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Abstract—Federated learning (FL) naturally faces the problem
of data heterogeneity in real-world scenarios, but this is often
overlooked by studies on FL security and privacy. On the
one hand, the effectiveness of backdoor attacks on FL may
drop significantly under non-IID scenarios. On the other hand,
malicious clients may steal private data through privacy inference
attacks. Therefore, it is necessary to have a comprehensive per-
spective of data heterogeneity, backdoor, and privacy inference.
In this paper, we propose a novel privacy inference-empowered
stealthy backdoor attack (PI-SBA) scheme for FL under non-
IID scenarios. Firstly, a diverse data reconstruction mechanism
based on generative adversarial networks (GANs) is proposed
to produce a supplementary dataset, which can improve the
attacker’s local data distribution and support more sophisticated
strategies for backdoor attacks. Based on this, we design a source-
specified backdoor learning (SSBL) strategy as a demonstration,
allowing the adversary to arbitrarily specify which classes are
susceptible to the backdoor trigger. Since the PI-SBA has an
independent poisoned data synthesis process, it can be integrated
into existing backdoor attacks to improve their effectiveness
and stealthiness in non-IID scenarios. Extensive experiments
based on MNIST, CIFAR10 and Youtube Aligned Face datasets
demonstrate that the proposed PI-SBA scheme is effective in non-
IID FL and stealthy against state-of-the-art defense methods.

Index Terms—Federated Learning, Non-IID Data, Backdoor
Attacks, Privacy Inference, Generative Adversarial Networks.

I. INTRODUCTION

Federated learning (FL) provides a new paradigm for coop-
erative learning, which allows multiple parties to jointly train
a global model without sharing local private data [1]. While
providing better privacy protection, FL also exposes a larger
attack surface than centralized learning. One of the most typi-
cal threats is from malicious clients who can launch poisoning
attacks on the global model by uploading well-crafted local
updates. The backdoor attack as a targeted poisoning attack
is notoriously stealthy and threatening, which aims to induce
the model to misbehave under specific circumstances while
maintaining the original performance on the main task [2].

Since proposed in [3], backdoor attacks have been exten-
sively studied in centralized deep neural networks (DNNs)
and many powerful variants have emerged [4], [5]. For FL,
the migration of backdoor attacks seems to be a simple and
straightforward task. For example, initiated by the attempt
of Bagdasaryan et al. [6], a series of studies demonstrate
the possibility of backdooring FL in various ways [7]–[10].
However, maintaining the backdoor effectiveness can be quite

Fig. 1. An overview of FL with client-side backdoor attackers under the label
distribution non-IID scenario.

a challenge in such a complex distributed system. Here we list
two main factors:

• First, the updates from benign clients can weaken the
impact of poisonous updates (especially when the pro-
portion of malicious clients is quite small), and it makes
the global model quickly forget the backdoor [11]. To
negate the benign updates’ effect, an explicit amplifica-
tion strategy has been widely used [6], [7], [9]. We also
draw on this approach in the proposed scheme and further
evaluate its effectiveness in section IV.

• Second, a more serious but often overlooked issue is that
data heterogeneity can greatly reduce the effectiveness
of backdoor attacks in FL. Data heterogeneity can lead
to the overfitting of local models on the skewed local
data so that the backdoor features will be suppressed.
What’s worse, the difference between local malicious data
distribution and global data distribution has a significant
impact on the backdoor effectiveness [12], which must
be considered when designing the attack strategy.

Through further analysis, we found that the existing back-
door attacks on FL have the following limitations: ① The
issue of non-iid data mentioned above is not considered.
Although we note that [9] attempted to alleviate the attacker’s
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data absence by introducing the GAN-based inference method
as [13], it can only restore the data of a single class, and
only work in the special case where all class members are
similar. ② The triggers pattern used to control the backdoor
behavior is missing in most existing so-called backdoor attacks
in FL, which, however, is usually an important component
in backdoor attacks on centralized DNNs [14]. We also note
that a novel semantic backdoor is proposed in [6] (e.g., using
a striped wall background as a semantic trigger for “car”
images), but this will greatly limit the attacker’s flexibility.
We speculate that this is due to the fact that the features of
explicit trigger patterns are prone to failure in the non-IID
scenario.

