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Abstract—This work presents a novel domain adaption
paradigm for studying contrastive self-supervised representation
learning and knowledge transfer using remote sensing satellite
data. Major state-of-the-art remote sensing visual domain ef-
forts primarily focus on fully supervised learning approaches
that rely entirely on human annotations. On the other hand,
human annotations in remote sensing satellite imagery are
always subject to limited quantity due to high costs and domain
expertise, making transfer learning a viable alternative. The
proposed approach investigates the knowledge transfer of self-
supervised representations across the distinct source and target
data distributions in depth in the remote sensing data domain.
In this arrangement, self-supervised contrastive learning- based
pretraining is performed on the source dataset, and downstream
tasks are performed on the target datasets in a round-robin
fashion. Experiments are conducted on three publicly avail-
able datasets, UC Merced Landuse (UCMD), SIRI-WHU, and
MLRSNet, for different downstream classification tasks versus
label efficiency. In self-supervised knowledge transfer, the pro-
posed approach achieves state-of-the-art performance with label
efficiency labels and outperforms a fully supervised setting. A
more in-depth qualitative examination reveals consistent evidence
for explainable representation learning. The source code and
trained models are published on GitHu

Index Terms—contrastive learning; self-supervised learning;
representation learning, domain adaptation, remote sensing,
satellite image

I. INTRODUCTION

To formulate the policies and schemes, the region’s geo-
graphical and demographic information and its efficient rep-
resentation are essential [1]] [2]. Visual interpretation of aerial
and space images is the most common method of producing to-
pographic and thematic maps. Satellite images are also used to
classify different types of crops using deep learning techniques
[3l [4]. Today many high-resolution satellites can be relied
upon to develop cartographic projects [5]. But it’s not always
the case when you get a high-resolution image which makes
a major concern. Satellite images are not always provided in
abundance, and there may be fewer image samples, which
further poses a challenge in classification and segmentation.
The applications of satellite imagery classification include
disaster prediction using remote sensing images, and these
early predictions are used to take necessary precautions. [31]]

Uhttps://github.com/muskaan?712/Domain-Adaptable-Self-Supervised-
Representation-Learning-on-Remote-Sensing-Satellite-Imagery

Fig. 1: Demonstrate the instance of proposed domain adapta-
tion framework where self-supervised representation learning
is performed at source dataset using contrastive learning
method and downstream task performed on target datasets.

Satellite images can also be classified and segmented into areas
with more wind and solar power so that adequate coverage of
windmills and solar panels can be achieved to harness the
power efficiently. [32]

Substantial human-labeled data is necessary to train a deep
neural network successfully. Unfortunately, data collection
and labeling are time-consuming and challenging in many
fields. However, acquiring sufficient annotated data can be
quite expensive and time-intensive. The process of cleaning,
screening, labeling, evaluating, and reorganizing data by a
training framework can be exceedingly time-consuming and
complicated [11]. The lack of data has spawned a variety of
solutions, the most prevalent of which is transfer learning.
This work presents an approach that minimizes the training
samples and puts less stress on the data labeling compared to
the architecture modeling [6]]. For most supervised learning
approaches, annotated data is necessary to train a machine.
This work employs self-supervised learning-based satellite
image classification to deal with scarce labeled data in satellite
imagery. When representations are learned from a pretext task
using unlabeled input images and then used for a downstream
task of interest, self-supervised learning is akin to transfer
learning [12]]. This work has used Domain Adaptation (DA)
to prove the robustness of the model toward performance
generalization on unseen data distribution. Domain Adaptation
follows the concept that the model gets trained on one source
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dataset and evaluated on the other target dataset, increasing
the model’s reliability, re-usability, and results. The proposed
work’s main contributions are outlined as-

o Establishing the adaptation of the self-supervised repre-
sentation learning on remote-sensing satellite imagery by
proposing a domain adaptation framework for rigorous
evaluation.

o Achieving label-efficient representational knowledge
transfer across multiple public datasets by obtaining state-
of-the-art performance with limited labels and outper-
forming in fully supervised settings.

o Explaining improvement in quantitative results by quali-
tative analysis with significant and consistent evidence.

