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Fig. 1. Examples of near-duplicates in the training and test sets of the AOLP [1] and CCPD [2] datasets, which are by far the two most popular datasets in
the License Plate Recognition (LPR) literature. The top row shows license plates cropped and rectified from images in the training sets, while the bottom row
shows license plates cropped and rectified from their nearest neighbors in the respective test set. We show three image pairs for each dataset representing the
10th, 50th and 90th percentiles based on their Euclidean distance in pixel space. Protocols A and B in the AOLP dataset are described in the main text.
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Abstract–This work draws attention to the large fraction
of near-duplicates in the training and test sets of datasets
widely adopted in License Plate Recognition (LPR) research.
These duplicates refer to images that, although different, show
the same license plate. Our experiments, conducted on the
two most popular datasets in the field, show a substantial
decrease in recognition rate when six well-known models are
trained and tested under fair splits, that is, in the absence of
duplicates in the training and test sets. Moreover, in one of
the datasets, the ranking of models changed considerably when
they were trained and tested under duplicate-free splits. These
findings suggest that such duplicates have significantly biased the
evaluation and development of deep learning-based models for
LPR. The list of near-duplicates we have found and proposals
for fair splits are publicly available for further research at
https://raysonlaroca.github.io/supp/lpr-train-on-test/.

I. INTRODUCTION

Research into Automatic License Plate Recognition (ALPR)
has gained significant attention in recent years due to its
practical applications, including toll collection, vehicle access
control in restricted areas, and traffic law enforcement [3]–[5].

ALPR is commonly divided into two tasks: License Plate
Detection (LPD) and License Plate Recognition (LPR). The
first task refers to locating the license plates (LPs) in the input
image, while the second refers to recognizing the characters
on those LPs. Recent developments in deep neural networks
have led to advancements in both tasks, but current research
has mostly focused on LPR [6]–[10] since general-purpose
object detectors (e.g., Faster-RCNN and YOLO) have already
achieved notable success in LPD for some time now [11]–[13].

LPR methods are typically evaluated using images from
public datasets, which are divided into disjoint training and
test sets using standard splits, defined by the datasets’ authors,

or following previous works (when there is no standard split).
In most cases, such an assessment is carried out independently
for each dataset [3], [4], [9], [12], [14].

Although the images for training and testing belong to
disjoint sets, the splits traditionally adopted in the literature
were defined without considering that the same LP may appear
in multiple images (see Section II-A). As a result, we found
that there are many near-duplicates (i.e., different images of
the same LP) in the training and test sets of datasets widely
explored in ALPR research. In this study, to evaluate the
impact of such duplicates on LPR, we focus our analysis on
the AOLP [1] and CCPD [2] datasets, as they are the most
popular datasets in the field. Nevertheless, Section IV clarifies
the existence of near-duplicates in several other datasets and
gives examples of how it has been overlooked in the literature.

Considering that recent ALPR approaches rectify (unwarp)
the detected LPs before feeding them to the recognition
model [5], [15]–[18], the presence of duplicates in the training
and test sets means that LPR models are, in many cases, being
trained and tested on essentially the same images (see Fig. 1).
This is a critical issue for accurate scientific evaluation [19],
[20]. Researchers aim to compare models in terms of their abil-
ity to generalize to unseen data [21], [22]. With a considerable
number of duplicates, however, there is a risk of comparing
the models in terms of their ability to memorize training data,
which increases with the model’s capacity [19], [23].

In light of this, we create fair splits for the AOLP and CCPD
datasets (see Section III-A) and compare the performance of
six well-known Optical Character Recognition (OCR) models
applied to LPR under the original (adopted in previous works)
and fair protocols. Our results indicate that the presence
of duplicates greatly affects the performance evaluation of
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these models. Considering the experiments under the AOLP-B
protocol as an example, the model that reached the best results
under the traditional split ranked third under the fair one. Such
results imply that the duplicates have biased the evaluation and
development of deep learning-based models for LPR.

This work is inspired by [19], where duplicates in the
CIFAR-10 and CIFAR-100 datasets were identified, and mo-
tivated by recent studies that demonstrated the existence of
bias in the ALPR context. An example worth mentioning
is [6], where the authors observed significant drops in LPR
performance when training and testing state-of-the-art models
in a leave-one-dataset-out experimental setup.

In summary, this paper has two main contributions:
• We unveil the presence of near-duplicates in the training

and test sets of datasets widely adopted in the ALPR liter-
ature. Our analysis, using the AOLP and CCPD datasets,
shows the impact of such duplicates on the evaluation of
six well-known OCR models applied to LPR.

