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Abstract—This work proposes Multi-task Meta Learning
(MTML), integrating two learning paradigms Multi-Task Learn-
ing (MTL) and meta learning, to bring together the best of
both worlds. In particular, it focuses simultaneous learning of
multiple tasks, an element of MTL and promptly adapting to
new tasks, a quality of meta learning. It is important to highlight
that we focus on heterogeneous tasks, which are of distinct kind,
in contrast to typically considered homogeneous tasks (e.g., if
all tasks are classification or if all tasks are regression tasks).
The fundamental idea is to train a multi-task model, such that
when an unseen task is introduced, it can learn in fewer steps
whilst offering a performance at least as good as conventional
single task learning on the new task or inclusion within the
MTL. By conducting various experiments, we demonstrate this
paradigm on two datasets and four tasks: NYU-v2 and the
taskonomy dataset for which we perform semantic segmentation,
depth estimation, surface normal estimation, and edge detection.
MTML achieves state-of-the-art results for three out of four tasks
for the NYU-v2 dataset and two out of four for the taskonomy
dataset. In the taskonomy dataset, it was discovered that many
pseudo-labeled segmentation masks lacked classes that were
expected to be present in the ground truth; however, our MTML
approach was found to be effective in detecting these missing
classes, delivering good qualitative results. While, quantitatively
its performance was affected due to the presence of incorrect
ground truth labels. The the source code for reproducibility
can be found at https://github.com/ricupa/MTML-learn-how-to-
adapt-to-unseen-tasks.

Index Terms—Multi-task learning, meta learning, semantic
segmentation, depth estimation, surface normal estimation

I. INTRODUCTION

Multi-task learning (MTL) involves learning many tasks in
a single, combined network architecture [1]. This is in contrast
to single task learning, which trains dedicated networks, one
for each task. The prime argument backing MTL is that the
knowledge absorbed by the network while learning one task
may help to improve the performance on another task when
they are trained together. However, in a multi-task setting,
when there is a need to add a new task to the existing architec-
ture, the new network has to be re-trained from scratch for the
new set of tasks so that there is efficient knowledge transfer
between the tasks, but, it leads to the loss of previously gained
knowledge. Fine-tuning the new task is another option, but

there is a risk of overfitting [2]. Meta learning [3], [4], on the
other hand, involves reusing information obtained during the
learning of a task to quickly adapt to a new one. The paradigm
of meta-learning—also referred to as learning to learn [5]—
gathers experience by learning several homogeneous tasks
(learning episodes) and utilizes the overall meta knowledge
to enhance its future performances on yet unseen tasks. Meta-
learning learns the distribution over the tasks rather than the
specific tasks themselves. The latter are considered samples
from this distribution, which implies that all tasks must be
of similar nature or uni-modal [3], e.g., classification or
regression. Similar tasks are referred to as homogeneous in this
work, while those of a distinct kind are called heterogeneous.
In this study, we focus on the optimization based meta learning
algorithms [4], [6]–[9].

This work introduces a MTML paradigm, taking advantage
from both multi-task and meta learning and constructed as
follows: the episodes used for meta training are assorted
multi-task combinations, as illustrated in Fig. 1, trained by
employing the two-level meta optimization scheme introduced
by MAML [4]. The MTL allows the joint learning of homo-
geneous as well as heterogeneous tasks. The latter is currently
considered a limitation of meta learning [3]. In contrast, meta
learning aids in quicker learning of an unseen task with fewer
data samples, which is challenging for MTL. As a result,
MTML is focused on learning how to learn unseen tasks in a
multi-task setting. The contributions of this work are:

1) a new approach for creating multi-task episodes with
heterogeneous tasks essential for the meta training
phase;

2) a learning mechanism called MTML enabling faster
training of new tasks and better performance on all of
the tasks, when meta learning is introduced in a MTL
framework ;

3) extensive comparative performance analysis of single-
task, MTL, and MTML learning paradigms on two
publicly available datasets.

This article is organized as follows; Section 2, discusses the
related works in multi-task learning and also multi-task meta
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Fig. 1: An intuitive explanation of how ‘tasks’ are introduced in MTL, meta learning, and MTML. In MTL, one learning
instance has all the tasks, in meta learning one learning episode has multiple instances for one task and many episodes of
similar but non-identical tasks are used for training. While in MTML, the multi-task learning episodes consist of many instances
of all the combinations of the tasks.
learning. Section 3, introduces MTL, and meta learning, while
Section 4 details the formulation of MTML. The experimental
setup is given in Section 5. Section 6 contains a comprehensive
analysis of the results. The reasons behind the unsatisfactory
performance of semantic segmentation task are discussed in
Section 7. At last, Section 8 draws the conclusion and opens
up to future work.