The rest of the article is organized as follows. Section 2
discusses the datasets. Section 3 presents a domain adaptation
framework for self-supervised contrastive learning. Section 4
presents the experiments and results. Section 5 discusses the
experiments and results obtained from the proposed work,
Section 6 presents the related work, and Section 7 concludes
the proposed work and provides the future scope of the work.

II. SATELLITE IMAGERY DATASET DESCRIPTION

There are many applications for satellite images in meteo-
rology, oceanography, fisheries, agriculture, biodiversity, geol-
ogy, cartography, and land use planning. Instead of only having
an image of a place, satellite image classification aims to
transform satellite imagery into valuable information. Satellite
Imagery of residential and non-residential buildups varies with
objects and natural scenes captured in the image. A dataset
with images labeled as a whole is required for categorizing
satellite images. Three public satellite imagery datasets are
used in this work, SIRI-WHU and UC Merced have equally
distributed images among their classes and MLRSNet has
non-uniform distribution which is demostrated in the graph
below, other details about the datasets are discussed below
and summarized in Table [

Dataset Total Images | No. of Classes
SIRI-WHU 2400 12

UC Merced Land 2100 21

Use Dataset

MLRSNet 109,161 46

TABLE I: Dataset description

A. SIRI-WHU Dataset

The SIRI-WHU dataseﬂ for classification has 2400 pho-
tos sorted into 12 classifications. This dataset was obtained
from Google Earth and mainly included metropolitan regions
in China, with the image collection developed by Wuhan
University’s RS IDEA Group (SIRI-WHU). It consists of 12
classes: Agriculture, Commercial, Harbor, Idle land, Industrial,
Meadow, Overpass, Park, Pond, Residential, River, and Water.

Zhttp://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html
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Fig. 2: Class-wise distribution of the MLRSNet dataset.

Classes

Each class comprises 200 pictures that are 200 x 200 pixels
in size.

B. UC Merced Dataset

The image data in the UC Merced dataselﬂ were manually
extracted from large-sized images in the United States Geo-
logical Survey (USGS) National Map Urban Area Imagery
collection for numerous cities across the country (United
States). This big ground truth picture collection consists of
21 land-use types, each with 100 pictures. The 21 classes
were namely agricultural, airplane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf
course, harbor, intersection, medium residential, mobile home
park, overpass, parking lot, river, runway, sparse residential,
storage tanks, and tennis court. This public domain imagery
has a pixel resolution of 1 foot, with each image being
256x256 pixels.

C. MLRSNet

MLRSNetE| offers several satellite-based perspectives of the
world. It comprises optical satellite images with great spatial
resolution—between 1,500 and 3,000 example photos in every
46 categories in the 109,161 remote sensing photographs
makeup MLRSNet. The photos are 256256 pixels and have
different pixel sizes (10m to 0.1m). The dataset can be used for
picture segmentation, image retrieval, and classification based
on multiple labels.

III. DOMAIN ADAPTATION FRAMEWORK FOR
SELF-SUPERVISED CONTRASTIVE LEARNING

The proposed framework consists of two main tasks: (i)
pretext task, in which learning representations following con-
trastive self-supervised learning on satellite imagery datasets
within the source domain is performed (ii) downstream task,
in which satellite images are classified based on the represen-
tations learned in pretext task. Figure [3] depicts a schematic

3http://weegee.vision.ucmerced.edu/datasets/landuse.html
4https://data.mendeley.com/datasets/7j9bv9vwsx/2
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diagram of the proposed approach where knowledge transfer
on self-supervised learnt representation is comprehensively
validated

