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Abstract—This paper proposes a novelty approach to mitigate
the negative transfer problem. In the field of machine learning,
the common strategy is to apply the Single-Task Learning
approach in order to train a supervised model to solve a
specific task. Training a robust model requires a lot of data
and a significant amount of computational resources, making
this solution unfeasible in cases where data are unavailable
or expensive to gather. Therefore another solution, based on
the sharing of information between tasks, has been developed:
Multi-task Learning (MTL). Despite the recent developments
regarding MTL, the problem of negative transfer has still to
be solved. Negative transfer is a phenomenon that occurs when
noisy information is shared between tasks, resulting in a drop in
performance. This paper proposes a new approach to mitigate the
negative transfer problem based on the task awareness concept.
The proposed approach results in diminishing the negative
transfer together with an improvement of performance over
classic MTL solution. Moreover, the proposed approach has been
implemented in two unified architectures to detect Sexism, Hate
Speech, and Toxic Language in text comments. The proposed
architectures set a new state-of-the-art both in EXIST-2021 and
HatEval-2019 benchmarks.

Index Terms—Multi-task Learning, Negative Transfer, Natural
Language Processing, Deep Learning

I. INTRODUCTION

Machine Learning has numerous applications in fields as

diverse as Natural Language Processing (NLP) (e.g., named

entity recognition and hate speech detection) [19], [26] or

Computer Vision (CV) (e.g., object detection and object clas-

sification) [41]. Generally, a single model or an ensemble of

models is trained to address all the desired tasks. These models

are then fine-tuned and tweaked on the chosen task until

they specialize, and their performance no longer increases.

Despite producing satisfactory results, a Single-Task Learning

(STL) strategy ignores knowledge that may be gathered from

datasets of related tasks, allowing our model to generalize

better on our original task. Furthermore, in many cases, more

than the available data is needed to train a model robustly.

Therefore, several strategies to transfer knowledge from one

task to another have been developed [18].

Multi-Task Learning (MTL) [33], [49] is a new area of

study that aims at exploiting the synergy between different

tasks to reduce the amount of data or computational resources

required for these activities. This approach aims at improving
generalization by learning multiple tasks simultaneously. The

soft [43], [47] or hard parameter-sharing [13], [14] strategies

are two of the most commonly used methods for MTL employ-

ing neural networks. In soft parameter-sharing, task-specific

networks are implemented, while feature-sharing methods

handle cross-task communication to encourage the parameters

to be similar. Since the size of the multi-task network grows

linearly with respect to the number of tasks, an issue with

soft parameter-sharing systems is given by scalability. In hard

parameter-sharing, the parameter set is split into shared and

task-specific operations. It is commonly implemented with a

shared encoder and numerous task-specific decoding heads

[49]. One of the benefits of this method is the minimization

of overfitting [33].

Multilinear relationship networks [20] enhanced this ar-

chitecture by imposing tensor normal priors on the fully

connected layers’ parameter set. The branching sites in the

network are set ad-hoc in these works, which can result

in inefficient job groupings. To address this limitation, tree-

based approaches [22], [38] have been proposed. Despite the

improvement introduced by those works, jointly learning mul-

tiple tasks might lead to negative transfer [39], [46] if noisy

information is shared among the tasks. During training, the

hard parameter-sharing encoder learns to construct a generic

representation that focuses on extracting specific features from

the input data. Nevertheless, a subset of these features may

provide critical information for a given decoder head but

introduces noise to another decoder to solve its respective

task. Hence, negative transfer refers to situations in which

the transfer of information results in a decrease in the overall

model performance.

In this work, we propose a new approach to overcome

the negative transfer problem based on the concept of Task

Awareness (TA). This approach enables the MTL model to

take advantage of the information regarding the addressed task.

The overarching goal is for the model to handle its internal

weight for its own task prioritization. Unlike the State-Of-

The-Art (SOTA) approaches (later presented in Section II), the

proposed solution does not require a recursive structure, saving

time and resources. Moreover, we designed two mechanisms

based on the TA approach and implemented them in the cre-

ation of two Multi-Task Learning TA (MTL-TA) architectures
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to address SOTA challenges: Sexism, Hate Speech, and Toxic

Language detection. The source code is publicly available.1

The main contributions of our work are as follows:

• We propose the use of the TA concept to mitigate the

negative transfer problem during MTL training.