II. RELATED WORK

In this section, we highlight significant research studies
that claim to combine MTL and meta learning. [10]–[12]
apply meta learning optimization in a multi-task scenario to
achieve good generalization for unseen data sets on the same
tasks. In [10] for efficient communication between two tasks
in MTL, a gradient passing mechanism is proposed which
has similar traits to gradient based meta learning. A meta
learning approach is followed for sharing parameters across
multiple tasks and languages in [11], the model is trained
on various task-language pairs rather than training all the
tasks simultaneously. In [12], the tasks of dialogue generation
give a context and persona information is learned for multi-
ple personas following meta optimization. Here the multiple
learning episodes (persona information) are considered as
multiple tasks. Additionally, [13]–[15] use multiple tasks for
the multiple training episodes in meta learning and hence
tagged their paradigm multi-task meta learning. Similarly, in
[16] it is theoretically and empirically proved that MTL is
a computationally efficient alternative to gradient based meta
learning algorithm, as for an adequately deep network, the
learned predictive functions of MTL and meta learning are
very similar.

Several studies on MTL [17]–[22] place a strong emphasis
on network architecture design to improve task performance.
Apart form them, the authors in [23] propose to determine
the task transfer relationships between 26 tasks in order to
learn to group tasks for MTL. Other [24]–[27] discuss task
embedding primarily for meta learning as a means to learn task
relationships. [28], [29] employ neural architecture search in
a multi-task setting to reduce the number of parameters.

Most of the works in the literature related to MTL concen-
trate on making it more efficient in terms of its performance,
number of parameters, generalization to unseen data, etc., by
adopting new architectures, learning better task grouping, soft
parameter sharing, neural architecture search, and integration
with other algorithms. Adding to the list, this work puts
together meta learning concept to enable the addition of an
unseen task to an MTL architecture, resulting in faster training
and better generalization of the newly added task compared to
single-task learning.

III. BACKGROUND

Multi-task learning: a learning paradigm aiming to train
multiple tasks together. The shared representations help to
enhance the learning capabilities of all the tasks compared
to training them individually [30]. As illustrated in Fig. 2a,
N non-identical—but related—tasks are sampled from a task
distribution, T = {T1, T2, ..., TN}, where Ti is the ith task.
The data set for all the tasks represented by D is split into
J train, K − J validation, and M − K test instances, such
that D = {(Dtrain

i )Ji=1, (D
val
i )Ki=J+1, (D

test
i )Mi=K+1}, here

Di represents the dataset for ith task. A multi-task network
architecture is trained using the training data (Dtrain

i )Ji=1. The
objective is to minimize the combined loss L, by optimizing
the network parameters ω = {(ωi)Ni=1}, such that

ω∗ = min
ω

N∑
i=1

Li(ωi, (Dtrain)i) . (1)

{Dval
i }Ki=J+1 is used to evaluate the performance of the

multi-task model during the training process, thereby assures
generalization of the model to data instances not used during
training. The optimal parameters ω∗ are used in the inference
on the unseen test data {Dtest

i }Mi=K+1 to report model perfor-
mance.

Meta learning: In a few-shot learning framework (a species
of meta learning), every n-way, k-shot learning episode (i.e.,
n classes and k data samples of each class) is sampled
from a base data set using two-step episodic sampling, as



(a) Multi-task learning

(b) Meta learning (MAML [4])

(c) Multi-task meta learning

Fig. 2: Block diagram illustrating the formulation of the
learning paradigms
shown in Fig. 2b. Here classes are discrete output vari-
ables also known as labels. First, one samples the episode
classes from the class distribution, organized into source
classes Cs = {Cs1 , Cs2 , ..., CsN1

} and target classes Ct =
{Ct1 , Ct2 , .., CtN2

}; where N1 and N2 represent the number
of source and target classes, respectively, and Cs ∩ Ct = ∅.
Second, one samples an episode (k data points) from the data
set based on the classes sampled in the previous step. Consider
an example of 2-way k-shot learning: each learning episode (
i.e., task) will contain the training instances of two classes, say
T1 = {Cs1 , Cs2}.....TEM

= {CsN1−1
, CsN1

}, thereby creating
EM learning episodes (tasks) for meta training. The meta
learners iterate over the learning episodes intending to carry
out the process of learning to learn [3]. It employs a two-step
optimization [4] for all the learning episodes. First, it follows
task-specific learning by optimizing task-specific parameters
{ωη}EM

η=1 given the meta parameters θ(p) of the pth iteration:

ω(p+1)
η (θ(p)) = argmin

ω
Lη(ω, θ(p), (Dtrain)η) (2)

Here, Lη represents the loss for the ηth learning episode,
(Dtrain)η are the training data set. The meta parameters i.e., θ
are often referred to as meta knowledge or knowledge across
tasks [3]. In Fig. 2b, a data instance is indexed by i, and
an episode is indexed by η. The second step corresponds to
multiple task learning: at this meta stage, the aim is to reduce
the meta loss Lmeta—using the unseen validation instances
(Dval)η—by optimizing the θ given the task parameters of
the (p+ 1)th iteration:

θ(p+1)(ω(p+1)) = argmin
θ

EM∑
η=1

Lmeta(ω(p+1)
η , θ, (Dval)η)

(3)
Iterating between (2) and (3) would result in an optimal meta
learner, i.e., , θ(p) → θ∗. During meta testing (adaptation
stage) the meta knowledge θ∗ is used as initial parame-
ters for learning new, unseen tasks (episodes), say, T1 =
{Ct1 , Ct2}......TEK

= {CtN1−1
, CtN1

}. Therefore, the test
tasks are fine-tuned on the model using meta parameters,
which help achieve the best performance for the new tasks
in few gradient steps.

