to the data.
This allows us to isolate the influence of each perturbation in
SPA attacks.

Perturbation Model. Table II demonstrates the impact of
each perturbation model on SPA attack. We compare the sec-
ond row and the third row with the first row, respectively. We
observe that the adversarial noise generator gφ causes severe
model failure (85% accuracy decline against naive classifier
on FashionMNIST), while the attribute manipulator hψ only
results in 18.86% accuracy decline. Therefore, the adversarial
noise generator contributes more accuracy decline than the
attribute manipulator against the four defense methods.

TABLE IV: Impact of the noise size ε on CelebA dataset with
”smiling” attribute, in terms of accuracy. We conduct PGD, L2LDA,
and SPA attacks on a naive classifier and a SPA-trained classifier.

Defense Attack Noise size ε

0.00 0.01 0.02 0.03

Naive
PGD 0.9565 0.0935 0.0225 0.0027

L2LDA 0.9565 0.1055 0.0372 0.0108
SPA 0.9565 0.0755 0.0214 0.0051

SPA
PGD 0.9430 0.9130 0.7315 0.5792

L2LDA 0.9430 0.9185 0.5721 0.4744
SPA 0.9430 0.8910 0.6122 0.4530

We further observe Table III to study the impact of pa-
rameter optimization by comparing random initialization with
parameter optimization methods. By comparing the second
and first row, we note that the optimization of attributes α
leads to a 1.18% accuracy decline against the SPA defense
on FashionMNIST. Similarly, we observe the performance

TABLE V: Impact of the attribute number on SICAPv2 dataset, in
terms of accuracy. Legend of attributes: Re: reshape, Sc: scaling, Ro:
rotation. We conduct the attack on a PGD-trained classifier. Rand-Attr
is an adversarial attack with randomly generated attributes. As the
number of attributes increases, SPA attacks are more effective. Our
SPA attack performs better than Rand-Attr, where the attribute values
are randomly selected, showing the efficacy of joint optimization in
finding strong adversarial samples.

Attack Type Attributes SPA Rand-Attr

Single Attribute
Re 0.3030 0.4136
Sc 0.5741 0.6277
Ro 0.3732 0.3830

Double Attributes
Re, Sc 0.2944 0.3541
Re, Ro 0.2629 0.3842
Sc, Ro 0.3580 0.3732

Multi Attributes Re, Sc, Ro 0.2207 0.3317

drops 0.72% by optimizing the diversity variable z. Therefore,
optimizing attributes α contributes more than optimizing the
diversity variable z.

The above ablation studies show that our method’s perturba-
tion models and parameter optimizations benefit the generation
of powerful attacks in a complementary way.

C. Impact of Parameters

Noise Size. As demonstrated in Table IV, we explore
the noise size ε on the CelebA dataset with the ”smiling”
attribute. We conduct PGD, L2LDA, and SPA attacks on a
naive classifier and a classifier adversarially trained via SPA.
The size of adversarial noise varies from 0.0 to 0.03. It can be
observed that when the size of noise is small (e.g., ε = 0.01),
our proposed SPA attack outperforms PGD and L2LDA by
around 2%. As the noise size increases, the SPA attack can
achieve a strong attack but could be outperformed by other
approaches (e.g., PGD on a naive classifier).

Attack Iteration. To study the impact of the attack itera-
tion I in Algorithm 1, we observe the change of prediction
accuracy in Figure 3. The attack is conducted upon classifiers
trained by naive, attribute robust, and SPA training. We ob-
served that parameter optimization could effectively enhance
the SPA samples. The accuracy becomes stable after 30 steps.
We also notice that the SPA-trained classifier has the smallest
relative accuracy decline (7.2%= 93.75%−86.97%

93.75% for 50 steps)
than the other baselines (26.1% for attribute robust training
and 56.6% for naive training). For efficiency, we only update
10 steps in SPA training.

Attribute Number. We quantitatively explore the effect of
introducing a different number of attributes for the SPA attack.
We conduct experiments on the SICAPv2 dataset by attacking
a classifier adversarially trained against PGD attack. Table V
demonstrates that as the number of attributes increases, the
SPA attack can efficiently search stronger natural perturbations
by optimizing in larger attribute space. Compared to randomly
sampling attributes as in Rand-SPA, our optimization-based
SPA attack fears better and can find stronger adversarial
samples.



TABLE VI: The result of White-box attacks on MNIST, FashionMNIST, CelebA, and SICAPv2 datasets. For adversarial noise, we set
ε = 0.1 for MNIST and FashionMNIST datasets and ε = 0.01 for CelebA and SICAPv2 datasets. We measure the classification accuracy
of the adversarially trained classifiers (rows) against various attack methods (columns).

Defense
Attack Naive SAA CW PGD L2LDA CW-Attr L2LDA-Attr SPA Min

MNSIT [13] Attribute ← Scaling

Plain 0.9684 0.8236 0.1226 0.0983 0.1159 0.0351 0.0308 0.0118 0.0118
AGAT 0.9672 0.9584 0.1328 0.1240 0.1401 0.0741 0.1143 0.0219 0.0219

CW 0.9629 0.8307 0.8172 0.4131 0.7931 0.7497 0.6278 0.6415 0.6278
PGD 0.9891 0.8406 0.7521 0.7842 0.8028 0.7412 0.7749 0.6744 0.6744

L2LDA 0.9677 0.8472 0.8641 0.8140 0.9148 0.8073 0.7946 0.7441 0.7441
PGD-Attr 0.9860 0.9431 0.7581 0.7872 0.7992 0.7528 0.7617 0.7844 0.7581

