
An Autonomous Non-monolithic Agent with
Multi-mode Exploration based on Options

Framework
JaeYoon Kim*1, Junyu Xuan†1, Christy Liang†2, and Farookh Hussain†1

*Email: JaeYoon.Kim@student.uts.edu.au
†Email: {Junyu.Xuan, Jie.Liang, Farookh.Hussain}@uts.edu.au

1Australian Artificial Intelligence Institute (AAII), University of Technology Sydney, Australia
2Visualisation Institute, University of Technology Sydney, Australia

Abstract—Most exploration research on reinforcement learning
(RL) has paid attention to ‘the way of exploration’, which
is ‘how to explore’. The other exploration research, ‘when to
explore’, has not been the main focus of RL exploration research.
The issue of ‘when’ of a monolithic exploration in the usual
RL exploration behaviour binds an exploratory action to an
exploitational action of an agent. Recently, a non-monolithic
exploration research has emerged to examine the mode-switching
exploration behaviour of humans and animals. The ultimate
purpose of our research is to enable an agent to decide when to
explore or exploit autonomously. We describe the initial research
of an autonomous multi-mode exploration of non-monolithic
behaviour in an options framework. The higher performance
of our method is shown against the existing non-monolithic
exploration method through comparative experimental results.

Index Terms—non-monolithic exploration, autonomous multi-
mode exploration, options framework

I. INTRODUCTION

Exploration is the crucial part of RL algorithms because it
gives an agent the choice to uncover unknown states. There
have been many RL exploration research studies with various
viewpoints, such as intrinsic reward [1], [2], [3], [4], skill
discovery [5], [6], [7], Memory base [8], [9], [10], [11], and
Q-value base [12]. Although exploration research has evolved,
it has concentrated on ‘how to explore’, which is how an
agent selects an exploratory action. However, the exploration
research regarding ‘when to explore’ has not been researched
in earnest.

There are two types of methodology regarding ’when to
explore’, which are monolithic exploration and non-monolithic
exploration. The noise-based monolithic exploration, a rep-
resentative monolithic exploration, is that a noise, which is
usually sampled from a random distribution, is added to the
original action of a behaviour policy before putting the final
action to an environment. The original action of policy and
the noise to be added act as an exploitation and exploration
respectively. Hence, the behaviour policy using monolithic
exploration is affiliated to a time-homogeneous behaviour
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policy. However, in a non-monolithic exploration, the original
action of a behaviour policy is not added to a noise. They
act for their own purpose at a separate step. Therefore, the
behaviour policy using a non-monolithic exploration belongs
to a heterogeneous mode-switching one (Fig. 1).

We have investigated the initial research [13] of non-
monolithic exploration. As the tentative work, there are still
several limitations. Firstly, there is only one exploration policy
(we call it one-mode exploration). An agent can require
more choice of entropy of exploration mode which denotes
more exploration modes greater than one-mode exploration.
Secondly, the period of exploration to be controlled should be
not fixed but variable. Thirdly, the research takes advantage of
a simple threshold hyper-parameter function, which is named
‘homeostasis’, for the variable scale of trigger signals for
switching exploration or exploitation. However, there should
be a natural switching mechanism by using the policy itself.
It also claims other informed triggers, which are action-
mismatch-based triggers and variance-based triggers.

In this paper, we propose an autonomous non-monolithic
agent with multi-mode exploration based on an options frame-
work to resolve the above-mentioned considerations. Specifi-
cally, we adopt a Hierarchical Reinforcement Learning (HRL)
as an options framework chaining together a sequence of ex-
ploration modes and exploitation in order to achieve switching
behaviours at intra-episodic time scales. Thus, we can achieve
a multi-mode exploration with the different entropy. In order
to enable autonomous switching between exploration policies
and an exploitation policy where the switching is based on
intrinsic signals, we adapt a guided exploration using a reward
modification of each switching mode. A robust optimal policy
is also researched to maintain the potential performance.