– Our results on the AOLP dataset indicate that the
high fraction of near-duplicates in the splits tradition-
ally employed in the literature may have hindered the
development and acceptance of more efficient LPR
models that have strong generalization abilities but
do not memorize duplicates as well as other models;

– Our experiments on the CCPD dataset give a clearer
picture of the true capabilities of LPR models com-
pared to prior evaluations using the standard split, in
which the test set has duplicates in the training set.
Results revealed a decrease in the average recogni-
tion rate from 80.3% to 77.6% when the experiments
were conducted under a fair split without duplicates.

• We create and release fair splits for these datasets where
there are no duplicates in the training and test sets, and the
key characteristics of the original partitions are preserved
as much as possible (see details on Section III-A).

This paper is structured as follows. We describe the AOLP
and CCPD datasets in Section II, detailing the protocols often
adopted for each and how many near-duplicates they have.
Section III details the experiments performed. The presence of
duplicates in other popular datasets is discussed in Section IV.
Finally, conclusions are provided in Section V.

II. THE AOLP AND CCPD DATASETS

The two most popular datasets for ALPR (in terms of
the number of works that explored them) are AOLP [1]
and CCPD [2]. While most authors explored at least one of
these two datasets in their experiments (e.g., [5], [17], [24],
[25]), there are many works in which the experiments were
performed exclusively on them (e.g., [14], [26]–[28]).

AOLP was created to verify that ALPR is better handled
in an application-oriented way. It is categorized into three
subsets: access control (AC), traffic law enforcement (LE), and
road patrol (RP). The subsets have 681, 757 and 611 images,
respectively. All images were acquired in the Taiwan region.

As the AOLP dataset does not have a standard split, it has
been divided in various ways in the literature. For instance,

some authors (e.g., [25], [26], [28]) randomly divided its
images into training and test sets with a 2:1 ratio (we refer
to this protocol as AOLP-A), whereas other authors (e.g., [5],
[9], [24]) used images from different subsets for training and
testing, for example, the authors of [15], [16], [29] used images
from the AC and LE subsets to train the proposed models
and tested them on the RP subset (we refer to this protocol
as AOLP-B). Zhuang et al. [3] evaluated their method under
both the AOLP-A and AOLP-B protocols. As commonly done
in previous works, we consider that 20% of the training images
are allocated for validation in both protocols.

In 2018, Xu et al. [2] claimed that the ALPR datasets avail-
able at the time (including AOLP) either lacked quantity (i.e.,
they had less than 10K images) or diversity (i.e., they were
collected by static cameras or in overly controlled settings).
Thus, to assist in better benchmarking ALPR approaches, they
presented the CCPD dataset.

CCPD comprises images taken with handheld cameras by
workers of a roadside parking management company on the
streets of a capital city in mainland China. The dataset was
updated/expanded twice after being introduced in 20181. It
originally consisted of 250K images, divided into subsets (e.g.,
Blur, Challenge, Rotate, Weather, among others) according to
their characteristics [2]. Then, in 2019, the authors released
a new version – much more challenging than the previous
one – containing over 300K images, refined annotations2, and
a standard split protocol. In summary, in this protocol, the
200K images in the “Base” subset are split into training and
validation sets (50%/50%), while all images from the other
subsets are employed for testing. Finally, in 2020, the authors
included a new subset (Green) with 11,776 images of electric
vehicles, which have green LPs with eight characters (all the
other subsets have images of vehicles with blue LPs containing
seven characters). These updates to the CCPD dataset are
precisely why some works claim that it has 250K images [15],
[27], [28], others claim that it has 280-290K [5], [7], [9], while
the current version has 366,789 images1.

A. Duplicates

The problem with these split protocols is that they do not
account for the same vehicle/LP appearing in multiple images,
including images from different subsets, as shown in Fig. 2
and Fig. 3. While one may claim that such images have enough
variety to be used both for training and testing LP detectors,
as they are fed the entire images, not just the LP region, it
seems reasonable to consider that such images should not be
employed in the same way (i.e., for both training and testing)
in the recognition stage, as the LPs look very similar after
being cropped and rectified. In fact, they can look very similar
even without rectification (e.g., see (d) and (e) in Fig. 2).