• Design of the Task-Aware Input (TAI) mechanism to

grant the MTL models with task awareness ability to mit-

igate negative transfer and even improve results compared

with traditional MTL models.

• Design of the Task Embedding (TE) mechanism to give

MTL models task recognition capability to diminish

negative transfer and improve the results over classic

MTL solutions.

• Creation and validation of two unified architectures to

detect Sexism, Hate Speech, and Toxic Language in text

comments.

• Our proposed method outperforms the SOTA on two pub-

lic benchmarks for Sexism and Hate Speech detection: (i)

EXIST-2021 and (ii) HatEval-2019 datasets.

The rest of the paper is structured as follows. Section II

presents the related works of transfer learning and MTL. Sec-

tion III describes the details of our proposed method. Section

IV illustrates the experiment setup. Section V discusses and

evaluates the experimental results. Section VI presents the

limitation of our approach. Finally, conclusions and future

work are drawn in Section VII.

II. RELATED WORK

Transfer learning is a widespread technique in machine

learning based on the idea that a model created for one task

can be improved by transferring information from another task

[27], [44]. Training a model from scratch requires a large quan-

tity of data and resources, but there are some circumstances

where gathering training data is prohibitively expensive or

impossible. As a result, there is the need to construct high-

performance learners trained with more easily accessible data

from different tasks. Transfer learning techniques allow us

to improve the results of target tasks through information

extracted from related tasks. These techniques have been

effectively used for a variety of machine learning applications,

including NLP [31], [34], [42], [43] and CV [11], [18]. The

MTL framework [33], [49], which seeks to learn many tasks

at once even when they are distinct, is a closely related

learning technique to transfer learning. This approach works

well and can take advantage of sharing information among

tasks. Still, if the tasks are not sufficiently related, it can lead

to negative transfer. The problem of negative transfer consists

of performance degradation caused by noisy information being

shared between tasks.

To solve this issue, several approaches for balancing learn-

ing between different tasks have been proposed based on a

re-weighing of the losses (for instance, via Homoscedastic

uncertainty [17], Gradient normalization [9] and Adversarial

training [36]) or task prioritization [15], [35], [52]. Further

1https://github.com/AngelFelipeMP/Mitigating-Negative-Transfer-with-TA

recent approaches [48], [50], [51] make use of the initial

predictions obtained through multi-task networks to improve,

once or repeatedly, each task output, overcoming a characteris-

tic of the previously mentioned methods that computed all the

task outputs for a given input at once. Those last approaches

culminate to be very time-consuming and require a lot of

computational resources due to their recursive nature.

This paper proposes two unified architectures to detect

Sexism, Hate Speech, and Toxic Language in text comments.

Abburi, Parikh, Chhaya, et al. [1] represents the first semi-

supervised multi-task approach for sexism classification. The

authors addressed three tasks based on labels achieved through

unsupervised learning or weak labeling. The neural multi-

task architecture they proposed allows shared learning across

multiple tasks via common weight and a combined loss

function. The method outperforms several SOTA baselines.

Wu, Fei, and Ji [47] proposed an MTL innovative approach

to solve Aggressive Language Detection (ALD) together with

text normalization. The authors propose a shared encoder

to learn the common features between the two tasks and a

single encoder dedicated to learning the task-relevant features.

The proposed model achieved a significant improvement in

performance concerning the ALD task.

Those last approaches inspired the mechanism we propose

in this paper. The main commonality is to have additional

mechanisms added to the MTL models to improve the rep-

resentation sent to the task heads. The main difference with

respect to the TA approach we propose is that we enrich the

model with the ability to discover by itself which task it will

perform. It allows the MTL-TA models to create a suitable

representation for each task head. In addition, the MTL-TA

modes do not need to learn an auxiliary task, resulting in more

efficiency. In fact, the TA approach allows the MTL models,

at each step, to try to optimize over the task at hand. The key

idea is to learn a task-relevant latent representation of the data,

efficiently solving many NLP tasks [16], [43]. The resulting

mechanisms are proposed in the following section.

III. PROPOSED APPROACH

This section describes the details of the MTL-TA models.

We first introduce the notion of TA and explain how it can

be beneficial in diminishing the negative transfer [39], [46]

for multi-task joint training [33]. Secondly, two different TA

mechanisms are proposed in order to incorporate the task self-

awareness capability into MTL models.