In the pretext task, various augmentations are applied to
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Fig. 3: Proposed approach for domain adaptation. It ensures
to investigate of each dataset for self-supervised representation
learning and for downstream tasks under all possible domain
adaptation scenarios

the images, such as flipping, affine transformations, jitter,
grayscale, etc., to create different views of the images. A
positive pair is a pair of views created from the same image,
whereas a negative pair is a pair of views created from different
images. Then, positive and negative pairs of images are
contrastively learned to form image representations. Labeled
images are not required for representation learning in this task.
Figure [I] depicts the contrastive learning architecture. Sim-
CLR (simple framework for contrastive learning) [21] has
been used to learn the representations. Positive and negative
pairs of satellite images are created from unlabelled satellite
images with augmentations such as Gaussian blur, flipping,
translation, rotation, etc. These pairs of positive and negative
views are fed to the encoder network. ResNet-50 encoder is a
backbone for the pretext task network, followed by two fully
connected layers containing 2048 and 1024 neurons each. The
encoder part helps in extracting image representations for posi-
tive and negative pairs. Normalized Temperature-scaled Cross-
Entropy loss (NT-Xent) is used to pull close representations
and push away different representations. This loss function for
a positive pair is defined below.

exp (sim (2;2;) /7)

Zi’;l gz exp (zi2k/T)

0(zi,2;) = —log

T is the temperature parameter, where z; and z; in the
numerator represent positive pairs, where z; and z; in the
denominator represent all possible pairs, including positive and
negative. In terms of a loss function, it comes down to the ratio
of the sum of similarities between all positive pairs divided
by the negative log-likelihood of these pairs being similar.
A softmax function-based temperature parameter is used to
normalize this loss function. It is designed to maximize an
agreement between positive pairs in a mini-batch. The loss
function for all the positive pairs is given below.

£:f% Z log

i,jEMB

exp (sim (2, ;) /T)

S Wz exp (sim (24, 21,) /7)

The downstream task uses the learned embeddings of images
during the pretext task as input. Only a few basic aug-
mentations like resizing and cropping are used during the
downstream task. The downstream task involves binary and
multi-class classification of satellite images. A binary and
multi-class classification task is involved in the downstream
task. For classification, fewer labeled images are now required
for the downstream task. In the downstream task, the input
image from the target dataset is taken as input, and primary
augmentations (resizing, cropping) are applied to this image.
The augmented images are fed to the encoder, initialized from
the pretext task-trained model. A linear classifier having layers
512 and a number of classes has been appended to the encoder
part of the network to classify satellite images.

IV. EXPERIMENTS AND RESULTS

Extensive experimentation is designed and performed to
investigate the domain adaptation in self-supervised learning
based representational knowledge transfer on three datasets,
UC Merced, SIRI-WHU, and MLRSNet, covering binary and
multi-class classifications downstream tasks under varying la-
bel efficiency. Table[[l|shows the augmentations for the pretext
task, and Table[[Tl| shows the hyperparameters used for training
the pretext task. Details of hyperparameters for fine-tuning and
other configuration is available in open-source source code.
The dataset follows a 70%, 20%, and 10% split for training,
testing, and validation. The next subsections discuss the binary
classification results and the multi-class classification results.
The performance metrics are defined below.

Total true positives

Precision = — —
Real actual positives + Total false positives
Total true positives
Recall = — P -
Total true positives + Total false-negatives
true negatives + true positives
Accuracy = g P

total cases

Precision * Recall

F1 S =2
core * Precision + Recall



Augmentations Value
Resize 224 x 224
Horizontal Flip P=0.5
Vertical Flip P-05
Rotation (-90, 90)
Grayscale P-0.2
Gaussian Blur | P - 0.51, Kernel size - [21, 21]

TABLE II: Augmentations for pretext task

Hyperparameters Value
Batch size 256
Optimizer SGD
Momentum 0.9, nesterov=True
Learning Rate 0.0005
Weight decay 0.0005

TABLE III: Hyperparameters for pretext task

A. Domain Adaptation

For domain adaptation, three different datasets have been
used to evaluate the results and performance of the pro-
posed methodology for satellite image classification. The three
datasets are used without labels in the pretext task to generate
representations and fine-tuning is performed on the other two
remaining datasets to evaluate domain adaptation. The results
of experiments are shown in Table

Dataset used

and our model scored an accuracy of 99.68%, precision of
95.36%, recall value of 96.56%, and F1 score of 97.92% on the
100% dataset in the downstream. MLRSNET is another dataset
that was used, a 46 class dataset and our model achieved
an accuracy of 96.59%, precision of 96.79%, recall value
of 96.545, and F1 score of 96.65% with 100% data in the
downstream. The results of further experiments are shown in
Table [V] with fewer datasets downstream.