Therefore, to help break through the limitations faced
by backdoor attackers in the non-IID FL, we propose a
privacy inference-empowered stealthy backdoor attack (PI-
SBA) scheme leveraging a GANs-based diverse data inference
mechanism [15], which produces a supplementary dataset
consisting of diverse generated samples to reduce the gap
between local and global data distributions. To make it clear, in
this work, we mainly focus on a typical non-IID scenario—the
label distribution skew [16], [17] in cross-silo FL [2], where
a handful of clients (usually 10 to 100) cooperate to train a
shared model with much larger datasets. As is shown in Figure
1, each client (including the attacker) only has access to a
subset of all data classes. It is a common case in FL systems
composed of large organizations such as hospitals or banks
that own data with different labels from different sources.

Based on this, we further design a more flexible and
insidious source-specified backdoor learning (SSBL) strategy
that can arbitrarily specify which classes are susceptible and
which are not. It should be noted that the SSBL strategy not
only demonstrates that our GANs-based diverse data inference
mechanism can assist attackers to carry out more sophisticated
backdoor attacks despite the absence of relevant original data,
but also corresponds to a realistic threat model. For example,
in an FL system consisting of a group of commercial com-
panies with different user groups, for the purpose of vicious
competition, the attacker only compromises the user groups of
the rival companies, leaving the rest immune, which is more
insidious than injecting a generic backdoor.

We believe that our GANs-based diverse data inference
mechanism as well as the SSBL strategy is not an isolated
work, but can be integrated into existing backdoor attacks
(.e.g, [6], [18], [19]) on FL to help improve their effectiveness
and concealment under non-IID scenarios. The feasibility and
effectiveness of the proposed PI-SBA scheme validate that
Inadvertently-leaked private data can be used to backdoor
the FL models. This may lead to benign users in FL systems
being stigmatized as backdoor attackers.

Our main contributions in this work can be summarized as
follows:

• We propose a novel privacy inference-empowered back-
door attack (PI-SBA) scheme for non-IID FL, leveraging
a GANs-based diverse data inference mechanism to im-

prove the local data distribution for malicious clients and
enhance the attack effectiveness in non-IID FL.

• A source-specified backdoor learning (SSBL) strategy
is designed to allow malicious clients to attack any
specified classes despite the absence of relevant data,
which presents higher feasibility and flexibility, and is
compatible with existing backdoor attacks to improve
stealthiness.

• We conduct extensive experiments on MNIST, CIFAR10,
and Youtube Aligned Face (YAF) datasets [20] to com-
prehensively evaluate the performance of the proposed
scheme. It is demonstrated that our methods can increase
the attack success rate by 20%–60% for regular backdoor
attacks in non-IID FL and can successfully evade two
state-of-the-art defense methods.

II. RELATED WORK

A. Backdoor Attacks in FL

Bagdasaryan et al. [6] proposed the first backdoor attack
against FL, which selects specific semantics in the original
data as the triggers for backdoor training and replaces the
global model with the backdoored one by manipulating the
model updates. Wang et al. [8] proposed an edge-case back-
door attack and first theoretically verified that if adversarial
example attacks are effective against models in FL, so are
backdoor attacks. Zhang et al. [9] introduced a generative
poisoning attack called PoisonGAN for situations where the
attacker does not have access to the training data, and re-
produced the backdoor attack in [6]. Considering multiple
colluding malicious clients, Xie et al. [18] proposed to utilize
a composite global trigger formed by several local triggers to
conduct a distributed backdoor attack (DBA) on FL. Similarly,
Gong et al. [21] proposed to use model-agnostic triggers to
increase the attack success rate of DBA. Besides, to improve
the backdoor persistence in FL, Zhang et al. [11] proposed
a simple but efficient method called Neurotoxin to slightly
modify model parameters during the FL training process.

B. Privacy Inference Attacks in FL

To alleviate the problem of missing data for backdoor
attackers in non-IID scenarios, we also investigate privacy
inference attacks in FL. Melis et al. [22] demonstrated that
the model updates could leak unintended information about
clients’ training data, and such leakage risk makes it possible
for server-side attackers to reconstruct the original training
data from collected updates. Wang et al. [23] devised a frame-
work incorporating the generative adversarial network (GAN)
with a multitask discriminator to simultaneously discriminates
category, reality, and client identity of input samples. However,
server-side privacy inference attacks require higher attacker
capabilities. Hitaj et al. [13] extended the model inversion
attack as a client-side privacy inference attack using the GAN
to generate the targeted class representatives in a collaborative
learning system. This attack exploited the real-time nature of
the FL system and regards the global model as a discriminator



to train the generator. However, considering the attack assump-
tion and effect comprehensively, the above methods can not
be directly applied to launch an effective backdoor attack on
FL under non-IID data scenarios.