IV. FORMULATION OF MULTI-TASK META LEARNING
(MTML)

In this work, the multi-task architecture is used along
with the bi-level meta optimization to establish MTML.
Particularly, an optimization-based meta learning approach
[31], recognized as Model Agnostic Meta Learning (MAML)
[4] is adopted, which performs a two-level gradient descent
optimization compatible with any model. The Fig. 2c, il-
lustrates the formulation of MTML. The source and target
tasks are sampled from a distribution of tasks p(T ), given
by Ts = {Ts1 , Ts2 , .., TsN1

} and Tt = {Tt1 , Tt2 , .., TtN2
},

respectively. Multi-task learning episodes are created from the
source tasks analogous to meta learning, but since the nature
of the tasks can be heterogeneous, the classical meta learning
approach of merely sampling the source classes (or labels) is
insufficient. Therefore, using the power set of the source task
set 2Ts , after excluding the singletons and the empty set, one
has 2N1−N1−1 multi-task combinations of the source classes
that can be used as multi-task learning episodes. These multi-
task episodes are used to train the network using the two-level
meta optimization, discussed in equations (2) and (3), i.e., the
multi-task meta training stage. New unseen tasks can now be
introduced as target tasks in the meta testing stage. Either all
source and target tasks or only the target tasks (as required) are
then fine-tuned in the meta testing stage, which is similar to
training in MTL, except it utilizes the meta parameters from
the multi-task meta training stage. The task heads (introduced
in Section V under network architecture) which are the task-
specific (un-shared) layers, are fine-tuned if the purpose is to
solely improve the target tasks.

Similar to n-way k-shot meta learning, MTML can be
considered as N -task many-shot learning. Here N is the sum
of the source and target tasks. It should be emphasized that,
the number of multi-task learning episodes exponentially rises



with N , as a result the number of multi- task training episodes
also increase. The investigation of the effect of the number of
tasks on MTML’s performance is beyond the scope of this
work. Although, it is required that N ≥ 3 to generate enough
training episodes for the meta-training stage. If N = 2 there
will be only one learning episode, and which is insufficient
for meta training.

V. EXPERIMENTAL SETUP

Data sets and tasks: For the performance analysis of
our proposed approach, two publicly available data sets are
used: the NYU-v2 data set [32] and the tiny taskonomy data
set [23]. Both of these data sets contain a large variety of
indoor scene images in standard 3-channel RGB image format.
Four tasks used in this work are: semantic segmentation (T1),
depth estimation (T2), surface normal estimation (T3), and
edge detection (T4). The train-validation-test data split for the
NYU-v2 and taskonomy datasets is given in [28] and [23],
respectively.

Network architecture: A very commonly used multi-task
architecture is used for this work: a shared backbone network,
followed by task-specific heads. The common backbone in
the network allows sharing of the low and mid-level features
through their model parameters, while specific high-level fea-
tures are learned by the task specific heads [33]. In this work,
dilated ResNet-50 [34] is employed as the backbone, which
gives the shared representations of the input RGB image.
These representations are then fed as inputs to the task heads
or task specific network. For all the four tasks, DeepLab V3
[35] network is used as the task heads, which make use of
atrous convolutions1 [36], [37]. The Atrous Spatial Pyramid
Pooling (ASPP) module used in DeepLab v3 architecture helps
to extract dense feature maps by discarding the down-sampling
in the last layers and employing up-sampling in the filters of
the corresponding layers. This makes it suitable for pixel-level
dense prediction tasks.

Training specifications: To train the above architecture,
an input RGB image of size 256 × 256 is normalized and
fed to the backbone network in batches of 64 images. A
minimal learning rate of 0.00001 is considered, to administer
sufficient training for all the tasks, since some tasks are harder
than others. Task-specific early stopping (patience = 35) and
overall early stopping (patience = 50) are employed to avoid
overfitting. For single task experiments, multi-task experiments
and the meta update ( i.e., outer loop) in MTML, AdamW [40]
is used as an optimizer since it decouples weight decay from
gradient update by modifying Adam’s [41] implementation of
L2 regularization. Due to large datasets like taskonomy and
NYU-v2, MTML only takes into account a single SGD [42]
inner loop to reduce computational cost and memory usage.
The losses are cross-entropy loss for semantic segmentation, a
combined depth loss [43] for depth estimation, inverse cosine
similarity loss for surface normal prediction, and Huber loss
[44] for edge detection. To make an even comparison, the

1Atrous convolution comes from the french, convolution à trous which
could be translated as sparse kernel convolution.