Fig. 1 shows some examples of near-duplicates from the
AOLP and CCPD datasets, where we picked the 10th, 50th,
and 90th percentile image pair for each dataset, according to

1 CCPD’s latest version: https://github.com/detectRecog/CCPD/
2 While the annotations were refined in the first update to CCPD (in 2019),

there are still significant inaccuracies in the coordinates of the LP corners.

https://github.com/detectRecog/CCPD/


(a) Subset AC (b) Subset LE (c) Subset RP

(d) Subset AC (e) Subset AC (f) Subset RP

Fig. 2. Examples of images from different subsets in the AOLP dataset [1]
that show the same vehicle/LP. In the split protocols often adopted in the
literature (AOLP-A and AOLP-B), some of these images are in the training
set and others are in the test set. We show a zoomed-in version of the rectified
LP in the lower left region of each image for better viewing.

Subset Base Subset Base Subset Base Subset Base

(a) Training set

Subset Challenge Subset Challenge Subset Weather Subset Weather

(b) Test set

Fig. 3. The same vehicle/LP may appear in both training and test images in
the CCPD dataset [2]. We show a zoomed-in version of the rectified LP in
the lower left region of each image for better viewing.

their Euclidean distance in pixel space. We found that this
metric works reasonably well for this purpose, as images
containing the same vehicle are already filtered by the LP text.

In the AOLP dataset, considering the AOLP-A split proto-
col3, there are 320 duplicates from the test set in the training
one. As there are 683 test images in this protocol, 46.9% of
them have duplicates. Startlingly, the number of duplicates is
even higher in the AOLP-B split protocol, where 413 of the
611 test images (67.6%) have duplicates in the training set.

The situation is less severe – albeit still concerning – for
the CCPD dataset, where we found 29,943 duplicates from the
test set in the training set. Despite the much higher number
of duplicates in absolute terms, CCPD’s current version has
≈157K images with labeled LPs in the test set; that is, the
duplicates amount to 19.1% of the test images.

3 We replicated the division made in [6], [25] of the dataset’s images into
training, validation and test sets using the split files provided by the authors.

III. EXPERIMENTS

This section presents the experiments conducted for this
work. We first describe the duplicate-free splits we propose
for the AOLP and CCPD datasets. Then, we provide a list
of the OCR models explored in our assessments, detailing
the framework used to implement them as well as relevant
hyperparameters. Afterward, we briefly describe the process
of creating synthetic images to avoid overfitting in training the
models. Finally, we report and discuss the results obtained.

A. Duplicate-Free Splits for the AOLP and CCPD Datasets

As the AOLP and CCPD datasets do not have data scraped
from the internet (as CIFAR-10 and CIFAR-100 do, for
example), we cannot replace the duplicates with new images
due to the risk of selection bias or domain shift [19], [30]–
[32]. Therefore, we present fair splits for each dataset where
there are no duplicates of the test images in the training set. As
detailed next, we attempted to preserve the key characteristics
of the original splits in the new ones as much as possible.

The AOLP-Fair-A split was created as follows. Following
previous works [25], [26], [28], we randomly divided the
images of the AOLP dataset into training and test sets with
a 2:1 ratio. Nevertheless, we ensured that distinct images
showing the same vehicle/LP (as those shown in Fig. 2) were
all in the same set. Afterward, we allocated 20% of the training
images for validation. In this way, the AOLP-A (adopted in
previous works) and AOLP-Fair-A protocols have the same
number of images for training, testing and validation.

The core idea of the AOLP-B protocol is to train the
approaches on the AC and LE subsets and test them on the
RP subset [15], [16], [29]. Thus, we created the AOLP-Fair-B
protocol in the following way. We kept the original training
and validation sets and removed the duplicates from the test
set; otherwise, one could ask whether a potential drop in
recognition rate is solely due to the reduction in the number
of training examples available [19]. In other words, the test
sets for the AOLP-B and AOLP-B-Fair splits are different,
with the AOLP-B-Fair’s test set being a duplicate-free subset
of the AOLP-B’s test set. However, the training and validation
sets are exactly the same in both splits.

As mentioned in Section II-A, CCPD’s standard split ran-
domly divides the 200K images of the Base subset into
training (100K) and validation (100K) sets. All images from
the other subsets are used for testing (except Green, which was
introduced later and has its own split). In order to maintain
such distribution, we created the CCPD-Fair split as follows.
The Base subset was divided into training and validation sets
with 100K images each, as in the original split. Nevertheless,
instead of making this division completely random, we made
the training set free of duplicates by allocating all duplicates
to the validation set4. Similarly, we followed the original split
for the Green subset as closely as possible, just reallocating

4 We trained the OCR models with and without duplicates in CCPD-Fair’s
validation set, which is used for early stopping and choosing the best weights.
As the results achieved in the test set were essentially the same, we kept the
same number of validation images (100K-103K) as in the original division.



the duplicates from the training set to the validation set. The
test set has not changed. In essence, the original and CCPD-
Fair splits use the same ≈ 157K images for testing but have
different images in the training and validation sets (each with
≈ 103K images – about 100K from Base and 3K from Green).