The mainstream approach to supervised multi-task is the

hard parameter-sharing method [49]. The model is composed

of an encoder and N decoders or task heads, where N cor-

responds to the number of tasks the model is simultaneously

trained [45]. During execution, the encoder receives input and

creates a task-agnostic latent representation that is sent to a

certain task head, which is in charge of producing the final

prediction.

The lack of a closer relationship between the latent rep-

resentation generated by the encoder and the tasks degrades

the overall MTL model performance [39]. For the same input,

https://github.com/AngelFelipeMP/Mitigating-Negative-Transfer-with-TA


Fig. 1. Multi-Task Learning (MTL) model including Task-Aware Input (TAI)
mechanism (MTL-TAI).

the optimal latent representation for task heads are likely to be

different [14]. Furthermore, the encoder representation can get

prone to more demanding tasks or with a larger data volume

during training [33]. These model performance deteriorations

are the reflex of the negative transfer phenomenon [39], [46],

where a task head receives an inaccurate input representation

to solve its respective task.

We propose two TA mechanisms to mitigate negative trans-

fer when solving multiple NLP tasks by applying the MTL

approach [49]. These mechanisms tailor, depending on the

specific task that is addressed, the input representation that

is sent to its respective head. In addition, our proposed MTL

model still takes advantage of the generalization improvements

the multi-task joint training provided. Hence, the encoder and

other MTL model parts located before the task heads are

updated during training for every task. It should be noted that

all our proposed MTL models belong to the MTL-TA class,

and they follow the conventional MTL paradigm. Therefore,

only the specific task head attached to the input data is

considered during the task parameter updating.

A. Task-Aware Input

The first mechanism we designed to introduce task aware-

ness into MTL models is Task-Aware Input (TAI). To compel

the encoder to generate a suitable representation for each task

head, we proposed to modify the MTL conventional input for

NLP tasks.

The TAI includes a Text Snippet (TS) plus a Task De-

scription (TD), as shown in Fig. 1. The TS is a text chunk

whose length varies according to the task. It is usually the

integral input for the MTL encoders. The TD is a piece of

text describing what a specific head is dealing with, such as

‘Sexism Detection’ and ‘Hate Speech Detection’. The new

modified input provides context for the encoder to generate a

task-centered representation. The MTL model endowed with

the TAI mechanism is referred as MTL Task-Aware Input

(MTL-TAI).

B. Task Embedding

The second mechanism we designed to convey MTL models

with the TA capability was named Task Embedding (TE). We

proposed to insert an additional building block between the

encoder and the task heads, which we call Task Embedding

Block (TEB), as displayed in Fig. 2. It receives two inputs: (i)

the Task Identification Vector (TIV) and (ii) the latent encoder

representation. The TIV is a unidimensional one-hot vector

whose size is proportional to the number of task heads. Each

TIV location is related to one of the task heads.

The TEB is composed of Learning Units (LU) that encom-

pass a linear layer followed by a ReLU layer. The number

of LUs is a hyperparameter that depends on the task and

data, among other factors. The TEB objective is to generate a

suitable representation for the task the MTL model is solving

at a specific time. Hence, depending on the task, the TEB

will retrieve a different output for the same exact encoder

representation. It relies on the TIV to indicate for which
task the TEB will generate a representation. The TIV has

the number one in the location that corresponds to the task

the model is about to solve. The remainder of the vector

is populated with zeros, as Fig. 2 reflects. The MTL model

equipped with the TE mechanism is referred as MTL Task

Embedding (MTL-TE).

Fig. 2. Multi-Task Learning (MTL) model including Task Embedding (TE)
mechanism (MTL-TE).

IV. EXPERIMENTAL SETUP

This section first describes the tasks and the datasets used

to evaluate our approach. It then presents the implementation

details and models for reference. Finally, we share the settings

for the experiments.