evaluation metrics used in this work are similar to those used
in [18], [20], [28], [38], [39], also mentioned in Table I.
For semantic segmentation, cross-entropy (lower is better) and
intersection over union (IoU, higher is better) are respectively
used for the taskonomy and NYU-v2 datasets. Mean absolute
error (lower is better) is calculated for depth estimation on
both data sets. For the taskonomy data set, cosine similarity
is used to evaluate surface normal prediction. In contrast, for
the NYU-v2 dataset, the mean and median of angular error
(lower is better) between prediction and ground truth and
percentage of pixels whose predicted values are within 11.25◦,
22.5◦, and 30◦ [28] (higher is better) of the ground truth are
calculated. For edge detection mean absolute error (lower is
better) is calculated between the prediction and ground truth
for both data sets. The loss and evaluation metric for semantic
segmentation do not include background pixels, similar to the
other works discussed in Table I. For fair comparison, the
hyper-parameters were determined for the single task models
to perform their best, and the multi-task models were then
trained under similar setting.

For combining the losses from all the tasks, there are
many techniques as discussed by [33]. In this work we have
used uncertainty [45] to balance the losses of the four dense
prediction tasks. Because the focus of this work was on
combining multi-task and meta learning, other task balancing
techniques were not investigated.

In a MTML arrangement, as discussed in Section III,
the network is trained using multi-task learning episodes. In
episodes having less than four tasks, it is trained as usual, but
for the task absent in the combination, the task loss is set to
zero and the losses are combined as usual for backpropagation.
The parameters of the corresponding task head are not updated
by freezing the layers (same in case of task-wise early-
stopping). To carry out a comparative performance analysis of
all the experiments, they are evaluated using the same test set,
and all the models are trained with the same hyper-parameters.
The models are trained on NVIDIA A100 Tensor Core GPUs,
with 40 GB on-board HBM2 VRAM. All experiments are
repeated three times with different random seeds to ensure and
evaluate the consistency of the model. The results are shown
in terms of mean and standard deviation.

VI. EXPERIMENTAL EVALUATIONS

To analyze the performance of the proposed methods for
various task combinations, the experiments listed in Table II
(NYU-v2) and III (taskonomy) were designed. Experiments
are classified into three types: single task learning, multi-
task learning, and MTML. A comprehensive analysis of the
results of these experiment is provided in this section. These
experiments compare the effect of adding a new task to an
already-trained single task, multi-task and meta multi-task
network. To test the various task combinations, two formats
are considered: augmenting tasks (Exp. 2, 3, and 4), and leave-
one-out (Exp. 5, and 7). In these experiments, ‘+Tn’ indicates
the addition of new nth task to a network previously trained
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Fig. 3: The figure illustrates sample images of the input, its corresponding ground truths, single task (Exp. 1), MTL (Exp. 2.3)
and MTML (Exp. 4.4) outputs for semantic segmentation (Seg.), depth estimation (Depth), surface normal estimation (SN),
and edge detection (Edge) for both the NYU-v2 and taskonomy datasets.

on other tasks. Fig. 4 compares the average number of epochs
needed to train the single task, MTL and MTML models.

Comparable to the state-of-the-art: Table I displays per-
formance for the four tasks as available in the literature, along
with the multi-task, and MTML performance obtained in this
work. The performance of our single task models is displayed
in Exp.1 of Table II and III. For the NYU-v2 data set, our
proposed MTML approach outperforms all the baseline works
for three out of four tasks. For the semantic segmentation
task, our single-task learning model performs best. While in
the taskonomy data set, MTML shows best performance for
surface normal prediction, and edge detection. Both our single-
task models and our multi-task models perform equally well
when it comes to depth estimation. For the semantic segmen-
tation task, it is clear that our models’ performance is not up
to par with the performance reported in the literature. Similar
deterioration in the performance of semantic segmentation task
was observed in many of the experiments and is discussed in
the Section VII. Fig. 3 displays the qualitative output of all
the tasks on NYU-v2 and taskonomy datasets for a single

task, MTL and MTML experiments, i.e., ‘ours’ in Table I
(corresponding to Exp. 1, 2.3 and 4.4 in Tables II & III). In
terms of qualitative performance, MTML clearly excels in all
tasks. Exp 4.4 uses MTML to train and test all four tasks, so
no new task is added.

Why multi-task over single task?: Exp 1, 2, and 5 in Table
II and III show that vanilla MTL works just as well, and in
some cases even better, than its single-task counterpart. It is
important to note that our single-task models are now being
used as the baseline for all comparisons. Fig. 4 demonstrates
that comparable results for MTL can be achieved in far fewer
training epochs than when they are trained individually (plots
for Exp. 1 vs 2.3). These results also help determine which
task combination work best and which suffers from negative
information transfer between the tasks. For example, in Table
III Exp 2, shows three types of task combinations wherein the
semantic segmentation task performs the worst in the ensemble
as compared to their single task (Exp.1). While the other tasks
in the combination are unaffected. Similarly in Table II Exp.5,
the task combination [T1,T2,T3] i.e., Exp. 5.4 is performing



TABLE I: Performance of the single task, MTL, and MTML approaches introduced in this work on the NYU-v2 and taskonomy
datasets (across the three learning paradigms, p < 0.05 for all the tasks), along with some previous state-of-the-art works in
the literature. In this table, MAE is mean absolute error, CE denotes cross entropy metric, mIoU represents mean intersection
over union metric and CS stands for cosine similarity metric. The top-2 results are highlighted in bold.