B. OCR models

In this work, we explore six deep learning-based OCR
models widely adopted in the literature [6], [33], [34]. Three
of them are multi-task networks proposed specifically for LPR:
CNNG [15], Holistic-CNN [35] and Multi-Task [36], while the
other three are Connectionist Temporal Classification (CTC)-,
attention- and Transformer-based networks originally proposed
for scene text recognition: STAR-Net [37], TRBA [38] and
ViTSTR-Base [39], respectively.

Following [6], [36], [40], we implemented the multi-task
models using Keras (TensorFlow backend). For the models
originally proposed for scene text recognition, following [6],
[34], [39], we used a fork5 (PyTorch) of the repository used to
record the first place of ICDAR2013 focused scene text and
ICDAR2019 ArT and third place of ICDAR2017 COCO-Text
and ICDAR2019 ReCTS (task1) [38].

Here we list the hyperparameters used in each framework
for training the OCR models. These hyperparameters were de-
termined through experiments on the validation set. In Keras,
we used the Adam optimizer, initial learning rate = 10-3 (with
ReduceLROnPlateau’s patience = 3 and factor = 10-1), batch
size = 64, max epochs = 100, and patience = 7. Patience refers
to the number of epochs with no improvement, after which
decay is applied or training is stopped. In PyTorch, we adopted
the following parameters: Adadelta optimizer, whose decay
rate is set to ρ = 0.99, 300K iterations, and batch size = 128.
All experiments were performed on a computer with an AMD
Ryzen Threadripper 1920X 3.5GHz CPU, 96 GB of RAM,
and an NVIDIA Quadro RTX 8000 GPU (48 GB).

C. Data Augmentation

It is well-known that (i) LPR datasets usually have a
significant imbalance in terms of character classes as a result
of LP assignment policies [15], [25], [36] and (ii) OCR models
are prone to memorize patterns seen in the training stage [6],
[41], [42]; this phenomenon was termed vocabulary reliance
in [43]. To prevent overfitting, we generated many synthetic
LP images to improve the training of the recognition models.

We created the synthetic LP images as follows. First, we
obtained blank templates that matched the aspect ratio and
color scheme of real LPs from the internet. Then, we super-
imposed a sequence of characters – that, although random,
mimics the patterns seen on real LPs – on each template.
Lastly, we applied various transformations to the LP images
to increase variability. Transformations applied include, but
are not limited to, random perspective transform, random
noise, random shadows, and random perturbations of hue,
saturation and brightness (note that these same transformations

5 https://github.com/roatienza/deep-text-recognition-benchmark/

were also applied to real training images as a form of data
augmentation). Examples of synthetic LP images generated in
this way can be seen in Fig. 4.

Fig. 4. Some of the many LP images we created to avoid overfitting. The
images in the top row simulate LPs from vehicles registered in the Taiwan
region (as in AOLP), while those in the bottom row simulate LPs from vehicles
registered in mainland China (as in CCPD).

D. Results

Here, we report the recognition rates reached by the OCR
models in each dataset under the original and fair splits6.
Recognition rate refers to the number of correctly recognized
LPs divided by the number of LPs in the test set [5], [17], [25].
Following [19], in addition to the recognition rates obtained
in the original and fair protocols, we report their differences
in terms of absolute percentage points (“Gap”) and in relation
to the original error (“Rel. Gap”) (gap/(100%− acc)).

The results of all OCR models on the AOLP dataset are
shown in Table I and Table II. In both protocols (AOLP-A
and AOLP-B), the recognition rates obtained in the fair split
were considerably lower than those achieved in the original
one. Specifically, the error rates were more than twice as high
in the experiments conducted under the fair protocols.

TABLE I
RECOGNITION RATES ACHIEVED BY SIX OCR MODELS UNDER THE

AOLP-A (ADOPTED IN PREVIOUS WORKS) AND AOLP-FAIR-A (OURS)
PROTOCOLS. THE BEST VALUE IN EACH COLUMN IS SHOWN IN BOLD.