TABLE I
EXIST-2021 DATA DISTRIBUTION

Training Test

Spanish English Spanish English

Twitter Twitter Twitter Gab Twitter Gab

Sexist 1,741 1,636 858 265 858 300

Not-Sexist 1,800 1,800 812 225 858 192

TABLE II
DETOXIS-2021 DATA DISTRIBUTION

Training Test

Toxic 1,147 239

Not-Toxic 2,316 652

TABLE III
HATEVAL-2019 DATA DISTRIBUTION

Training Development Test

Spanish English Spanish English Spanish English

Hate 1,741 1,636 1,741 1,636 858 300
Not-Hate 1,800 1,800 1,800 1,800 812 192

A. Data

Our approach for selecting the datasets for Sexism, Hate

Speech, and Toxic Language detection was based on two

requirements: (i) being publicly available; (ii) having been

used to evaluate a high number of ML models. We use

three datasets – EXIST-2021 [32], DETOXIS-2021 [37], and

HateEval-2019 [2] – which we describe below.

EXIST-2021 [32]: The dataset was created for the sExism

Identification in Social neTworks (EXIST) shared task at

Iberian Languages Evaluation Forum (IberLEF) 2021. The

dataset consists of 11345 annotated social media text posts

in English and Spanish from Twitter and Gab.com (Gab), an

uncensored social media platform. The dataset development

was supervised and monitored by experts in gender issues.

The EXIST was the first challenge on Sexism detection in

social media, whose objective was to identify sexism in a

wide sense, from explicit misogyny to more implicit sexist

behaviors. The challenge received 70 official runs for the

Sexism identification task. It is a binary classification where

the samples belong to the Sexist class or the Not-Sexist

class. The official evaluation metric was accuracy, and data

was split into training and test sets. Table I shows the data

distribution.

DETOXIS-2021 [37]: The dataset was collected for the

DEtection of TOxicity in comments In Spanish (DETOXIS)

shared task at IberLEF 2021. The objective of the shared task
was toxic language detection in comments to various online

news articles regarding immigration. The proposed annotation

methodology focused on diminishing the subjectivity of

toxicity labeling considering contextual information (e.g.,

linguistic features and conversational threads). The team that

worked on the data annotation was composed of trained

annotators and expert linguists. The dataset consists of 4354

text comments from Twitter in Spanish and provides labels

for Toxic Language detection. The task is characterized

as a binary classification where the samples are divided

between the Toxic and Not-Toxic classes. More than 30

teams evaluated their machine learning model in the collected

dataset in the participation for DETOXIS shared task. The

official data evaluation metric was F1-score in the Toxic

class, and the data were divided into training and test sets.

Table II shows the data distribution.

HatEval-2019 [2]: The dataset was constructed for the De-

tection of Hate Speech Against Immigrants and Women in

Twitter (HatEval) shared task, which was part of the Inter-

national Workshop on Semantic Evaluation (SemEval) 2019.

The dataset comprises 19600 tweets published in English

and Spanish and supplies labels for Hate Speech detection.

The data collection methodology employed different gathering

strategies: (i) monitoring likely victims of hate accounts; (ii)

downloading the records of recognized haters; (iii) filtering

Twitter streams with keywords. The annotation was performed

by experts and crowdsourced contributors tested for reliable

annotation. The task was defined as a binary classification

where the samples are associated with the Hateful class or

the Not-Hateful class. The data is composed of training,

development, and test sets, and the official evaluation metric

was the F1-macro, which is the unweighted mean of the F1-

score calculated for the two classes. HatEval was one of the

most popular shared tasks in SemEval 2019, with more than

100 submitted runs for Hate Speech detection. We can see the

dataset distribution in Table III.

B. Implementation Details

The encoder was constructed using a popular BERT [10]

version for Spanish called BETO [7], followed by max and

mean pooling calculation over its output. BETO has 12 self-

attention layers, each with 12 attention-heads, using 768 as

the hidden size with around 110 million parameters. BETO

receives a text sequence and returns a hidden representation

dimensionally equivalent to its hidden size for each token that

belongs to the sequence. The latent encoder representation

is created by a concatenation of max pooling and mean

pooling calculation on the entire 768-dimensional sequence

of tokens returned by BETO. Regarding the TE approach,

the TEB preserves the same dimension of the latent encoder

representation.

The task heads are linear classifiers whose input dimension

corresponds to the latent encoder representation, and the output

depends on the task. In the case of binary classification,

the linear classifier returns two values, and the higher value

corresponds to the predicted class. Furthermore, the TDs for



the EXIST-2021 [32], DETOXIS-2021 [37], and HatEval-2019

[2] datasets are, respectively, the following pieces of text:

’Sexism detection’, ‘Toxic Language detection’, and ‘Hate

Speech detection’.