Taskonomy NYU

Model Parameters Segmen- Depth Surface Edge Segmen- Depth Surface Edge

tation Estimation Normal Detection tation Estimation Normal Detection

T1 T2 T3 T4 T1 T2 T3 T4

Error ↓ Theta ↑

in Millions CE ↓ MAE ↓ CS ↑ MAE ↓ mIoU ↑ MAE ↓ Mean Median 11.25◦ 22.5◦ 30◦ MAE ↓

Multi-Task [28] 41 0.587 0.024 0.696 0.203 24.1 0.58 16.6 13.4 42.5 73.2 84.6 -

Adashare [28] 41 0.566 0.025 0.702 0.2 30.2 0.55 16.6 12.9 45 71.7 83 -

Cross Stitch [18] 124 0.56 0.022 0.679 0.217 24.5 0.58 17.2 14 41.4 70.5 82.9 -

MTAN [38] 114 0.637 0.023 0.687 0.206 26 0.57 16.6 13 43.7 73.3 84.4 -

NDDR CNN [20] 133 0.539 0.024 0.7 0.203 21.6 0.66 17.1 14.5 37.4 73.7 85.6 -

Sluice [39] 124 0.596 0.024 0.695 0.207 23.8 0.58 17.2 14.4 38.9 71.8 83.9 -

Learn2branch [29] 51 0.462 0.018 0.709 0.136 No results on NYU dataset

MTL (Ours) 88 0.628 0.013 0.930 0.050 42.25 0.12 15.04 16.06 42.24 72.52 87.72 0.16

MTML (Ours) 88 2.300 0.063 0.931 0.046 41.51 0.10 13.34 10.24 52.40 76.17 88.51 0.10

Fig. 4: The charts demonstrate the number of epochs (gradient steps to train) for the single-task, multi-task, and MTML for
NYU-v2 dataset.The x-axis displays the tasks (T1 - T4) for the experiments mentioned in Table II The blue bar represents
the number of training epochs, and the orange refers to the epochs required by an unseen task to fine-tune the already trained
multi-task and MTML model. The orange bar on top of the blue depicts the number of epochs the model is further trained
during fine-tuning the unseen task. Similar pattern in the number of epochs is also accounted for the taskonomy dataset.

comparatively better than the others.

Better and faster adaptation of new task: Exp 3,4,6,
& 7, display the performance of MTL and MTML when
a new task is added during the test phase. To begin with,
first consider the MTL performance on NYU-v2 dataset i.e.,
Table II. In MTL setting, when surface normal estimation is
added as a new task (Exp. 3.1, 3.2, 7.3), it performs better
than or similar to single task learning but in fewer training
epochs for both the datasets. While, the error increases w.r.t.
single task when edge detection is added as unseen task i.e.,
Exp. 3.2, 3.3, 7.4. For some of the multi-task models like,
Exp. 6.1, 6.2, 6.3 the addition of an unseen task to the pre-
trained models which are Exp. 7.1, 7.2, 7.3 not only gives
comparably good performance on the unseen task, but it also
enhances the metrics for the already trained tasks (compare

Exp. 6 and 7). An overall comparative analysis shows that,
MTL is better when the tasks are trained together i.e., Exp
2.3 (T1,T2,T3,T4 trained together) instead of adding a new
task during the testing i.e., Exp 3.3 (T1,T2,T3, +T4). Almost
similar traits as above are also valid for the taskonomy dataset.

In the MTML setting i.e., Exp 4 & 7, the meta trained mod-
els are introduced with new unseen tasks. Exp 7 for the NYU-
v2 dataset Table II reveals that MTML outperforms the single
task baseline performance, for various task combinations. It is
also discovered that, while semantic segmentation performance
degrades slightly when meta trained, it performs best when
added as a new task during testing, i.e., Exp 7.1. When
comparing MTML to single-task learning and their equivalent
MTL experiments, very similar, and in some cases even better,
evaluation metrics can be observed. Therefore, if models are



TABLE II: Test set evaluation results for a single task, multi-task, and MTML experiments on the NYU-v2 dataset

Exp. No. Tasks Involved Tasks

Trained Tested T1 T2 T3 T4

( +Tn is fine-tuning Segmentation Depth Estimation Surface Normal Edge Detection

on nth new task) mIoU ↑ Mean abs.error ↓ Error ↓ Theta ↑ Mean abs.error ↓

mean median 11.25◦ 22.5◦ 30◦

1 Single task learning

42.53±0.083 0.11±0.000 15.88±0.510 13.97±0.524 41.62±1.514 73.20±1.878 88.56±0.780 0.15±0.010