Meanwhile, for this research the following 5 questions
should be answered. How can an options framework be
adopted in order to take advantage of the context of a HRL
for exploration modes and exploitation? How does an agent
have the flexibility of the exploration period? How does an
agent get more entropy choice of exploration mode? How can
an agent determine the switching of non-monolithic multi-
mode exploration by itself without any subsidiary function
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Fig. 1: An example of noise-based monolithic exploration (left) and non-monolithic exploration (right). The final action, which
is a scalar in this example for the well understanding explanation, denotes the action of an agent represented with a solid
circle at each step. The solid line denotes the exploitation, an original action of a behaviour policy. The solid circle in the
noise-based monolithic exploration is a final action which combines the original action of a behaviour policy and a sampled
bounded noise at each step. However, the solid circle in the non-monolithic exploration is defined according to the mode of
each step, i.e. exploitation which is an an original action of a behaviour policy or exploration which is a random noise or a
policy.

such as ‘homeostasis’? How does an agent avoid the inherent
disturbance of a policy but have a robust optimal policy?

It is worth mentioning that there are no similar works in the
literature, so the reference methods are partially based on the
method proposed in [13] even though their work is not based
on an options framework. In the end, our exploration method
shows a better performance.

The contributions are summarized as follows.

• Development of an options framework model supporting
an autonomous non-monolithic multi-mode exploration:
We introduce a novel HRL model architecture to support
an autonomous non-monolithic multi-mode exploration
for the first 3 research questions.

• Development of a switching method for a non-monolithic
exploration by using an inherent characteristic of a
policy: Our model use a guided exploration with a reward
modification for the fourth research question.

• Improved robustness of the policy: A robust optimal pol-
icy can be ensured by taking advantage of an evaluation
process for the last research question.

The rest of this research is explained as follows. Section II
surveys the research of exploration and HRL related to our
research. Section III explains our proposed model. Section IV
describes the experiments for the performance measurement
of our model compared with a non-monolithic model, [13],
as a reference model and a monolithic exploration, HIRO. We
discuss several acknowledged issues from the experiment in

Section V. Finally, we present the conclusion of the current
research and suggestions for future works in Section VI.

II. RELATED WORK

A. Options framework

The set of option, which is a generalized concept of action,
over an MDP is comprised of a semi-Markov decision process
(SMDP). Semi-MDPs are defined to deal with the different
levels of an abstract action based on the variable period. HRL
is a representative generalization of reinforcement learning
where the environment is modelled as a semi-MDP [14].

Each action in non-monolithic exploration mode which
adopts a multi-mode exploration has different effect during
the different period. Thus the sequence of action is defined
by taking advantage of an option framework for a multi-mode
exploration.

B. Exploration

The various events for triggers have been considered
whether they are acquired from uncertainty or not [15], [16],
[17].

The experiment of [18] shows the efficacy of robot be-
haviour learning from self-exploration and a socially guided
exploration supported by a human partner. [19] claims about
the Bayesian framework which supports changing dynamics
online and prevents conservativeness by using a variance
bonus uncovering the level of transition of adversity. [20]
claims Tactical Optimistic and Pessimistic (TOP) estimation
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Fig. 2: The architecture of our suggested model (right) compared with that of the reference paper using a homeostasis [13]
(left)

for the value estimation strategy of optimistic and pessimistic
online by using a quantile approximation [21]. Hence, the
belief distribution is constructed by following quantile esti-
mation:

𝑞 �̃� 𝜋 (𝑠,𝑎) = 𝑞 �̄� (𝑠,𝑎) + 𝛽𝑞𝜎 (𝑠,𝑎) (1)

where 𝑞 �̄� (𝑠,𝑎) and 𝑞𝜎 (𝑠,𝑎) are the mean and standard deviation
of quantile estimation respectively and Z(s,a) is a return
random variable. The belief distribution is optimistic and
pessimistic when 𝛽 ≥ 0 and 𝛽 < 0 respectively.

[13] claims the importance of a non-monolithic explo-
ration against a monolithic exploration. Its representative non-
monolithic exploration method utilizes ‘homeostasis’ based
on the difference of value function between k steps which
is referred to as the following ’value promise discrepancy’,

𝐷 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 (𝑡 − 𝑘, 𝑡) :=
��𝑉 (𝑠𝑡 − 𝑘) −

𝑘−1∑︁
𝑖=0

𝛾𝑖𝑅𝑡−𝑖 − 𝛾𝑘𝑉 (𝑠𝑡 )
�� (2)

where 𝑉 (𝑠) is the agent’s value estimate at state s, 𝛾 is a
discount factor and 𝑅 is the reward.