SPA 0.9661 0.9575 0.9194 0.8789 0.9071 0.8951 0.8784 0.8572 0.8572

FashionMNSIT [31] Attribute ← Rotation

Plain 0.9337 0.7496 0.0648 0.0617 0.0737 0.0165 0.0284 0.0093 0.0093
AGAT 0.9153 0.8659 0.0869 0.0794 0.1298 0.0831 0.1045 0.0189 0.0189

CW 0.9241 0.7597 0.6539 0.3642 0.5190 0.6831 0.5084 0.5092 0.5084
PGD 0.9257 0.7642 0.7365 0.7044 0.6531 0.6611 0.6417 0.5371 0.5371

L2LDA 0.9224 0.7827 0.8593 0.7281 0.7417 0.8144 0.7929 0.7731 0.7417
PGD-Attr 0.9217 0.8582 0.7912 0.7380 0.7278 0.7128 0.7417 0.6982 0.6982

SPA 0.9251 0.8845 0.8313 0.8047 0.8428 0.8127 0.8255 0.7996 0.7996

CelebA [32] Attribute ← Smiling

Plain 0.9565 0.8830 0.1375 0.1035 0.1055 0.1035 0.0950 0.0775 0.0775
AGAT 0.9400 0.9420 0.3740 0.3577 0.4180 0.3725 0.3580 0.3415 0.3415

CW 0.9518 0.9151 0.5798 0.4966 0.5419 0.5541 0.5221 0.5077 0.5077
PGD 0.9479 0.9068 0.6431 0.9047 0.5541 0.5681 0.5328 0.5041 0.5041

L2LDA 0.9523 0.9094 0.6740 0.6937 0.7240 0.6192 0.6891 0.6390 0.6192
PGD-Attr 0.9401 0.9268 0.6458 0.8806 0.5618 0.5828 0.5527 0.5541 0.5527

SPA 0.9430 0.9405 0.9125 0.8973 0.9185 0.9035 0.8975 0.8910 0.8910

SICAPv2 [33] Attribute ← Rotation

Plain 0.8971 0.8070 0.0014 0.0142 0.0217 0.0028 0.0121 0.0217 0.0014
AGAT 0.7624 0.8791 0.0430 0.0841 0.0402 0.0830 0.0402 0.0531 0.0402

CW 0.8732 0.7832 0.3044 0.2831 0.2629 0.3188 0.2370 0.2207 0.2207
PGD 0.8890 0.7890 0.6731 0.3347 0.4141 0.6542 0.3030 0.3732 0.3030

L2LDA 0.8877 0.8021 0.5844 0.5821 0.5741 0.5830 0.5703 0.4785 0.4785
PGD-Attr 0.8941 0.8741 0.6525 0.5506 0.4633 0.6277 0.4527 0.4071 0.4071

SPA 0.8920 0.8837 0.6207 0.8533 0.7685 0.6183 0.7051 0.6295 0.6183

D. Comparisons

In this section, we compare our approach to existing works
in defense and attack. We use four popular defense methods in
the literature, AGAT [15], CW [20], PGD [6] and L2LDA [24],
as the baselines for adversarial training. The results on MNIST,
FashionMNIST, CelebA, and SICAPv2 datasets are presented
in Table VI.

First, we observe that the SPA-trained target classifier
outperforms the others by a significant margin in all four
datasets against jointly-perturbed samples. Compared to AGAT
and SPA training, the two classifiers trained by CW and
L2LDA cannot defend natural perturbations from SAA in
most cases. SPA training achieves comparable performance to
AGAT against natural perturbations. However, the SPA-trained
classifier is robust against adversarial perturbations, while the
AGAT-trained classifier is not. According to the fifth to the
seventh columns in Table VI, our proposed SPA training is
robust against both perturbations.

To well evaluate the performance of our proposed SPA
attack, we use three existing attack methods (SAA [14], CW,

and L2LDA) and two hybrid attack methods (CW-Attr and
L2LDA-Attr) as baselines. We observe that the SPA attack
outperforms other natural-perturbation-based attacks, gradient-
based adversarial attacks, generator-based adversarial attacks,
and hybrid attacks in most cases. Although random attribute
perturbation can help enhance adversarial samples, the SPA
attack generates stronger samples thanks to parameter opti-
mization. Therefore, the SPA attack is able to generate pow-
erful jointly-perturbed samples for improving the robustness
against joint perturbations.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new adversarial training strategy
named Semantic-Preserving Adversarial (SPA) training for
enhancing robustness against joint perturbations in the attribute
and pixel spaces by designing a novel attack mechanism. To
make the classifier more robust against joint adversarial and
natural perturbations, we leverage an attribute manipulator for
natural perturbation and a noise generator to generate diverse
adversarial noises, then optimize both attribute values and
adversarial diversity variables. The SPA attack causes a larger



Fig. 4: Semantic-preserving adversarial (SPA) examples generated
with multiple attributes on the SICAPv2 dataset. Column (a) shows
original images. Column (b) shows images with optimized attributes.
Column (c) shows SPA images with joint perturbations. Column (d)
shows the gradient of images in column (c). Column (e) and column
(f) show the adversarial noises generated with different diversity
variables. Column (g) shows the difference between the two noises
in columns (e) and (f). Images in columns (e), (f), (g) are amplified
30 times.

performance decline under small l∞ norm-ball constraints
compared to existing approaches. We extensively evaluate SPA
attacks and training on four benchmarks and achieve state-of-
the-art performance. Besides, we empirically demonstrate that
SPA training applies to multiple types of natural perturbations
and can be used with different surrogate functions for attribute
manipulation. In the future, we are going to explore joint-
perturbation space with a unified generator more effectively
and adapt our SPA training to other robustness problems, not
limited to classification.
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