2 Multi-task learning

2.1 T1, T2 T1, T2 42.38±0.123 0.11±0.001 - - - - - -

2.2 T1, T2, T3 T1, T2, T3 42.36±0.335 0.11±0.001 15.52 ± 0.574 13.55±0.632 43.47±1.908 73.01±1.530 88.01±0.942 -

2.3 T1, T2, T3, T4 T1, T2, T3, T4 42.25±0.141 0.12±0.002 15.04 ± 0.769 16.06±3.060 42.24±0.725 72.52±0.918 87.72±1.716 0.16±0.033

3 Multi-task learning, addition of new task

3.1 T1, T2 T1, T2 (+ T3) 42.41±0.299 0.12±0.002 15.18±0.209 13.37±0.185 44.18±0.406 73.22±0.725 88.31±0.580 -

3.2 T1, T2 T1, T2 (+ T3, T4) 42.48±0.258 0.11±0.001 14.84±0.230 12.90±0.318 45.42±0.932 74.37±0.427 88.46±0.271 0.20±0.029

3.3 T1, T2, T3 T1, T2, T3 (+T4) 42.50±0.063 0.11±0.001 14.84±0.552 12.75±0.646 45.86±1.802 74.56±1.485 88.34±0.412 0.24±0.010

4 MTML, meta testing phase involves addition of new task

4.1 T1, T2 T1, T2 (+ T3) 37.09±0.355 0.11±0.002 13.84±0.254 11.89±0.370 48.02±1.238 78.54±0.456 90.51±0.307 -

4.2 T1, T2 T1, T2 (+ T3, T4) 37.06±0.163 0.11±0.001 14.28±0.635 12.47±0.715 46.37±2.238 77.04±1.526 90.19±0.251 0.17±0.048

4.3 T1, T2, T3 T1, T2, T3 (+T4) 39.59±1.580 0.11±0.004 13.82±0.385 11.36±0.593 49.64±1.594 76.26±0.279 89.02±0.143 0.15±0.074

4.4 T1, T2, T3, T4 T1, T2, T3, T4 41.41±0.111 0.10±0.001 13.34±0.025 10.24±0.010 52.40±0.005 76.17±0.130 88.51±0.095 0.10±0.000

5 Multi-task learning, leave one task out format

5.1 T2, T3, T4 T2, T3, T4 - 0.14±0.027 15.27±0.444 13.48±0.553 43.26±1.824 73.96±1.336 89.05±0.343 0.18±0.014

5.2 T1, T3, T4 T1, T3, T4 42.52±0.102 - 15.30±0.439 13.41±0.600 43.57±2.031 73.98±0.749 88.57±0.410 0.12±0.004

5.3 T1, T2, T4 T1, T2, T4 42.04±0.142 0.12±0.003 - - - - - 0.12±0.006

5.4 T1, T2, T3 T1, T2, T3 42.36±0.335 0.11±0.001 15.52±0.574 13.55±0.632 43.47±1.908 73.01±1.530 88.01±0.942 -

6 Multi-task learning, leave one task out format, addition of the left out task

6.1 T2, T3, T4 T2, T3, T4 (+ T1) 42.36±0.108 0.12±0.000 14.78±0.078 12.86±0.096 45.47±0.191 74.82±0.523 88.25±0.306 0.16±0.008

6.2 T1, T3, T4 T1, T3, T4 (+T2) 43.05±0.042 0.12±0.000 15.14±0.340 13.21±0.389 44.06±1.280 74.65±0.982 89.12±0.029 0.12±0.002

6.3 T1, T2, T4 T1, T2, T4 (+T3) 42.49±0.239 0.11±0.000 14.60±0.105 12.79±0.185 45.43±0.706 76.01±0.368 89.73±0.306 0.12±0.004

6.4 T1, T2, T3 T1, T2, T3 (+T4) 42.50±0.063 0.11±0.001 14.84±0.552 12.75±0.646 45.86±1.802 74.56±1.485 88.34±0.412 0.24±0.010

7 MTML, leave one task out format, addition of left out task in meta testing

7.1 T2, T3, T4 T2, T3, T4 (+ T1) 45.05±0.536 0.10±0.002 13.44±0.008 10.76±0.078 51.23±0.185 76.65±0.174 89.18±0.091 0.10±0.001

7.2 T1, T3, T4 T1, T3, T4 (+T2) 38.30±0.298 0.11±0.002 13.63±0.021 11.03±0.083 50.55±0.212 76.33±0.196 88.97±0.140 0.10±0.002

7.3 T1, T2, T4 T1, T2, T4 (+T3) 38.90±0.457 0.10±0.000 13.59±0.080 11.55±0.147 49.23±0.456 78.31±0.419 90.24±0.227 0.10±0.001