Model AOLP-A ↑ AOLP-A-Fair ↑ Gap ↓ Rel. Gap ↓

CNNG [15] 98.88% 95.63% 3.25% 290.2%
Holistic-CNN [35] 96.75% 93.11% 3.64% 112.0%
Multi-Task [36] 97.33% 93.79% 3.54% 132.6%
STAR-Net [37] 98.69% 95.83% 2.86% 218.3%
TRBA [38] 99.18% 96.94% 2.24% 273.2%
ViTSTR-Base [39] 98.74% 96.94% 1.80% 142.9%

TABLE II
RECOGNITION RATES ACHIEVED BY SIX OCR MODELS UNDER THE

AOLP-B (ADOPTED IN PREVIOUS WORKS) AND AOLP-FAIR-B (OURS)
PROTOCOLS. THE BEST VALUE IN EACH COLUMN IS SHOWN IN BOLD.

Model AOLP-B ↑ AOLP-B-Fair ↑ Gap ↓ Rel. Gap ↓

CNNG [15] 98.91% 96.80% 2.11% 193.6%
Holistic-CNN [35] 98.42% 96.30% 2.12% 134.2%
Multi-Task [36] 98.42% 95.29% 3.13% 198.1%
STAR-Net [37] 98.47% 96.46% 2.01% 131.4%
TRBA [38] 98.75% 97.47% 1.28% 102.4%
ViTSTR-Base [39] 98.75% 97.31% 1.44% 115.2%

It is crucial to note that the ranking of OCR models changed
when they were trained and tested under fair splits. For

6 We reinforce that all results reported in this work (Table I to IV) are from
our experiments (i.e., we trained all OCR models following precisely the same
protocol in each set of experiments) and not replicated from the cited papers.

https://github.com/roatienza/deep-text-recognition-benchmark/


example, the CNNG model achieved the best result under the
AOLP-B protocol (as in [15], where it was proposed) but only
reached the third-best result under AOLP-Fair-B. Similarly, the
ViTSTR-Base model ranked third under the AOLP-A protocol
but tied for first place with TRBA under AOLP-Fair-A.

These results strongly suggest that, in the past, the high
fraction of near-duplicates in the splits traditionally adopted
in the literature for the AOLP dataset may have prevented the
publication and adoption of more efficient LPR models that
can generalize as well as other models but fail to memorize
duplicates. A similar concern was raised by Barz et al. [19]
with respect to the CIFAR-10 and CIFAR-100 datasets.

Table III shows the results for the CCPD dataset. Table IV
breaks down the results for each of the CCPD’s subsets, as is
commonly done in the literature [2], [5], [7]. While the largest
drop in recognition rate was 3.64% in the AOLP dataset, the
STAR-Net and TRBA models had drops of 5.20% and 4.35%
in recognition rate under the CCPD-Fair protocol, respectively.
The average recognition rate decreased from 80.3% to 77.6%,
with the relative gaps being much smaller than those observed
in the AOLP dataset because the recognition rates reached in
CCPD were not as high (this was expected, as the authors of
the CCPD dataset modified it twice with the specific purpose
of making it much more challenging than it was initially).

TABLE III
RECOGNITION RATES ACHIEVED BY SIX WELL-KNOWN OCR MODELS ON

THE CCPD DATASET UNDER THE STANDARD AND CCPD-FAIR
PROTOCOLS. THE BEST VALUE IN EACH COLUMN IS SHOWN IN BOLD.

Model CCPD ↑ CCPD-Fair ↑ Gap ↓ Rel. Gap ↓

CNNG [15] 88.24% 86.93% 1.31% 11.1%
Holistic-CNN [35] 77.01% 75.41% 1.60% 7.0%
Multi-Task [36] 83.01% 81.84% 1.17% 6.9%
STAR-Net [37] 78.53% 73.33% 5.20% 24.2%
TRBA [38] 75.83% 71.48% 4.35% 18.0%
ViTSTR-Base [39] 79.06% 76.37% 2.69% 12.9%

TABLE IV
RECOGNITION RATES (%) ACHIEVED ON EACH SUBSET OF THE CCPD

DATASET UNDER THE STANDARD AND CCPD-FAIR PROTOCOLS.