III. PROPOSED METHOD

A. Preliminaries

1) Cross-silo FL with Label Distribution Non-IID Data:
Cross-silo FL refers to the collaborative model training involv-
ing several (usually within one hundred [2]) large organiza-
tions or companies. Here we consider a N class classification
problem on the dataset D = {(x, y)}, where the data point
(x, y) is defined over a feature space X and a label space
Y = {0, . . . , N − 1}, while there are K clients, each with
access to local dataset Di = {(xi, yi)}. (The above notations
will be used for the rest of the paper unless otherwise stated.)

In the case of label distribution skew, each client only has
access to a subset of all data classes. To better control and
quantify data heterogeneity, we borrow the heterogeneity index
from [12]:

HI(nc) = 1− nc − 1

N − 1
, (1)

where nc represents the number of classes per client.
When training starts, the server distributes current global

model parameters wt
G to K clients in round t. Then, each client

i ∈ [K] runs an optimization algorithm such as stochastic
gradient descent (SGD) for E epochs with local dataset Di

to obtain the local model parameter wt
i , and sends its local

update ∆wt+1
i = wt

i − wt
G back to the server. Finally, the

server aggregates all updates to get the global model parameter
wt+1

G for the next round:

wt+1
G = wt

G +

K∑
i=1

αi ·∆wt
i, (2)

where αi =
|Di|
|D| and

∑K
i=1 αi = 1 in FedAvg algorithm [1].

This iteration will continue until the global model achieves the
desired performance.

2) Backdoor Attack in Machine Learning: Take the classi-
fication task as an example, the backdoor attack aims to inject
a malicious pattern into the learning model which causes the
model to misclassify the input stamped with a backdoor trigger
into the target label. Formally, let tg, (x, y), (x∗, yt) denote
the trigger pattern, the original sample, and the trigger-pasted
sample with the target label. The attacker’s goal is to obtain
the model f with parameter wB which achieves both high
attack success rate (ASR) and main task accuracy (MTA) by
minimizing the loss function L (e.g., cross-entropy loss) as
follows:

min
wB

(L(f(x), y) + L(f(x∗), yt)). (3)

Then, during the inference phase, the attacker can attach the
trigger to arbitrary input samples, causing it to be misclassified
to the desired target class.

Fig. 2. The framework of our scheme. In stage I, the attacker obtains a
supplementary dataset through the designed diverse data inference mechanism.
In stage II, the attacker performs backdoor training against specified source
classes within several rounds before the global model converges.

B. Threat Model

1) Assumptions: The main security threats faced by FL can
be divided into two categories: model performance attacks
and data privacy attacks, which may originate from both the
server and the client. Some existing works assume a server-
side attacker, who can steal private data through collected
updates or directly manipulate the aggregated global model,
while we consider a more challenging scenario: the attacker
is on the client and the data distribution among all clients is
label distribution non-IID, i.e., each client only has a subset
of all classes as described in section III-A1.

2) Adversarial Objectives: As shown in Figure 2, there
are two main and sequential goals throughout the attack
process: private data inference and source-specified backdoor
attacks. In the first stage, the attacker aims to generate high-
quality samples of diverse data classes from the global model
(especially those not locally available) to improve its local
data distribution. In the second stage, the attacker’s goal is to
inject an advanced backdoor that only works on the specified
classes into the model, so as to determine the susceptibility
and immunity of different clients to the backdoor trigger.

3) Adversarial Capabilities: Since the attacker is placed
on the client side, its knowledge only includes the local data
of partial classes and the global model parameters received in
each round. The attacker’s capability is also limited to planning
malicious training locally through the above information and
influencing the global model by uploading poisoned updates.

C. GANs-based Diverse Data Inference

To solve the problem of missing data, we design a GANs-
based diverse data inference mechanism to generate a sup-
plementary dataset to improve the attacker’s local data dis-
tribution. As we know, GANs consist of a generator G
and a discriminator D. G is trained for generating desired
samples by learning a mapping between distributions, e.g.,
from random Gaussian noise z, to the sample x in real-word



Algorithm 1 GANs-based Diverse Data Inference
1: Input: the first-stage attack rounds S1, local dataset D, number

of GANs iterations N , number of local epochs E, local learning
rate η, the target label yt, the generator G(z, θ), generator
learning rate ηg .