7.4 T1, T2, T3 T1, T2, T3 (+T4) 39.59±1.580 0.10±0.004 13.37±0.244 10.70±0.348 51.40±0.899 76.95±0.705 89.38±0.383 0.11±0.019

trained using MTML, it is simple to add new, previously
unseen tasks (both homogeneous and heterogeneous). While
comparing the performance of MTML and MTL when an
unseen task is added (more precisely fine-tuned) during testing,
it is observed that MTML excels, note Exp. 3 vs Exp. 4
and Exp. 6 vs Exp. 7. Table III, Exp. 7 from the taskonomy
dataset shows that the new task achieves performance on
par with that of the single-task and multi-task variants with
significantly fewer training iterations. For both the datasets
better performance is attained in significantly lower number
of fine-tuning epochs than in MTL and corresponding single-
task learning (see Fig. 4), behavior that can be anticipated
when employing MAML [4]. Although, the trade off in the
proposed MTML is that it takes a large number of multi-task
meta training epochs. It is also evident that when tasks are
trained jointly, the number of epochs decreases significantly

in contrast to single task training.
Discussions: After analyzing the experiments for both the

datasets, it is evident that the proposed MTML paradigm
allows for easy addition and faster adaptation of a new task
with equally good performance as compared to single task
learning. For some instances in the result tables MTL performs
identical to MTML, but it can be argued that MTML achieves
similar performance in fewer epochs than MTL. Even though
MTML’s performance falls short on the semantic segmentation
task, better results are achieved when the task is added as
a unseen one. For the depth and surface normal estimation
task, overall the qualitative results of MTML demonstrate
greater impact, even though quantitatively the performance is
marginally better than MTL. MTML excels because meta-
knowledge of task combinations is accumulated in the meta
parameters that are shared with the unseen task. The bi-level



TABLE III: Test set evaluation results for a single task, multi-task, and MTML experiments on the taskonomy dataset

Exp. No. Tasks Involved Tasks

Trained Tested T1 T2 T3 T4

( +Tn is fine-tuning Segmentation Depth Estimation Surface Normal Edge Detection

on nth new task) Cross-entropy ↓ Mean abs.error ↓ Cosine similarity ↑ Mean abs.error ↓