The models were trained using the optimization algorithm

AdamW [21] with a linear decay learning rate schedule and

a learning rate varying from 5e-6 to 1e-4. In the learning

process, we trained our model for 15 epochs with a dropout

of 0.3 and batch size of 64. Additionally, we experimented

with 1 up to 3 LUs. Similar to the early stopping strategy [8],

we adopted the model with the best performance within the

epochs based on the task’s official metric.

C. Comparison Models

We compare our approach with two types of models: (i)

Baselines and (ii) SOTA models. The baselines are the two

models that we implemented:

• MTL is the classic MTL model. It is constructed with

the same architecture as the MTL-TA model (described

in Section III), but it does not include the TAI mechanism.

Therefore, the MTL model receives only the TS as input.

• STL is the classic STL model. It has the same architec-

ture as the MTL model, yet it encompasses only one task

head. Hence, to compare this model type with the MTL

models, it is necessary to train one model for each one

of the addressed tasks.

The SOTA are the models which currently achieved the best

performance on the datasets considered in our experiments:

• AI-UPV [23]: is a deep learning architecture based on

the combination of different Transformers models [40].

It takes advantage of ensemble methods and, during

training, applies data augmentation mechanisms. It is the

SOTA for EXIST-2021 [32].

• SINAI [30]: is a BERT base model [10] trained using

the MTL hard parameter-sharing method. In spite of

addressing five tasks and six datasets, the model was

focused on Toxic Language detection, while the other

tasks were used as auxiliary tasks. It is the SOTA for

DETOXIS-2021 [37].

• Atalaya [28]: is a model based on Support Vector Ma-

chines [6]. It was trained on several representations com-

puted from FastText [5] sentiment-oriented word vectors,

such as tweet embeddings [24], bag-of-characters [5], and

bag-of-words [4]. It is the SOTA for HatEval-2019 [2].

D. Experimental Settings

We conducted two experiments to evaluate our TA approach

for mitigating negative transfer [39], [46], as described below.

Cross-Validation Experiment: To assess whether the TAI

and TE mechanisms were capable of reducing the negative

transfer during MTL training, we performed a cross-validation

experiment. Therefore, for each one of the datasets described

in Subsection IV-A, we aggregate the different sets that

compose the dataset in a unique set. Then, we run 5-fold cross-

validation on the STL, MTL, MTL-TAI, and MTL-TE models.

Official Training-Test Split: In order to compare our

approach to the SOTA models [23], [28], [30] in the utilized

datasets, we carried out an experiment using the official

training-test split of the respective datasets. We trained our

models with the training set or a combination of the training

and development sets when the last was available. After that,

we evaluated the models in the test partitions.

In both experiments, we use only the data samples in

the Spanish language and evaluate the models employing

the dataset’s respective official metrics (described in Section

IV-A). We explored versions that combined two and three tasks

for the MTL models. Furthermore, models whose results were

the highest regarding the evaluation metrics were selected.

Finally, we applied the t-test to calculate the 95% confidence

interval for the experiments results.

V. RESULTS AND ANALYSIS

This section presents the experiment’s results and the com-

parison among the evaluated models described in Section IV.

A. Cross-Validation Experiment

Table IV shows the cross-validation results. It is organized

into three parts in the following order: model type, model’s

task heads, and model’s performance. Regarding the Baseline

models (described in Section IV-C), results show that the

MTL training approach suffered negative transfer on nearly

all occasions. The MTL model showed improvement over

the STL model only for the Sexism detection task when the

model was trained for Sexism and Hate Speech detection

and when it was trained on the three tasks. Apart from that,

the STL model achieved superior performance in the rest of

the explored combinations. It probably happened because the

negative transfer restrained the learning process of the MTL

model on all the other occasions.

According to our results, the TA mechanisms worked well

to diminish negative transfer. The MTL-TAI model equipped

with the TA mechanism and the MTL-TE model equipped

with the TE mechanism on all occasions achieved superior

performance than the classic MTL model, as shown in Table

IV. The MTL-TAI and MTL-TE models also overcame results

obtained by the STL model for the three evaluated tasks. In

general, the MTL-TE model performs better than the MTL-

TAI model.