The above-mentioned researches regarding the guidance-
exploration framework, robust-MDP research and the adaptive
optimism inspired our research on the basis of [13].

C. Hierarchical RL

The Semi-Markov Decision Process(SMDP) takes advan-
tage of options defining a domain knowledge and can reuse the
solutions to sub-goals [14]. [22] claims that an Adaptive Skills,
Adaptive Partitions framework supports learning near-optimal

skills which are composed automatically and concurrently
with skill partitions, in which an initial misspecified model
is corrected. [23] proposes an algorithm to solve tasks with
sparse reward in which the research suggests an algorithm
to accelerate exploration with the construction of options
minimizing the cover time. [24] also deals with a sparse reward
environment. Thus, it formalizes the concept of fast and slow
curiosity for the purpose of stimulating a long-time horizon
exploration. The option-critic architecture has the intra policy,
which follows the option chosen by the policy over options
until the end of the condition of option termination [25].
[26] claims that each policy in HRL, which utilizes a flow-
based deep generative model for retaining a full expressivity,
is trained through a latent variable with a bottom-up layer-
wise method. HIRO claims the method to synchronize adjacent
levels of hierarchical reinforcement learning to efficiently train
the higher level policy.

Our model makes use of HIRO for our exploration research
because it is a traditional goal-conditioned HRL.

III. OUR MODEL

From the rising issue of value promise discrepancy used
in [13], our research pays close attention to an autonomous
multi-mode non-monolithic exploration model where an agent
makes an action as to when an exploration mode starts and
exits by itself. In addition, the expected model takes advantage
of its inherent characteristic for the action. For the purpose,
our research adopts an options framework.



TABLE I: Key Notations.

Symbol Meaning
𝑡 action step
𝑠𝑡𝑎𝑡𝑒 current state
𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒 next state
𝑇 𝑜𝑝 The highest level
𝑀𝑖𝑑𝑑𝑙𝑒 The higher level
𝐿𝑜𝑤 The lower level
𝐴𝑐𝑡𝑖𝑜𝑛 The action of Low level (The action of 𝜋𝑇𝐷3

𝐿
)

𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑜𝑠 The context of Top and Middle
𝑔𝑜𝑎𝑙 The current lower-level context of three sub-

policies of Middle level (The current goal for
𝜋𝑇𝐷3
𝐿

)
𝑛𝑒𝑥𝑡_𝑔𝑜𝑎𝑙 The next lower-level context of three sub-policies

of Middle level (The next goal for 𝜋𝑇𝐷3
𝐿

)
𝑅 The reward received from an environment (The

sign of R is negative in Ant domain of OpenAI
Gym)

𝜋𝑃𝑃𝑂
𝑇

The policy(on-policy) of Top level
𝜋𝑇𝐷3
𝑀

The policy(off-policy) of Middle level
𝜋𝑃𝑃𝑂
𝑀

The policy(on-policy) of Middle level
𝜋𝑅𝑁𝐷
𝑀

The policy (The uniform random for random pol-
icy) of Middle level

𝜋𝑇𝐷3
𝐿

The policy(off-policy) of Low level
𝑔expl-mode The action of 𝜋𝑃𝑃𝑂

𝑇
of Top level

𝛼
𝑔expl-mode The preset value of 𝛼 according to 𝑔expl-mode

𝑆_𝑂
𝑔expl-mode The reference value of 𝑆𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 according

to 𝑔expl-mode

𝑙𝑜𝑠𝑠 The loss of 𝜋𝑃𝑃𝑂
𝑇

of Top level
𝑆_𝐸 The 𝑆𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 of evaluation function of

𝜋𝑇𝐷3 of Middle level
𝐷𝑜𝑛𝑒_𝑚 The count of Done during the horizon of Top level
𝑅_𝑚 The sum of R during the horizon of Top level
𝐶𝑜𝑢𝑛𝑡_𝑚 The count during the horizon of Top level
𝑆_𝑂_𝑚 The ratio of success count regarding 𝑔expl-mode of