2: Output: the supplementary dataset D′ of class ys.
3: D′ = ∅
4: for round t in S1 do
5: Receive the global model wt from the server
6: wt

i ← wt

7:
8: // Generation process
9: for iteration n = 0, 1, . . . , N − 1 do

10: xg ← G(z, θ)
11: if LG(w

t;xg) < threshold then
12: D′ ← D′ ∪ {xg}
13: end if
14: θ ← θ − ηg∇LG(w

t; {xg})
15: end for
16:
17: // Pre-poisoning process
18: for local epoch e = 0, 1, . . . , E − 1 do
19: for each batch bi = {x, y} of D do
20: bi ← bi ∪ {xg, yt}
21: wt

i ← wt
i − η∇L(wt

i ; bi)
22: end for
23: end for
24: ∆wt

i ← wt − wt
i

25: Send ∆wt
i to the server

26: end for
27: return D′

distribution preal. While D is trained to distinguish between
real images and those generated by G. For vanilla GANs, the
overall objective function can be formulated as follows:

min
G

max
D

V (G,D) = Ex∼preal(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].
(4)

However, due to the lack of real data, the attacker cannot
locally train a discriminator to give effective feedback to the
generator. To address this issue, a key insight is to regard the
global model as a discriminator, since classification can be
seen as a more specific type of discrimination [24]. Different
from the existing data inference attacks, we introduce the data-
free solution into FL and craft the generator loss function from
two aspects of authenticity and diversity.

Authenticity-oriented loss functions. Let ysm = D(x) ∈
RN be the softmax output of the discriminator (i.e., the current
global model) for input sample x and yoh ∈ RN be the one-
hot vector where yoh

i = 1 if i = argmaxj{ysm
j }. Then we

can define the one-hot loss [25]:

Loh = Hce(y
sm,yoh) = −

N−1∑
i=0

yoh
i log ysm

i , (5)

where Hce represents the cross-entropy loss function. The
one-hot loss function can encourage the softmax outputs of
generated images by the global model to be close to the
one-hot vectors, in other words, the generated images can be
classified into any class with high confidence.

Besides, we also exploit the intermediate feature fi of
the input generated sample xi extracted by the global model
based on the insight that xi with more significant fi values
is more likely to belong to the distribution of the original
training dataset. Therefore, we define a feature significance
loss function as follows:

Lfs = − log(
∥fi∥2

dim(fi)
), (6)

where dim(fi) is the dimension of vector fi.
Diversity-oriented loss functions. Here, we design the loss

functions from the perspective of class diversity and sample
diversity respectively.

Firstly, we introduce the information entropy to balance the
generation probability of each class. In particular, let p be the
element-wise average vector of ysm (as defined above) for all
input samples, we define the information entropy as:

Lie = −Hie(p) = −
N−1∑
i=0

pi log pi, (7)

where Hie represents the information entropy function. By
maximizing the information entropy of p, we force the gen-
erator to generate samples across all classes.

Besides, we note that mode collapse is a common problem
in GANs as well as in existing data inference attacks [9], [13]
against FL. Therefore, inspired by [26], we design a mode-
seeking function to promote the sample diversity within each
class:

Lms = maxG(
∥D(G(z1))−D(G(z2))∥2

∥z1 − z2∥2
), (8)

where z1 and z2 represent two different latent vectors. Note
that we replace the original distance between G(z1) and
G(z2) in the numerator because the output of the global
model (serving as D) can indicate the similarity between the
generated samples better than the original vector difference of
them.

Overall generator loss functions. Finally, we obtain the
overall loss function by combining the aforementioned items:

LG = Loh + Lfs + α(Lie + Lms), (9)

where α is a hyper-parameter balancing the two aspects of
loss, which can be adjusted for different datasets.

Pre-poisoning strategy. By designing the loss function, we
can greatly enhance the performance of the generator, but this
is far from enough in the FL settings. It should be noted that
for the global model, the feature spaces of the negative samples
in the classification and the discrimination task are completely
different. Specifically, we use yreali and yfakei to represent
the samples of class yi from the real distribution and the
generator G. For yreali , the negative samples should be yfakei

in the discrimination task while coming from the other classes
Y \ {yi} in the FL classification task. Therefore, if we simply
use the global model in each round as the discriminator, the
generator cannot learn more information about yi, resulting
in poor generation results as shown in Figure 3. To solve
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Fig. 3. Comparison of the effect of GANs-based privacy inference with and
without pre-poisoning.

this problem, we leverage a pre-poisoning strategy to actively
inject a small number of generated samples that are mislabeled
as the backdoor target class, as the negative samples in each
training round. With this pre-poisoning strategy, the quality
of generated data will be significantly improved and then the
stealthiness and robustness of proposed backdoor methods is
also improved.