1 Single task learning

0.491±0.025 0.013±0.001 0.931±0.001 0.049±0.001

2 Multi-task learning

2.1 T1, T2 T1, T2 0.650±0.076 0.013±0.000

2.2 T1, T2, T3 T1, T2, T3 0.736±0.080 0.013±0.000 0.930±0.002

2.3 T1, T2, T3, T4 T1, T2, T3, T4 0.628±0.025 0.013±0.000 0.930±0.001 0.050±0.001

3 Multi-task learning, addition of new task

3.1 T1, T2 T1, T2 (+ T3) 1.286±0.184 0.012±0.000 0.931±0.002

3.2 T1, T2 T1, T2 (+ T3, T4) 1.217±0.246 0.013±0.000 0.931±0.003 0.050±0.000

3.3 T1, T2, T3 T1, T2, T3 (+T4) 1.330±0.080 0.014±0.000 0.931±0.001 0.049±0.000

4 MTML, meta testing phase involves addition of new task

4.1 T1, T2 T1, T2 (+ T3) 2.000±0.136 0.014±0.001 0.937±0.006

4.2 T1, T2 T1, T2 (+ T3, T4) 1.826±0.143 0.014±0.000 0.939±0.002 0.050±0.001

4.3 T1, T2, T3 T1, T2, T3 (+T4) 2.175±0.126 0.014±0.000 0.929±0.000 0.049±0.000

4.4 T1, T2, T3, T4 T1, T2, T3, T4 2.300±0.044 0.063±0.066 0.931±0.001 0.046±0.000

5 Multi-task learning, leave one task out format

5.1 T2, T3, T4 T2, T3, T4 - 0.013±0.001 0.930±0.001 0.051±0.001

5.2 T1, T3, T4 T1, T3, T4 0.639±0.038 - 0.930±0.001 0.052±0.003

5.3 T1, T2, T4 T1, T2, T4 0.658±0.089 0.013±0.000 - 0.048±0.001

5.4 T1, T2, T3 T1, T2, T3 0.736±0.080 0.013±0.000 0.930±0.002 -

6 Multi-task learning, leave one task out format, addition of the left out task

6.1 T2, T3, T4 T2, T3, T4 (+ T1) 0.707±0.100 0.013±0.001 0.932±0.001 0.050±0.001

6.2 T1, T3, T4 T1, T3, T4 (+T2) 0.818±0.108 0.013±0.000 0.930±0.001 0.048±0.000

6.3 T1, T2, T4 T1, T2, T4 (+T3) 1.281±0.041 0.013±0.000 0.935±0.000 0.050±0.000

6.4 T1, T2, T3 T1, T2, T3 (+T4) 1.330±0.080 0.014±0.000 0.931±0.001 0.049±0.000

7 MTML, leave one task out format, addition of left out task in meta testing

7.1 T2, T3, T4 T2, T3, T4 (+ T1) 0.626±0.021 0.013±0.001 0.930±0.002 0.050±0.001

7.2 T1, T3, T4 T1, T3, T4 (+T2) 1.303±0.056 0.014±0.000 0.932±0.000 0.050±0.000

7.3 T1, T2, T4 T1, T2, T4 (+T3) 2.250±0.040 0.014±0.000 0.937±0.001 0.051±0.001

7.4 T1, T2, T3 T1, T2, T3 (+T4) 2.175±0.126 0.014±0.000 0.929±0.000 0.049±0.000

optimization in the multi-task meta training stage facilitates
learning generalized parameters for effectively incorporating
an unknown task in a multi-task setting. In MTL, however,
the optimal parameters for collectively learning the source
tasks are shared. Furthermore, the highlight of the few-shot
variant of meta learning is that, it performs very well on
an unseen task; however, the target tasks (unseen tasks) are
substantially similar (but not identical) to the source tasks
(learning episodes), i.e., usually it is a new label class. The
MTML paradigm, however, that is put forth in this work has
provided a method for effectively adding a new (dissimilar)
task while also improving the performance of all (both source
and target) tasks. On the other hand MTL performs very well
when the multiple tasks are trained together, as compared to
addition (or fine-tuning) an unseen task.

VII. UNSATISFACTORY PERFORMANCE OF THE SEMANTIC
SEGMENTATION TASK

For the taskonomy data set, from the performance analysis
of table III, we observe that for the semantic segmentation task
the outcomes are very unsatisfying quantitatively. In spite of
this, the models are learning to segment the images, and the
qualitative performance is encouraging. We investigated the
cause for this and came up with a few possible explanations:

First, the segmentation masks given for each image are not
annotated by humans, in fact, they are pseudo labels, i.e.,
the masks are distilled from FCIS [46]. While testing the
MTML experiments 4, and 7, it was discovered that these
models were found to be more effective at learning than
the ground truth labels (masks) because they were able to
recognize objects in the image that were not included in the



ground truth annotation but should have been. A few such
examples are shown in Fig. 5. This is one of the reasons why
the semantic segmentation results are degraded. Fig. 5 shows
the class activation maps of the classes absent in the ground
truth, which is learned by MTML. The better explainability of
class-specific discriminative regions is facilitated by the class
activation maps [47]. Observing the qualitative findings reveals
that the semantic segmentation task is doing satisfactorily;
however, it does not produce very good quantitative metrics
when compared to the incomplete ground truth masks.

Second, the segmentation classes in the taskonomy dataset
are highly unbalanced, several images only contain ‘back-
ground’ class or just one class, behaving like a binary class
problem, although the overall dataset is a multi-class. This is
because only 17 of the 80 segmentation classes used to train
the FCIS [46] were in the taskonomy dataset, and rest are
marked as background.

Third, reason for the under-performance can probably be
‘negative transfer’ [1]. Although all the tasks are pixel-level,
negative transfer is possible because of the nature of the tasks:
segmentation is the only pixel-level classification task while
all others are regression tasks. This can be solved using task-
specific hyper-parameters, like learning rate, weight decay,
etc. Since, in this work to obtain an appropriate comparison
between learning paradigms all tasks use identical hyper-
parameters. We believe this is one of the main reason of slight
degradation in the performance of the semantic segmentation
task for the MTML experiments (Exp. 4, 7.2, 7.3, 7.4 of Table
II), also for the NYU-v2 dataset.

Image GT Pred. Act. map

Fig. 5: This figure shows the input RGB image, the cor-
responding ground truth (GT) segmentation mask and the
predicted segmentation mask (Pred.) by the MTML model
and the class activation maps (Act. map) of the missing class.
The red box highlights the object not present in the ground
truth (pseudo labels), but the proposed MTML model learns
to detect and segment them. For example, in row 1 and 2, the
plant (class-potted plant) is not identified in the pseudo labels.
Rows 1 and 2 show the class activation map of class-potted
plant, and row 3 shows class-couch.

VIII. CONCLUSION AND FUTURE SCOPE

This work proposes to combine multi-task and meta learning
by introducing multi-task learning episodes to meta train the
network and allows to further test the network by introducing a
new (unseen) task. Theoretically, if the properties of meta and
multi-task learning are combined, such an ensemble should
deliver good performance for the new task in fewer steps than
training the single task from scratch. Comprehensive empirical
analysis of MTML performance supports the hypothesis that
MTML indeed performs best compared to vanilla MTL and
single-task learning. In addition to that, it allows for swift
adaptation to an unseen task. However, we do observe that
the semantic segmentation task under-performs, because the
presences of incorrect pseudo labels, or negative task transfer.
Overall, MTML is a approach that can efficiently train several
tasks together and is capable of faster adaptation to new tasks
if these are not too far off from the already learned tasks. Fur-
thermore, MTML is a task and model agnostic paradigm that
may be utilized for any heterogeneous or homogeneous tasks
(due to multi-task learning) and any multi-task architecture
(due to optimization based meta learning).

Future research could benefit from using better loss-
balancing techniques and task-specific hyper-parameters to
further boost performance across all the tasks and, in particu-
lar, to prevent negative transfer. Because the proposed method
is model and task agnostic, other complex multi-task architec-
tures can be investigated for more complex tasks. However,
such intricate fusion models, while extremely useful, come
at a high computational cost. While we outline one strategy
for fusing multi-task and meta-learning, we acknowledge that
there are likely other strategies for doing so to reap the benefits
of both learning paradigms.
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