𝜋𝑃𝑃𝑂
𝑇

during the horizon of Top level
𝜌 The preset value of target rate, i.e. the average

number of switches of the reference model

An options framework especially in a goal-conditioned
HRL is the appropriate consideration to control the multi-
mode exploration through a fully state-dependent hierarchical
policy. For the first research question proposed in Section
I, our model has three levels of HRL as shown in Fig. 2
together with the implemented model of [13]. Our model
names each of the levels according to the height of the level:
𝑇𝑜𝑝, 𝑀𝑖𝑑𝑑𝑙𝑒 and 𝐿𝑜𝑤. The policies are in each level: 𝜋𝑃𝑃𝑂

𝑇

for Top, 𝜋𝑇 𝐷3
𝑀

, 𝜋𝑃𝑃𝑂
𝑀

and 𝜋𝑅𝑁𝐷
𝑀

for Middle and 𝜋𝑇 𝐷3
𝐿

for
Low.

The hierarchical control process is easy to systematically
construct a multi-mode exploration, 𝑔expl-mode, as the option
against a function control such as homeostasis. The exploration
mode policy, 𝜋𝑃𝑃𝑂

𝑇
, can choose one of three policies of Middle

level as follows
𝑔expl-mode ∼ 𝜋𝑃𝑃𝑂

𝑇 . (3)

Therefore, the value of 𝑔expl-mode denotes one of two ex-
ploration modes, which are uniform random and PPO, or one
exploitation which is TD3. It also provides several control
benefits for exploration as there are the inherent characteristics
of the options framework.

In order to accomplish the purpose of our research, our
options framework model comprises four elements: the inher-

ent switching mode decision of the policy itself, empowering
more entropy degrees for exploration, a guided exploration
mode, and the use of an evaluation process for robustness.

A. The inherent switching mode decision of a policy itself

Since the inherent training method of 𝜋𝑃𝑃𝑂
𝑇

is used in our
model, one policy of Middle level can be chosen according
to an option, 𝑔expl-mode, of 𝜋𝑃𝑃𝑂

𝑇
. 𝜋𝑃𝑃𝑂

𝑇
is synthesizing the

reward-maximization of policy on all modes into its own
policy without a subsidiary aid. This leads to the fact that
the period of both exploration and exploitation is controlled
by the inherent characteristic of an agent. In the end, all
characteristic of the non-monolithic exploration mode policy
can be integrated to the reward-maximization of policy for
the second research question in Section I. We can verify the
choice of a switching mode on the count of each exploration
mode as shown in Section IV.

B. Empowering more entropy choice for exploration

Our model pursues multi-mode exploration for the explo-
ration mode policy according to the degree of entropy of
exploration mode as the degree of optimism. Our model has
two exploration modes, which are a 𝜋𝑅𝑁𝐷

𝑀
and a 𝜋𝑃𝑃𝑂

𝑀
, and

one exploitation policy, 𝜋𝑇 𝐷3
𝑀

, in Middle level for the third
research question in Section I. Thus, while an agent is being
trained, we hypothesize that the degree of each entropy of
three policies is as follows,

H
(
𝜋𝑅𝑁𝐷
𝑀

)
> H

(
𝜋𝑃𝑃𝑂
𝑀

)
> H

(
𝜋𝑇 𝐷3
𝑀

)
(4)

where H
(
𝜋 •
𝑀

)
denotes the overall entropy of a policy 𝜋 •

𝑀
.

Our model just consumes PPO for an exploration mode so
that it will be discarded at the end of training. Our model
takes care of only off-policy, TD3, as a final target policy.
Meanwhile, PPO and TD3 are trained together whenever a
data occurs due to one of three sub-policies of Middle level.
If PPO is trained to some degree, our model expects that the
performance of PPO is higher than the performance of uniform
random regarding the result of exploration.