After G is updated in each round, the generated samples
that reach the desired generator loss threshold will be cached
to form a supplementary dataset in preparation for the next
round of poisoning and the backdoor training in the second
stage.

D. Source-Specified Backdoor Learning

Through continuous poisoning and generation in the first
stage, the malicious client obtains a supplementary dataset
which helps relieve the heterogeneity constraints and reduce
the gap between local and global data distribution. After that,
attackers can launch more effective and sophisticated backdoor
attacks. As an example, we propose a source-specified back-
door learning (SSBL) strategy considering a realistic vicious
competition situation in FL as mentioned in I.

Specifically, the attacker first specifies the victim class(es)
out of all N classes (perhaps from his competitors). Let Ds =
{(xs, ys)} and Dns = {(xns, yns)} denote the datasets of the
specified and non-specified classes respectively. After that, the
backdoor training is carried out following three metrics:

• The attack success rate (ASR) denotes the percentage
of samples from Ds with trigger patterns that are suc-
cessfully classified as the target label (denoted as yt) by
the infected global model.

• The main task accuracy (MTA) denotes the accuracy of
clean samples from all classes predicted by the infected
global model.

• The backdoor score (BS) indicates the discrimination
of the attack, i.e., the trigger only works on the specified
classes, but has no effect on the non-specified ones:

BS =2 · S1S2/(S1 + S2)

s.t. S1 = E(x,y)∈Ds
I{f(x∗) ̸= y}

S2 = E(x,y)∈Dns
I{f(x∗) = y},

(10)

where I(·) is the indicator function. I(A) = 1 if and only
if event ‘A’ is true.

To this end, we propose an objective function composed of
three components for the backdoor training:

• L(f(x∗
s), yt): for the specified class samples xs pasted

with the trigger, we use the cross entropy of the prediction
of f with the backdoor target label yt.

• L(f(x∗
ns), yns): for the non-specified class samples xns

pasted with the trigger, we use the cross entropy of the
prediction of f with their original label yns.

• L(f(x), y): the original loss function for all clean data
(x, y).

Combining the above items, we define the source-specified
backdoor loss function Lcs as:

Lcs = L(f(x∗
s), yt) + β1 · L(f(x∗

ns), yns)

+ β2 · L(f(x), y),
(11)

where β1 and β2 are the hyper-parameters to trade-off between
the loss items, and we empirically set β1 = β2 = 0.1 in this
work.

Finally, to enhance the impact of malicious updates up-
loaded, we explicitly amplify the malicious update ∆wB by
a factor of λ before uploading, the effect of which will be
discussed in the experiment section.

IV. EXPERIMENTS

A. Experimental Setup

Our work focuses on image classification tasks on three
widely used datasets: MNIST, CIFAR10, and YouTube
Aligned Face (YAF for short). We adopt Alexnet [27] as
the initial global model and conduct FL over K = 100
clients for 500 rounds. Before training begins, we perform
data augmentation (such as rotation, cropping, and flipping)
on the datasets to ensure that each client has at least 1000
samples. In each global round, only 10 clients are selected
and trained for 2 local epochs. Models are optimized using
SGD with a batch size of 32, and we use an initial learning
rate of 0.01 with a decay schedule parameter of 0.95 every 20
global epochs.

Label distribution non-IID data partitions. To simulate
the situation of label distribution skew, we conduct label
partitions following several previous works [16], [17]. For all
K clients, each with nc classes of data, we divide all training
data into K · nc shards, and each client will be randomly
assigned nc shards from different classes. In the experimental



evaluation, we use the heterogeneity index defined in Equation
1 to control the degree of label distribution skew and all clients
share the same heterogeneity index.

Attack settings. We assume that the attacker controls 10%
of the clients, and at least one malicious client will be chosen
in each global round. For the first-stage data inference, the
generator will be optimized with SGD for 1,000 iterations with
a batch size of 128. We use an initial learning rate of 0.01
with a decay schedule parameter of 0.9 every 50 iterations.
In the backdoor training phase, ns classes will be specified as
the victim, which, WLOG, will be misclassified into the first
class of the dataset when the trigger is attached. Triggers are
random pixel blocks and the size is 4×4 for MNIST and 8×8
for the other two datasets. After local backdoor training, we
follow the strategy in [6], [7], [9], allowing malicious updates
to be amplified by λ times before uploading to the server. By
default, we set the heterogeneity index as 0.6, the number of
specified classes ns = 3, and the amplification factor λ = 3.