Dataset used

% of data Accuracy | Precision | Recall | F1-Score
Pretext Downstream | .

in downstream

100% 99.35 99.91 98.95 98.89
UC Merced | UC Merced | 50% 95.98 91.78 93.32 93.82

10% 89.67 87.63 85.86 85.85

100% 99.68 95.36 96.56 97.92
SIRI-WHU | SIRI-WHU 50% 95.54 94.47 95.29 94.78

10% 88.43 83.76 79.77 81.43

100% 96.59 96.79 96.54 96.65
MLRSNet MLRSNet 50% 93.87 91.37 91.88 92.68

10% 88.66 88.54 88.91 88.44

TABLE V: Results for Multiclassification using contrastive
learning

C. Comparison with existing results

The concept of self-supervised learning and domain
adaptation-based self-supervised learning applied to satellite
imagery has yet to be explored. This work considered var-
ious methods applied to these datasets, including supervised
learning-based methods. Table 6 compares the results obtained

TABLE IV: Results for Domain Adaptation on multiclassifi-
cation

B. Multi-class Classification

For the multi-class classification task, three different
datasets have been used to evaluate contrastive learning for
satellite image classification. The datasets are UC Merced,
which has 21 classes on which our model achieved an accuracy
of 99.35%, precision of 99.91%, recall value of 98.95%, and
F1 score of 98.89% on the 100% dataset in the downstream
task. Another dataset used is the SIRI-WHU with 12 classes,

% of data in Accuracy | Precision | Recall | F1-Score . . . .
Pretext Downstream | % C from the proposed work with the existing binary and multi-
100% 96.34 9621 | 9656 | 96.87 class classification methods on satellite imagery.
UC Merced | MLRSNet 50% 95.18 9483 | 9476 | 9434
10% 92.23 9798 | 91.73 | 9145
100% 96.87 9632 | 9634 | 96.87
UC Merced | SIR-WHU | 50% 94.99 9412 | 9476 | 94.12 Author Method Accuracy
10% §7.50 §743 | 87.24 | 87.97 (23] SVM 98.8
MRSV | UC Merced 50 R e AT [24] GIST 46.9
et erce 0 . . . .
0% 92.32 0237 | 92.56 | 92.81 1257 ResNet 50 98
100% 97.50 9711 | 96.98 | 96.43 [26] DCNN 03.48
MLRSN: IRI-WH 50 96.24 96.87 | 9632 | 96.76
Stet | SIREWHY IOZZ 89.58 $9.00 | 9045 | 89.34 416} GoogleNet 97.10
100% 98.75 9821 | 9793 | 9853 114 Semisupervised ensemble projection 66.49
SIRI-WHU | UC Merced | 50% 96.51 96.89 96.43 96.21 Self-supervised Domain Adaptation 98.75
10% 94.23 94.98 94.71 94.89 Our Results :
100% 97.87 97.43 97.54 97.32 Self-supervtsed Same Dataset 99.35
SIRI-WHU | MLRSNet 50% 94.40 9487 | 9491 | 9451
10% 90.02 90.83 | 9026 | 90.73 TABLE VI: Comparative results of multi-class classification

21 class UCMD. (Top 2 results are shown)

Author Method Accuracy
1277 AlexNet SPP SS 95.07
[28] MCNN 93.75
[29] Inception-LSTM 99.73

Self-Supervised Domain Adaptation 96.87
Our Resulis Self-supervised Same Dataset 99.68

TABLE VII: Comparative results for multi-class classification
12 class SIRI-WHU. (Top 2 results are shown)



Author Method Accuracy
/307 DenseNet201-SR-Net 87.87
/307 ResNet101-SR-Net 87.48
177 Self-Supervised Learning 96

Self-Supervised Domain Adaptation 97.87
Our Results Self-supervised Same Dataset 96.59

TABLE VIII: Comparative results for multi-class classification
46 class MLRSNet. (Top 2 results are shown)

Based on the comparisons in Tables VIII| the

proposed work performs better than the existing works. Ac-
cording to the above comparative analysis, the proposed work
outperforms all previous works and achieves state-of-the-art
results for multi-class classification of satellite imagery.