C. Guided exploration

There are two phases of a potential reward progress during
the training of our agent. Thus, our model takes a guided
exploration into consideration for the agent in order to keep
the first phase. Since our model pursues an options framework
in a goal-conditioned HRL, the exploration mode policy can
follow a reward-maximizing policy so that the modification
of reward 𝑅 from an environment is conducted with a preset
parameter 𝛼𝑔expl-mode as

𝑅 𝑓 𝑖𝑛𝑎𝑙 = 𝑅 + 𝛼𝑔expl-mode ∗ 𝑅 (5)

where 𝑅 𝑓 𝑖𝑛𝑎𝑙 denotes a modified reward according to a preset
parameter 𝛼𝑔expl-mode and an environment reward 𝑅.

The value of 𝛼𝑔expl-mode is differently or sometimes equally
preset according to the type of 𝑔expl-mode as

𝛼uniform random > 𝛼ppo > or equal to 𝛼td3 (6)



where 𝛼uniform random, 𝛼ppo, 𝑎𝑛𝑑 𝛼td3 denotes a preset pa-
rameter 𝛼𝑔expl-mode of 𝜋𝑅𝑁𝐷

𝑀
, 𝜋𝑃𝑃𝑂

𝑀
and 𝜋𝑇 𝐷3

𝑀
for Middle

respectively.
Finally, since the value of 𝑅 𝑓 𝑖𝑛𝑎𝑙 is utilized in the training

of the exploration mode policy, a reward-maximized option
for the fourth research question in Section I is preferred
by the exploration mode policy depending on the value of
𝛼𝑔expl-mode . As the value of 𝛼𝑔expl-mode gets bigger, the occurrence
probability of its exploration mode gets smaller.

D. Evaluation for robustness

For the second phase of the potential reward progress of
our agent, our model adopts the online evaluation process to
keep a robust optimal policy. The occurrence of success rate
in the online evaluation process shows that the performance
of an agent enters the second stage of reward progress in this
research. From the second stage, our agent is required to have
robust optimal policy by using online evaluation process. The
online process evaluating the off-policy, 𝜋𝑇 𝐷3

𝑀
, operates every

preset step. Then, it outputs the success rate, 𝑆_𝐸 , according
to the type of 𝑔expl-mode. Thus, 𝑙𝑜𝑠𝑠 𝑓 𝑖𝑛𝑎𝑙 of the exploration
mode policy, 𝜋𝑃𝑃𝑂

𝑇
, for the fifth research question in Section

I is calculated in this research as

𝑙𝑜𝑠𝑠 𝑓 𝑖𝑛𝑎𝑙 = 𝑙𝑜𝑠𝑠 + 𝑆_𝐸 ∗ 𝑙𝑜𝑠𝑠 (7)

where 𝑙𝑜𝑠𝑠 𝑓 𝑖𝑛𝑎𝑙 is a modified loss according to 𝑆_𝐸 .
In our model, as the online value of 𝑆_𝐸 increases, the loss

of the exploration mode policy in the mode of uniform random
and online policy becomes bigger than its online original loss.

IV. EXPERIMENTS

The control of multi-mode exploration of our model as
an autonomous non-monolithic agent is shown by the count
of exploration modes and exploitation, since their counts are
critical for the analysis of our model. Each count describes
the current situation of reward-maximization of policy on all
modes. Through the analysis, we aim to answer the following
crucial question. Can our model show better performance
than that of the representative model of the reference paper,
[13], and a noise-based monolithic exploration policy? We
evaluate our model and them in two tasks, Ant Push and
Ant Fall, of Ant domain of OpenAI Gym. The reference
models for the comparison are two models of [13], XU-
intra(100, informed, 𝑝∗, X) and XI-intra(100, informed, 𝑝∗,
X), which are called ’Ref:Uniform random’ and ’Ref:PPO’
respectively in our reference model1. PPO is utilized for the
intrinsic explore mode of our reference model. A noise-based
monolithic exploration policy is HIRO, which is composed of
TD3 at each level. Our model and two reference models are
also implemented based on HIRO. In order to evaluate the best
performance among three models, we have the four analysis
items as follows:

1) How many counts are assigned to each policy through
whole training steps?

1Please read the section 3.1 of [13] for the experimental details

2) How does the transition of our model between explo-
ration mode and exploitation occur compared with the
forced exploration transition of reference model?