B. Effectiveness of GANs-based Diverse Data Inference

According to [12], date heterogeneity reduces the backdoor
effectiveness and also challenges the design of a good attack
strategy. In this part, we first present the results for data
inference, and then further evaluate the improvements our
method brings to regular backdoor attacks [6], [9] under
different heterogeneity indices.

Visualization. In Figure 4, we visualize the results of data
inference and compare them with existing methods. As we
expected, our approach performs better in generating samples
with both authenticity and diversity, while the diversity is not
only reflected in generating different classes each time but
also in the difference of samples in each class. In contrast,
the method in [13] and [9] can only recreate a single class
where all samples are similar. We also briefly demonstrate
the effectiveness of the pre-poisoning strategy in Figure 3
and found that it can effectively promote faster and more
stable generator training. An experimental finding is that the
interpolation-based generator has better visual effects than the
deconvolution-based one (e.g., DCGAN [28]), because the
latter tends to show the checkerboard artifacts [29].

Improvement. In order to more intuitively understand how
data heterogeneity affects backdoor attack effectiveness and
to what extent our data inference methods can help attackers
alleviate the limitations, we conducted a set of experiments by
varying the heterogeneity index. We choose the typical model-
replacement backdoor attack in [6] and PGD backdoor attack
in [8] as the baselines for CIFAR10 and MNIST, respectively.
The data poisoning rate for malicious clients is set to 50%. We
run 10 times experiments for each heterogeneity index, picking
a different backdoor target class each time, and use box-and-
whisker plots to report the ASR in Figure 5. We can easily
find the larger the heterogeneity index, the more ASR drops.
However, when combined with our data inference scheme,
the ASR becomes stable and can be increased by 20%–60%
in the case of extreme heterogeneity. We believe that there
are two main reasons. The first is that in the absence of data

Fig. 4. Generated results comparison on MNIST, CIFAR10, and YouTube
Aligned Face datasets. Note that methods in [13] or [9] can only generate
similar samples from a single class, while we display their different results
only for comparison.

classes, the trigger feature can not generalize well and only
work on the data classes that have participated in the backdoor
training. Another reason is that benign clients also face the
heterogeneity problem and tend to produce overfitting updates,
which will further suppress the backdoor feature injected by
the attacker.

To sum up, it is effective and necessary to introduce our
proposed diverse data inference method for backdoor attackers
in non-IID FL scenarios.

C. Effectiveness of SSBL

The “source-specified” property of our attack not only
requires a high probability of misclassification for specified
classes (ASR) but also needs to ensure that the accuracy of
non-specified classes is not affected. In order to visualize this
kind of “differential treatment”, we use the confusion matrix
in Figure 6 to show the effectiveness of SSBL. WLOG, We
specified 5, 3, and 1 victim classes for MNIST, CIFAR10,
and YAF datasets, respectively, and set the first class as the
backdoor target. Note that we have no restrictions on the
choice of the target because the data from the target class
are not involved during the attack process. As shown in the
heatmaps, our SSBL is able to greatly reduce the model
performance on the specified class, while the influence on
non-specified classes is much smaller (even with no effect
on some classes). To reflect the effect more concretely, Table
I gives a detailed comparison of the performance of our
SSBL on three datasets when specifying different numbers
of victim classes. Here, we use ∆MTA to represent the
value by which the backdoor attack reduces the main task
accuracy. Existing work [16] has shown that FL accuracy
will be significantly reduced in non-IID data scenarios, so it



Fig. 5. Performance comparison of existing backdoor attacks [6], [8] with and without our proposed data inference scheme under different heterogeneity
indices.
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Fig. 6. Attack effect on MNIST, CIFAR10, and YAF datasets when the numbers of specified classes are 5, 3, and 1, respectively. We use a series of heatmaps
to show the confusion matrices of the model injected by our backdoor when classifying the trigger-pasted images. As we can see, only the specified class are
misclassified as the target.

is more useful to examine the variation when studying the
impact of our attacks on model performance. From Table
I, we can see as the number of specified classes increases,
the MTA is almost unaffected, which is consistent with the
general characteristics of backdoor attacks. However, both the
ASR and BS show a downward trend, which seems counter-
intuitive, because the regular backdoor can be regarded as
a special case of our SSBL with all classes specified. We
conjecture that the reason lies in the adversarial relationship
between the specified and non-specified classes. Specifically,
in a traditional backdoor attack or the SSBL with a single
class specified, this adversarial relationship is overwhelming,
but in SSBL with half of the specified class, this relationship
becomes balanced, making it more difficult for a trigger to
find the boundary where it can distinguish them.