B. Official Training-Test Split

Table V, following the same organization as Table IV,

presents the experiment carried out on the three datasets using

their respective official training-test split. We see in Table V

that the MTL training was not beneficial for the classic MTL

model when addressing the sexism detection task. The model

achieved lower accuracy compared with the STL model. We

believe it was again due to the negative transfer phenomenon.

Nevertheless, because of the TA mechanisms, the MTL-TA

and MTL-TE models mitigated the negative transfer presented

in the classic MTL training, achieving higher accuracy than

the STL model and the EXIST-2021 SOTA (AI-UPV [23]).



TABLE IV
RESULTS OF THE CROSS-VALIDATION EXPERIMENT WITH 95% CONFIDENCE INTERVALS

Model Task Heads
EXIST-2021 DETOXIS-2021 HatEval-2019

Accuracy F1-score F1-macro

STL

Sexism 0.789 ± 0.011 – –

Toxic-language – 0.640 ± 0.014 –

Hate-speech – – 0.846 ± 0.009

MTL

Sexism + Toxic-language 0.788 ± 0.011 0.628 ± 0.014 –

Sexism + Hate-speech 0.791 ± 0.011 – 0.843 ± 0.009

Toxic-language + Hate-speech – 0.632 ± 0.014 0.841 ± 0.009

Toxic-language + Hate-speech + Sexism 0.799 ± 0.010 0.634 ± 0.014 0.842 ± 0.009

MTL-TAI

Sexism + Toxic-language 0.799 ± 0.010 0.649 ± 0.014 –

Sexism + Hate-speech 0.805 ± 0.010 – 0.984 ± 0.003

Toxic-language + Hate-speech – 0.649 ± 0.014 0.988 ± 0.003

Toxic-language + Hate-speech + Sexism 0.800 ± 0.010 0.650 ± 0.014 0.980 ± 0.003

MTL-TE

Sexism + Toxic-language 0.797 ± 0.011 0.653 ± 0.014 –

Sexism + Hate-speech 0.806 ± 0.010 – 0.992 ± 0.002

Toxic-language + Hate-speech – 0.653 ± 0.014 0.980 ± 0.003

Toxic-language + Hate-speech + Sexism 0.801 ± 0.010 0.659 ± 0.014 0.988 ± 0.003

TABLE V
RESULTS OF THE TRAINING-TEST EXPERIMENT WITH 95% CONFIDENCE INTERVALS

Model Task Heads
EXIST-2021 DETOXIS-2021 HatEval-2019

Accuracy F1-score F1-macro

AI-UPV [23] – 0.790 ± 0.018 – –

SINAI [30] – – 0.646 ± 0.031 –

Atalaya [28] – – – 0.730 ± 0.022

STL

Sexism 0.790 ± 0.017 – –

Toxic-language – 0.620 ± 0.032 –

Hate-speech – – 0.764 ± 0.021

MTL

Sexism + Toxic-language 0.776 ± 0.018 0.639 ± 0.032 –

Sexism + Hate-speech 0.785 ± 0.017 – 0.778 ± 0.020

Toxic-language + Hate-speech – 0.593 ± 0.032 0.777 ± 0.020

Toxic-language + Hate-speech + Sexism 0.775 ± 0.018 0.629 ± 0.032 0.773 ± 0.021

MTL-TAI

Sexism + Toxic-language 0.797 ± 0.017 0.633 ± 0.032 -

Sexism + Hate-speech 0.809 ± 0.017 - 0.789 ± 0.020

Toxic-language + Hate-speech – 0.628 ± 0.032 0.790 ± 0.020

Toxic-language + Hate-speech + Sexism 0.792 ± 0.017 0.629 ± 0.032 0.782 ± 0.020

MTL-TE

Sexism + Toxic-language 0.804 ± 0.017 0.626 ± 0.032 –

Sexism + Hate-speech 0.804 ± 0.017 – 0.786 ± 0.020

Toxic-language + Hate-speech – 0.623 ± 0.032 0.786 ± 0.020

Toxic-language + Hate-speech + Sexism 0.802 ± 0.017 0.633 ± 0.032 0.789 ± 0.020

The MTL training improves the result for Toxic Language

detection over the STL baseline for the training-test experi-

ment. In general, the MTL, MTL-TAI, and MTL-TE models

achieved similar results, meaning there were low negative

transfer levels for this task during the formal MTL training.