3) How much is the difference between uniform random
and on-policy as the exploration policy of our model
based on a guided exploration strategy?

4) How much does the evaluation process influence the
performance of the second reward phase?

The results of Ant Push and Ant Fall are represented in
Fig. 3 and Fig. 4 respectively. Moreover, our source and
implementation details are available online2. Algorithm 1
shows the main part of algorithm which is implemented on
the reference code.

A. Comparison with the reference paper and pure off-policy

1) Ant Push: Our model outperforms all other models
through almost all training steps. The exploitation of our
model and two reference models occurs during the most of
the training steps. The exploration mode of our model and
two reference models takes place less than the exploitation of
them. HIRO shows the best performance in the early period
but quickly loses the potential through whole training steps as
the other models takes advantage of the diverse exploration
modes. The performance of ‘Ref:Uniform random’ is better
than that of ‘Ref:PPO’.

The exploration mode of Uniform random of our model
and ‘Ref:Uniform random’ does not take place for a long
time, but for a short time and gradually. Meanwhile, more
exploration of ‘Ref:PPO’ occurs than that of ‘Ref:Uniform
random’ according to a preset target rate 𝜌 where the incessant
exploration occurs after the starting mode.

After the starting mode in Algorithm 1, the PPO exploration
mode of our model has about 3600 steps, which is more than
the Uniform random exploration mode of our model, which is
about 2100 steps. Most of the PPO exploration mode of our
model occurs before 1M steps. The comparison of the total
steps of the two exploration modes and exploitation of our
model is

Total_Step
(
𝜋𝑇 𝐷3
𝑀

)
>> Total_Step

(
𝜋𝑃𝑃𝑂
𝑀

)
> Total_Step

(
𝜋𝑅𝑁𝐷
𝑀

)
(8)

where Total_Step
(
𝜋 •
𝑀

)
denotes total conducted steps of a

policy of 𝜋 •
𝑀

.
The guided exploration strategy produces the exploration

mode of our model based on the modification of reward,
Equation (5), and the ratio of success count 𝑆_𝑂_𝑚.

The second phase in Ant PUSH task starts from the steps
when the reward occurs above -100 since the success rate,
𝑆_𝐸 , of the evaluation process occurs from about 500K and
passes 0.6 at 1M steps. The situation of collapsed reward does
not take place for a long time because of the loss modification,
Equation (7), relying on the evaluation process.

2https://github.com/jangikim2/An-Autonomous-Non-monolithic-Agent-
with-Multi-mode-Exploration-based-on-Options-Framework

https://github.com/jangikim2/An-Autonomous-Non-monolithic-Agent-with-Multi-mode-Exploration-based-on-Options-Framework
https://github.com/jangikim2/An-Autonomous-Non-monolithic-Agent-with-Multi-mode-Exploration-based-on-Options-Framework


Fig. 3: The count of exploration modes and exploitation and the reward and success rate of higher level policy for our model,
Ref:Uniform random, Ref:PPO and HIRO in Ant Push

Fig. 4: The count of exploration modes and exploitation and the reward and success rate of higher level policy for our model,
Ref:Uniform random, Ref:PPO and HIRO in Ant Fall

2) Ant Fall: Our model shows a competitive performance
against all other models after 3M steps. The preset of reward
modification of Ant Fall is different from that of Ant Push,
which means that 𝛼on-policy is equal to 𝛼off-policy. The exploita-
tion of our model occurs over 1M steps less than that of the
two reference models, which is different from the situation
of Ant Push. The performance of HIRO is stationary and
decrease in the latter part. Unlike Ant Push, the performance
of ‘Ref:PPO’ is better than that of ‘Ref:Uniform random’.