D. Ablation Study

1) Heterogeneity Index: We have analyzed the impact of
heterogeneity index on traditional backdoor attacks in section
IV-B. In this section, we comprehensively examine the per-
formance of SSBL through three metrics ASR, MTA, and BS

(as defined in section III-B2) by setting different heterogeneity
indices.

There are two points that we can learn from Figure 7. First,
the ASR increases with the higher degree of heterogeneity,
which shows that our method can even take the advantage of
data heterogeneity and has strong adaptability to non-IID data
FL scenarios. Second, there exists an adversarial relationship
between the specified and non-specified classes (which is also
reflected in the experiment in Table I). For example, in the
results of CIFAR10, there is no significant change in BS as
ASR increases, which, by definition, we can infer is due to a
decline in the accuracy of non-specified classes.

2) Amplification Factor λ: Following most of the existing
works [6], [7], [9], we introduce a parameter λ to control
the amplification of the backdoor update. In a more general
scenario, the selection of λ mainly needs to consider the
total number of clients, the proportion of attackers, and the
frequency of attackers being selected. Here, we chose the four
cases where λ=1, 3, 5, and 10. The results are shown in Figure
8. It is worth noting that since we can achieve a more effective
backdoor attack with the help of our data inference mecha-



Fig. 7. Performance of SSBL on three datasets under different heterogeneity indices.

Fig. 8. Performance of SSBL on three datasets with different amplification factors.

TABLE I
THE PERFORMANCE OF THE SSBL ON THREE DATASETS WHEN SPECIFYING DIFFERENT NUMBERS OF SOURCE CLASSES

Dataset
ns 1 3 5

Metrics ASR ∆MTA BS ASR ∆MTA BS ASR ∆MTA BS

MNIST 0.81 0.01 0.86 0.76 0.03 0.79 0.74 0.03 0.77

CIFAR10 0.78 0.03 0.81 0.75 0.04 0.82 0.65 0.04 0.69

YAF 0.71 0.05 0.81 0.68 0.05 0.78 0.59 0.05 0.74

nisms, the required amplification factor is much smaller than
existing works (even up to 40 in [9]). As we can see, update
amplification is very important for the attack effectiveness. For
example, a simple 3x amplification can increase the ASR by
as much as 50% on MNIST. However, excessive amplification
may damage the performance of the global model, leaving
the backdoor attacker exposed. In addition, when λ=10, both
MNIST and YAF datasets show a decrease in ASR, which may
be due to the effect of the penalty term in our source-specified
loss function being amplified at the same time.

E. Stealth Analysis of SSBL Strategy Against Defense Method

Although there have been many studies on defense strategies
against backdoor attacks in FL, such as FoolsGold [30],
FLGUARD [31], and FLAME [32], few of them are applicable
to label distribution non-IID scenarios. There are two main
reasons. First, most defense methods [30]–[32] are based on

the idea of anomaly detection, i.e., to discover and eliminate
malicious updates through similarity comparison or clustering,
etc. However, there are naturally significant differences in
client updates under non-IID scenarios [33], making such
methods invalid. Second, the secure aggregation mechanism
[34] adopted by many FL systems makes it impossible for
defenders to examine the clients’ updates. Therefore, we focus
on post-training backdoor detection to evaluate the stealth of
our attack in this work.

1) Stealth against Neural Cleanse: We first use the popular
Neural Cleanse (NC) method [35] to detect the global model
that has been attacked by our SSBL strategy in FL. The NC
leverages a gradient descent-based approach to generate a
possible trigger for each class. After that, the NC uses the
Median Absolute Deviation (MAD) as the outlier detection
algorithm to detect the reversed triggers and identify the



Specified
Labels

Detected
Labels

Reversed  Triggers

‘9’
‘8’
‘7’

(MNIST)

‘Truck’
‘Ship’

‘Horse’
(CIFAR-10)

None‘0’ ‘1’ ‘2’ ‘3’ ‘4’

‘5’ ‘6’ ‘7’ ‘8’ ‘9’

‘Airplane’ ‘Car’ ‘Bird’ ‘Cat’ ‘Deer’

‘Dog’ ‘Frog’ ‘Horse’ ‘Ship’ ‘Truck’

None

Fig. 9. The trigger reverse results by Neural Cleanse on MNIST and
CIFAR10. The backdoor target class is set to class 0.