We see in Table V that for the training and test experi-

ment, the MTL training improved the result of Hate Speech

detection. The MTL model obtained a higher F1-macro than

the HatEval-2019 SOTA (Atalaya [28]) and the STL Baseline.

The MTL models with the TA mechanisms improved the
results even more. They mitigate the negative transfer in the

traditional MTL training, and both models achieved superior

F1-macro than the conventional MTL model.

C. Overall Analysis

Analyzing Tables IV and V, we see evidence that the

STL model was a competitive baseline to compare our TA

approach. Therefore, the STL models achieved close or better

results than the SOTA models for the training-test experiment.

The STL achieved the same results as the EXIST-2021 SOTA

(AI-UPV [23]) and comparable results to the DETOXIS-2021



SOTA (SINAI [30]). Furthermore, the STL obtained better

results than the HatEval-2019 SOTA (Atalaya [28]).

Summarizing the results of the two experiments, the MTL-

TA models (MTL-TAI & MTL-TEB) outperformed both the

STL and the classic MTL models. It shows that our proposed

TA approach could mitigate the negative transfer presented in

the conventional MTL training.

VI. LIMITATIONS

In this section, we mention the main limitations of our

MTL-TA models. First, the two models depending on a

powerful encoder to achieve good performance. It could be

a problem for low-resource computation systems that cannot

afford to use deep learning architectures such as Transformers

[40] for the encoder. Secondly, dealing with a higher number

of tasks means having more task heads – increasing the

number of model parameters. Therefore, MTL-TA models will

require more computational power to be fine-tuned. Finally,

we wonder if the MTL-TA models have their ability to adapt

to unseen tasks (e.g., few-shot learning and instruction-based

prompts) reduced due to the fine-tuning process utilizing

information about the tasks.

VII. CONCLUSION AND FUTURE WORK

We proposed the TA strategy to address the negative transfer

[39] problem during MTL training. The proposed method has

been translated into two mechanisms: TAI and TE. The TAI

mechanism is the inclusion of the TD information to enrich

the input of the MTL model encoder. The TE mechanism

is the introduction of the TEB, an extra component that

receives the representation generated by the encoder plus a

TIV representation. The TD and the TIV provide information

regarding the task the MTL model will perform at that precise

moment. The objective of the TAI and TE is to enable the MTL

model to construct task-dependent representations for the task

heads to diminish negative transfer during MTL training and

improve the MTL model performance. We proposed two MTL

models, the MTL-TAI equipped with the TAI mechanisms and

the MTL-TE that includes the TE mechanism.

Our two experiments show that the TA capability re-

duces negative transfer during traditional MTL training and

improves performance over standard MTL solutions. We

achieved competitive results compared with SOTA for the

two proposed MTL-TA models for the addressed tasks: Sex-

ism, Hate Speech, and Toxic Language detection. In partic-

ular, the proposed models set a new SOTA on two public

benchmarks: (i) EXIST-2021 [32] and (ii) HatEval-2019 [2]

datasets, demonstrating a general performance improvement

of the proposed approach with respect to both the STL and

classic MTL model. The TA mechanisms proved to be a valid

approach to mitigate the negative transfer [46] problem in the

MTL training.

This research demonstrated how an MTL approach equipped

with TA mechanism leads to performance improvement in

several NLP tasks. This approach has been demonstrated to

be feasible in cases where we have a scarcity of labeled

data. In future studies, it would be interesting to deepen the

analyses to find out how many labeled samples or volumes

of information it is worth applying MTL rather than using

STL. Further analyses regarding the enrichment of the MTL

model input with low-level task supervision are worth it. In

this scenario, the decoder receives all or a subgroup of the

encoder’s hidden representations instead of just the last one. It

would be interesting to analyze the impact of different encoder

representations in an MTL model. We also plan to apply

MTL with TA to other scenarios, such as sexism identification

under the learning with disagreement regime [29], where it

is necessary to learn from all the labels provided by the

annotators rather than the aggregated gold label. This new

paradigm is gaining importance in NLP, especially for tasks

where often there is not only one correct label. Finally, we

would like to research unsupervised techniques to improve

the suggested models and tackle the same problems (detecting

Hate Speech, Toxic Language, and Sexism). For instance,

Latent Dirichlet Allocation [3], Self-Organizing Maps [25],

and K-Means Clustering [12] could be considered.
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