V. DISCUSSIONS

This section discusses the key outcomes of the proposed
work and provides analysis based on the achieved results on
three datasets for different scenarios.

A. Self-supervised learnt representations are domain adapt-
able

Results in Table [[V|clearly indicate that the performance of
domain adaptation with different sources and targets achieves
comparable results with in-domain knowledge transfer pre-
sented in Table While investigating and comparing the
domain adaptation results with ImageNet supervised knowl-
edge transfer (refer Table & , all the models outperform
which indicates the successful domain adaptations across the
datasets. Following the trend, the proposed framework consis-
tently outperformed on the given datasets compared with the
ImageNet pretrained ResNet50 in a complete range of labels
from 10% to 100%, shown in Figure @] 5 & [6]

Dataset % of data | Accuracy | Precision | Recall | F1-Score | AUC
100% 83.00 82.89 82.34 82.47 93.83
UCMD 50% 81.87 81.77 81.32 81.53 92.93
10% 66.66 65.78 66.45 66.21 88.87
100% 85.67 85.54 85.33 85.44 95.99
SIRI-WHU | 50% 80.21 80.02 79.99 79.34 93.95
10% 60.71 60.43 60.33 60.21 90.99
100% 93.02 92.98 92.74 92.34 97.99
MLRSNet | 50% 90.54 90.32 90.55 90.43 96.99
10% 82.07 81.76 81.34 81.33 93.69

TABLE IX: Results for ResNet50 finetuning with Imagenet
weights

Dataset % of data | Accuracy | Precision | Recall | FI-Score | AUC
100% 80.67 80.32 78.98 80.16 93.23
UCMD 50% 78.75 77.97 78.78 78.84 93.12
10% 45.84 45.43 45.12 45.59 88.98
100% 83.41 83.78 83.43 83.61 93.99
SIRI-WHU | 50% 71.87 71.43 71.91 71.79 92.87
10% 67.85 67.99 67.65 67.31 90.54
100% 91.95 90.93 91.99 91.63 95.67
MLRSNet | 50% 90.46 88.65 90.32 90.91 94.09
10% 79.89 80.00 79.02 79.45 85.34

TABLE X: Results for ResNet50 linear evaluation with Ima-
genet weights

Finetuned results on SIRI-WWHU dataset with different pretrained models

@ UCWDPretedt @ MLRSNEt pratext SIRFWHU Pretext @ Supervised ImageNet Finetuning
@ ImageNet Pretrained Linear Evaluation
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Fig. 4: Comparison of accuracy of the proposed method for
SIRI-WHU with supervised learning.

Finetuned results on MLRSNet dataset with different pretrained models

@ UCNMDPretet @ MLRSNEt pratext SIRFWHU Pretext @ Supervised ImageNet Finetuning
@ Supenised ImageNet Linear Evaluation

100

Accuracy

% of Data

Fig. 5: Comparison of accuracy of the proposed method for
MLRSNet with supervised learning.

B. Self-supervised representation based knowledge transfer
demonstrate label efficiency

Results on all three datasets indicate that the proposed
framework obtains state-of-the-art results with only 10% and
50% of labels comparing previous work, which indicates
that self-supervised learnt representations capture the impor-
tant features of visual concepts of interest and adapt it for
downstream tasks without additional efforts and parameter
adjustments.