TABLE II
AVERAGE DETECTION ACCURACY OVER 10 EXPERIMENTS OF TWO

DEFENSE METHODS WHEN SPECIFYING DIFFERENT NUMBERS OF SOURCE
CLASSES. THE LAST COLUMN REPRESENTS RESULTS WITH NO SOURCE

CLASS SPECIFIED. ALL VALUES ARE PERCENTAGES.

Defense Dataset ns=1 ns=3 ns=5 \

Neural

Cleanse

MNIST 0 20 40 100

CIFAR10 0 10 20 100

YAF 0 10 20 100

Activation

Clustering

MNIST 20 30 50 100

CIFAR10 10 30 40 100

YAF 20 20 40 100

backdoor target class. We use class 0 as the backdoor target
in MNIST and CIFAR10 datasets, and specify 3 classes as the
victims. The trigger restoration effect is shown in Figure 9.
As we can see, for our source-specified attack, Neural Cleanse
failed to restore the trigger or distinguish the target class. In
addition, Table II reports the detection results of NC under
different ns. It is intuitive that the fewer source classes are
specified, the harder the attack is to detect.

2) Stealth against Activation Clustering: The Activation
Clustering (AC) method [36] uses the k-means algorithm to
cluster the activations extracted from the last hidden layer
for input images. By analyzing the silhouette score of the
clustering results, the AC method can distinguish the clean
and poisoned classes. As we can see from II, the AC method
fails to detect most of the time but is more effective and
more stable than the NC method. The reason may be that AC
can identify anomalous samples based on clustering regardless
of the number of specified source classes. However, the AC
approach has a serious drawback, i.e., the defender needs to
access a large amount of training data including poisoning
data, which is difficult in FL because of the violation of privacy
protection.

3) Analysis of Possible Defense: Our SSBL strategy nar-
rows the attack scope on the backdoor source classes, making
it more difficult to detect. But there are still some defenses that
can be effective, especially when the defenders are aware of
the source-specific nature of the backdoor attack. For example,
the NC defender can reverse engineer the triggers of all
possible source-target label pairs to detect the anomaly ones
at the cost of a significant increase in computation [35].

Beyond that, more vigilant defenders can assume the model
has been injected with a backdoor and go straight to backdoor
elimination such as [37], [38]. We speculate that this may
be effective because our SSBL strategy does not consider
optimizing for backdoor persistence. But it should be noted
that such coarse-grained defense may come at the cost of
degradation in the performance of the original model.

F. Future Work

Defense for data inference. Data inference utilizes the
inherent characteristics of the DNN model, i.e., a well-trained
model can memorize information of training data. In this
sense, as long as the clients have white-box access to the global
model, data inference attacks are unavoidable. Therefore, a
defense idea is to restrict the client’s access to the global
model during the training phase and only provide an interface
for uploading data, so as to prevent the client-side attacker
from stealing additional information.

Cross-device FL scenario. In cross-device FL, the clients
consist of many devices (sometimes millions), each with a
small dataset. In this case, the attacker will face more extreme
resource-constrained challenges. How to optimize our data
inference mechanism and design new attack strategies (such
as multiple client collusion) remains to be further explored in
such a more complex distributed environment.

Aggregation algorithms for non-IID FL. Algorithms such
as FedProx [39] can speed up the convergence of the global
model, which may facilitate the proposed data inference pro-
cess. On the other hand, the modification of some algorithms
to the local training process may also affect the backdoor
effectiveness.

V. CONCLUSION

In this paper, we propose a privacy inference-empowered
backdoor attack scheme for non-IID FL, which enables the
client-side attacker to launch a more stealthy but effective
backdoor attack under the label distribution skew scenario.
Firstly, a GANs-based diverse data inference mechanism is
proposed to generate private data, which uses a pre-poisoning
strategy to improve the quality of generated data. Secondly, we
further design a source-specified backdoor learning strategy,
which allows the attacker to arbitrarily specify which classes
are susceptible to the backdoor trigger. Extensive experiments
are implemented based on MNIST, CIFAR10, and YouTube
Aligned Face datasets to evaluate the effectiveness of the
proposed methods. By our diverse data inference mechanism,
we can increase the ASR of regular backdoors by over 60%



when it is ineffective due to data absence. And the SSBL strat-
egy can successfully evade state-of-the-art backdoor detection
methods. Overall, our scheme presents higher feasibility and
flexibility and is compatible with other backdoor attacks to
improve their effectiveness and stealthiness, which can provide
strong support for future research on backdoor attacks in non-
IID FL.
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