The exploration mode of ‘Ref:Uniform random’ and our
model takes place for longer than that of ‘Ref:Uniform ran-
dom’ and our model in Ant Push. Meanwhile, the exploration
mode of ‘Ref:PPO’ and that of ‘Ref:Uniform random’ are
almost the same since a preset target rate 𝜌 for ‘Ref:Uniform

random’ and ‘Ref:Uniform random’ is the same.
Although 𝛼on-policy is equal to 𝛼off-policy, since the ratio of

success count regarding each action of the second level is also
modified, after the starting mode, the total step comparison of
two exploration mode and exploitation of our model is through
whole training steps as

Total_Step
(
𝜋𝑇 𝐷3
𝑀

)
> Total_Step

(
𝜋𝑃𝑃𝑂
𝑀

)
>> Total_Step

(
𝜋𝑅𝑁𝐷
𝑀

)
.

(9)
Unlike the Ant PUSH task, the second phase in the Ant Fall

task suffers a drop of reward between 4M and 4.5 M steps.
The success rate of the evaluation process stays between 0.5
and 0.6 during the period. The recovery of reward quickly
takes place due to the success rate compared with IV-B2.



Fig. 5: Three types of ablation study against our normal model in Ant Push

B. Ablation study
We investigate our model without the reward modification,

the loss modification and both modifications. Fig. 5 shows the
results of the experiment compared with our normal model
in the Ant Push task. Therefore, the part related to our
normal model in Ant Push is removed for the purpose of
experimenting each case.

1) Without the reward modification: While the exploitation
has less steps than our normal model, the exploration of
Uniform random and PPO has more steps than our normal
model. The performance of reward and success rate slowly
increase.

2) Without the loss modification: Again, the two explo-
ration modes have more steps than our normal model and the
exploitation has less steps than our normal model. It shows
a drop of reward between 2.2M steps and 3M steps due to
the increase in PPO exploration. Although the success rate is
better than that of our normal model during the period, its
performance is worse than that of our normal model.

3) Without both the reward modification and the loss mod-
ification: Too many explorations and less exploitation cause
the worst performance.

V. DISCUSSION

A. The effect of on-policy for exploration
When the on-policy operates in the beginning of explo-

ration, the performance of on-policy, 𝜋𝑃𝑃𝑂
𝑀

, is not compet-
itive. However, after it is trained by itself or other policies
to some extent, the performance of on-policy shows better
performance than the random policy. Meanwhile, In practice
𝜋𝑃𝑃𝑂
𝑇

is likely not to suffer a local minima due to the three
policies of Middle level.

B. The effect of reward modification
In Ant Fall task, the performance of our model in the early

steps up to about 2M steps lags behind all other models. The

reason is that the on-policy operates for long time up to then
since 𝛼on-policy is equal to 𝛼off-policy. The reward modification
for the guided exploration takes advantage of the fixed value
of 𝛼𝑔expl-mode , which is not an adaptive strategy.

C. The effect of loss modification

The occurrence of on-policy and random policy in the Ant
Fall task between 4M and 4.5M steps gives rise to a drop
in performance of the agent. In particular, the modeling of
uncertainty reflecting the success rate, 𝑆_𝐸 , can be considered.
The higher 𝑆_𝐸 is, the lower the uncertainty is. Thus, 𝑆_𝐸 is
related to the uncertainty.

VI. CONCLUSION

In order to overcome the issues of a non-monolithic explo-
ration, this paper introduces an autonomous non-monolithic
agent with multi-mode exploration based on options frame-
work. We reveal the potential of our model to follow a
behaviour thought of humans and animals. Our model takes
advantage of the difference in the degree of entropy of each
exploration policy with a guidance-exploration framework. A
robust optimal policy can be expected due to the evaluation
process. The research on a guided exploration of the adaptive
strategy for the multi-mode exploration of an autonomous
non-monolithic agent is required. The further research on the
modeling of 𝑆_𝐸 in the agent is also required for the robust
optimal policy.
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Algorithm 1 Multi-exploration mode based on options frame-
work