C. Self-supervised pretrianed models outperforms in fully su-
pervised setting

Besides label efficiency, knowledge transfer in self-
supervised pretrained models outperforms previous works for



Finetuned on UCMD dataset with different pretrained models

@ UCNDPratedt @ MLRSNEt pratext SIRFWHU Pretet @ Supervised ImageNet Finetuning
@ Supenised ImageNet Linear Evaluation

100
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Fig. 6: Comparison of accuracy of the proposed method for
UCMD with supervised learning.

all three datasets. This trend indicates that self-supervised
representations are efficient end-to-end learning.

D. Robust and explainable representations

All the quantitative results are well described, with quali-
tative analysis performed on all three datasets with activation
maps. Figure [7] demonstrates the explainability and attention
for self-supervised pretrained models against ImageNet super-
vised models. This indicates that learnt representations in self-
supervised manner are more efficient and thus achieve higher
performance in downstream tasks.

VI. RELATED WORK

During the past few years, self-supervised contrastive learn-
ing has emerged as a new training paradigm. Using this train-
ing paradigm, comprehensive representations can be learned
without human annotation, which could solve the lack of
annotated data problem. Much research has yet to be done
on self-supervised learning in satellite imagery. Here, the
main focus is on discussing deep learning methods applied
to satellite imagery classification.

A. Supervised learning on satellite images

R. Naushad et al. proposed a transfer learning approach
to classify land use and land cover on the Eurosat dataset. For
this, four CNN models were pre-trained: VGG-16 (without
data augmentation), VGG-16 (with data augmentation), wide
ResNet-50 (Without Data Augmentation), and wide ResNet-
50 (With Data Augmentation). They achieved an accuracy of
99.17%. However, the proposed approach has been validated
only on one dataset (the Eurosat dataset ) while using 100%
of the data. At a large scale, CNN-based models were used by
A. Albert et al. to identify patterns in urban environments
using satellite imagery. They used pre-trained models: VGG 16
and ResNet, for the classification task and achieved different

ResNet50
g Linear
Evaluation

Fig. 7: Learning representation of the architecture using Class
Activation Maps

accuracies for different countries, with which authors showed
the highest accuracy of 83%. However, there remains scope
for improvement in the results. Another method was applied
by M. Castelluccio et al. for land use classification
in remote sensing images. They used pre-trained models:
CaffeNet and GoogLeNet. These models provided an accuracy
of 90.17% and 91.83%, respectively. Although authors achieve
competitive results, the possibility of improvement of results
and the use of better models remains.

X. Tan et al. proposed a multilabel classification to classify
the MLRSNet, a benchmark dataset of 46 classes. They
achieved an accuracy of 87.87% with DenseNet201-SR-Net
[30]. However, there is still scope for improvement in accu-
racy. Furthermore, DenseNet201 is a very heavy computational
method that needs more resources. S.Jog et al. performed
a supervised classification of satellite images using the Landsat
dataset and support vector machine as the classifier, which
achieved an accuracy of 92.84%. However, this approach was
tested on a single dataset. Thus, the proposed method needs to
be validated on other datasets as well to check the robustness
of the model. M. Pritt et al. used convolutional neural
networks on the FMoV dataset for satellite image classification
and achieved an accuracy of 83%. However, there is much
scope for improvement in accuracy.

Ozyurt, F. et al. attempted to classify satellite images
using the UC Merced dataset with a unique approach to
feature extraction. For the classification, they used an SVM-
based machine learning model and achieved an accuracy of
98.8%. However, their work focussed on a single dataset only.
Kadhim et al. used a pre-trained ResNet50 model on



the UC Merced dataset for the satellite image classification
task and achieved an accuracy of 98%. However, the model
has been evaluated on a single dataset only. F. P. S. Luus
et. al. [26] used deep convolutional neural networks for land
use classification on the UC Merced dataset and achieved an
accuracy of 93.48%. Though the methodology used differs
from existing methods, there is a scope for improvement in
accuracy.