1: Initialize:
Set the value of 𝛼𝑔expl-mode according to
𝑔expl-mode of 𝜋𝑃𝑃𝑂

𝑇

Set the value of 𝑆_𝑂𝑔expl-mode according to
𝑔expl-mode of 𝜋𝑃𝑃𝑂

𝑇

2: procedure Evaluate_𝜋𝑇 𝐷3
𝑀

(..., 𝜋𝑇 𝐷3
𝑀

, 𝜋𝑇 𝐷3
𝐿

, ...)
3: According to 𝜋𝑇 𝐷3

𝑀
𝑎𝑛𝑑 𝜋𝑇 𝐷3

𝐿
, compute S_E

4: end procedure
5: procedure Train𝑇 (..., 𝑆_𝐸, 𝑔expl-mode, ...)
6: if 𝑔expl-mode is Random uniform or PPO then
7: 𝑙𝑜𝑠𝑠 𝑓 𝑖𝑛𝑎𝑙 = 𝑙𝑜𝑠𝑠 + 𝑆_𝐸 ∗ 𝑙𝑜𝑠𝑠

8: else
9: 𝑙𝑜𝑠𝑠 𝑓 𝑖𝑛𝑎𝑙 = 𝑙𝑜𝑠𝑠 − 𝑆_𝐸 ∗ 𝑙𝑜𝑠𝑠

10: end if
11: end procedure
12: for 𝑡 = 0, . . . , 𝑇 − 1 do
13: 𝑎𝑐𝑡𝑖𝑜𝑛← 𝐶𝑙𝑎𝑚𝑝_𝑀𝑎𝑥(𝜋𝑇 𝐷3

𝐿
(𝑠𝑡𝑎𝑡𝑒, 𝑔𝑜𝑎𝑙) + 𝑁𝑜𝑖𝑠𝑒)

14: Execute action, observe 𝑅 and 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒
15: 𝐷𝑜𝑛𝑒 ← 𝐽𝑢𝑑𝑔𝑒_𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑠𝑡𝑎𝑡𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑜𝑠)
16: Increase 𝐷𝑜𝑛𝑒_𝑚 by 1 if Done is True
17: Increase 𝑅_𝑚 by 𝑅

18: Increase 𝐶𝑜𝑢𝑛𝑡_𝑚 by 1
19: if the horizon of Top level then
20: 𝑆_𝑂_𝑚 ← 𝐷𝑜𝑛𝑒_𝑚 / 𝐶𝑜𝑢𝑛𝑡_𝑚;
21: 𝑅 𝑓 𝑖𝑛𝑎𝑙 ← 𝑅_𝑚 + 𝛼𝑔expl-mode ∗ 𝑅_𝑚
22: if 𝑆_𝑂_𝑚 >= 𝑆_𝑂𝑔expl-mode then
23: 𝐷𝑜𝑛𝑒_𝑚 ← 𝑇𝑟𝑢𝑒

24: end if
25: if the training time of Top level then
26: Train𝑇 (..., 𝑆_𝐸, 𝑔expl-mode, ...)
27: end if
28: if the starting mode then
29: 𝑔expl-mode ← 𝑅𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑙𝑖𝑐𝑦

30: else
31: 𝑔expl-mode ∼ 𝜋𝑃𝑃𝑂

𝑇

32: end if
33: 𝑅_𝑚,𝐶𝑜𝑢𝑛𝑡_𝑚, 𝐷𝑜𝑛𝑒_𝑚 ← 0
34: end if
35: if the horizon of Middle level then
36: By 𝑔expl-mode, 𝑛𝑒𝑥𝑡_𝑔𝑜𝑎𝑙 ∼ 𝜋𝑅𝑁𝐷

𝑀
, 𝜋𝑃𝑃𝑂

𝑀
or

𝜋𝑇 𝐷3
𝑀

37: if the training step of 𝜋𝑃𝑃𝑂
𝑀

then
38: Train_𝜋𝑃𝑃𝑂

𝑀
(...)

39: end if
40: end if
41: 𝑠𝑡𝑎𝑡𝑒 ← 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒; 𝑔𝑜𝑎𝑙 ← 𝑛𝑒𝑥𝑡_𝑔𝑜𝑎𝑙
42: if the training step of 𝜋𝑇 𝐷3

𝑀
then

43: Train_𝜋𝑇 𝐷3
𝑀
(...)

44: end if
45: if the evaluation step of Middle level then
46: Evaluate_𝜋𝑇 𝐷3

𝑀
(..., 𝜋𝑇 𝐷3

𝑀
, 𝜋𝑇 𝐷3

𝑀
, ...)

47: end if
48: end for
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