Han. Xiaobing et.al. [27] used a pre-trained AlexNet model
on the SIRI-WHU dataset for satellite image classification and
obtained an accuracy of 95.07%. However, the accuracy can
be improved further using better network architectures. Y. Liu
et al. [28]] worked on the SIRI-WHU dataset and used mul-
tiscale convolutional neural networks for scene classification
using satellite images. They achieved an accuracy of 93.75%.
Although the method differs from existing approaches, this
work is based on a single dataset only and needs to be tested
on other datasets also. Y. Dong et al. [29]] classified satellite
images from the SIRI-WHU dataset using inception-based
LSTM approach with an accuracy of 99.73%. However, the
approach is tested on a single dataset only.

B. Self-supervision and domain adaptation on specialized
visual domain

Self-supervised methods on ImageNet and natural scenes
have advanced in recent times. It has also been consider-
able advancements in other specialized visual domains to
adapt self-supervised representation learning. Self-supervised
methods in medical images showed progress where data and
human labels are limited, Chhipa et al. [[33]] demonstrated self-
supervised domain adaptation on histopathology images, and
Azizi et al. [34] showed knowledge transfer on X-ray. Other
interesting applications for self-supervised methods exploring
on underwater images Tarling et al. [37] for the fish count and
identifying mining materials from three-dimensional particle
management sensors in Chhipa et al. [36] shown progress in
a specialized domain.

C. Domain adaptation and self-supervised learning on satel-
lite images

Few non-supervised learning based methods for satellite
image classification have been proposed in the literature. A
semi-supervised learning based approach for satellite image
classification was proposed by W. Yang et al. [15] to solve
the problem of fewer images. They achieved an accuracy
of 73.82% on 19 class data and 65.34% on UCMD dataset.
However, there is scope for further improvements in the results
obtained by the authors for satellite image classification.

A few self-supervised methods have also been used to classify
remotely sensed satellite images in the literature, as pro-
posed by V. Stojnic et al. [[I7]. They used self-supervised
methods with a pre-trained Imagenet model on MLRSNet
and achieved an accuracy of 96%. Manas et al. [?] have
shown self-supervised pretraining on remote sensing data
using weather information. Yi Wang et al. [18] proposed

contrastive multiview coding (CMC) based approach for satel-
lite image classification, where one image is an anchor, and
other images are neighboured around that image. They used
pre-trained models for feature extraction, and the number of
training samples was large. However, they did not validate the
proposed approach in cross-domain settings wherein learning
the representations from one dataset of satellite images and
performing downstream tasks on another dataset.

From the above analysis of the existing work in the literature,
it can easily be observed that most of the existing supervised
learning-based satellite image classification methods require
a lot of labeled data to perform satisfactorily. Only a few
semi-supervised or self-supervised satellite image classifica-
tion methods exist in the literature. However, these methods
use the same dataset for pretext tasks, and downstream tasks,
and these methods have not been evaluated in cross-domain
settings. To mitigate these research gaps in the literature,
this work proposes a domain adaptation-based self-supervised
representation learning approach for classifying satellite im-
ages. This work proposes a domain adaptable self-supervised
learning approach to reuse the representations learned on one
unlabelled dataset from the source domain for classifying
satellite images taken from a different target domain dataset.

VII. CONCLUSION

This work proposed a domain-adaptable self-supervised rep-
resentation learning based framework focusing on the robust
evaluation of learnt representations rather than one-directional
knowledge transfer, which ultimately reviews the effectiveness
and applicability of such methods in the satellite imagery
visual domain. One significant outcome is achieving improved
performance by applying domain-adapted knowledge transfer
across the datasets, outperforming the existing methods of
satellite image classification, even in cross-domain settings.
By applying the self-supervised representation learning, the
proposed work has surpassed the existing results by 1%,
with fewer training data. The proposed evaluation framework
is conveniently applicable to other visual domains which are
not thoroughly explored yet for the usability of self-supervised
representation learning to reduce human annotation needs. In
future work, i) We aim to investigate domain adaptation for
other computer vision downstream tasks, i.e., segmentation
and localization, ii) Investigate non-contrastive representation
learning methods, and iii) Candidates for standard augmen-
tation methods in self-supervised learning to adapt remote
sensing visual domain.
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