Model
Subset Blur

21K
Chal.
50K

DB
10K

FN
21K

Green
5K

Rot.
10K

Tilt
30K

Weath.
10K

All
157K

CCPD
CNNG [15] 77.3 84.1 80.8 91.0 94.2 97.4 95.5 99.3 88.2
Holistic-CNN [35] 52.0 68.8 67.8 81.9 93.0 95.2 91.4 99.1 77.0
Multi-Task [36] 68.4 77.1 73.2 86.1 93.8 96.0 92.6 98.8 83.0
STAR-Net [37] 58.7 71.2 64.9 83.3 91.7 94.9 91.2 98.4 78.5
TRBA [38] 50.2 67.9 59.6 81.9 92.7 94.7 91.1 98.4 75.8
ViTSTR-Base [39] 56.4 72.0 65.9 84.6 94.0 95.5 92.2 98.8 79.1

CCPD-Fair
CNNG [15] 73.4 82.8 78.8 90.2 92.8 97.0 95.1 99.2 86.9
Holistic-CNN [35] 47.9 66.8 65.6 81.2 91.2 95.1 90.9 98.2 75.4
Multi-Task [36] 65.7 75.7 71.5 85.3 92.0 95.6 92.2 98.7 81.8
STAR-Net [37] 46.4 64.3 57.2 79.7 91.5 93.9 89.6 98.0 73.3
TRBA [38] 38.7 62.7 52.4 80.0 91.2 93.8 89.3 98.1 71.5
ViTSTR-Base [39] 50.2 68.4 63.5 82.5 93.5 95.1 91.1 98.7 76.4

Examining the absolute number of errors may give a clearer
understanding of the impact of duplicates on the evaluation of
the recognition models. The lowest performance gap of 1.17%
translates to 1,800+ additional LPs being misrecognized under
the fair split (vs. the standard one), while the highest perfor-
mance gap of 5.2% represents a staggering number of 8,000+
more LPs being incorrectly recognized under the fair split.

Differently from the results obtained in the AOLP dataset,
the ranking of models remained practically the same in CCPD;
only the fourth and fifth places switched positions. This is
partially due to the significant performance gap between the
models and suggests that the community’s research efforts
have not yet overfitted to the presence of duplicates in the stan-
dard split of the CCPD dataset. However, we fundamentally
believe it is only a matter of time before this starts to happen
or be noticed (potentially with the use of deeper models, as the
ability to memorize training data increases with the model’s
capacity [19], [23]) in case such near-duplicates in the training
and test sets are not acknowledged and therefore avoided.

IV. WHAT ABOUT OTHER DATASETS?

As mentioned earlier, we focused our analysis on the AOLP
and CCPD datasets due to their predominance in the ALPR
literature [14], [26]–[28], [44]. Nevertheless, as this issue
(i.e., LPR models being evaluated in datasets containing near-
duplicates in the training and test sets) has not yet received due
attention from the community, it has recurred in assessments
carried out on several other public datasets.

Consider the EnglishLP [45], Medialab LPR [46] and
PKU [47] datasets as examples (they are quite popular, albeit
far less than AOLP and CCPD). They all have near-duplicates,
as shown in Fig. 5. As these datasets lack an official evaluation
protocol, it is common for authors to divide their images into
training, validation and test sets randomly [3], [9], [16], [25],
[48], [49]. As can be inferred, the presence of near-duplicates
in these datasets has also been overlooked in such setups.

(a) EnglishLP [45] (b) Medialab LPR [46] (c) PKU [47]

Fig. 5. ALPR datasets that do not have a well-defined evaluation protocol are
customarily divided into training and test sets randomly without the authors
noticing that the same vehicle/LP may appear in multiple images. Above, we
show a pair of near-duplicates from each of the EnglishLP, PKU and Medialab
LPR datasets. Observe that it is common for an LP to look very similar in
different images even without rectification. We show a zoomed-in version of
the rectified LP in the lower left region of each image for better viewing.

The ReId dataset [35] differs from the datasets mentioned
above by having a standard protocol. It has 182,335 images
of cropped low-resolution LPs, of which 105,923 are in the
training set and 76,412 are in the test set. We found that
52,394 (68.6%) of the test images have near-duplicates in the
training set (see some examples in Fig. 6). Although alarming,
the high fraction of duplicates has gone unacknowledged in
works using the ReId dataset for experimentation [50]–[52].



(a) Training set

(b) Test set

Fig. 6. Examples of near-duplicates in the ReId dataset [35]. It is clear that
such duplicates may also considerably bias the evaluation of ALPR systems
that do not perform rectification before the LPR stage (e.g., [24], [25], [53]).

We also want to draw attention to the fact that there are
duplicates even across different datasets. Recently, Zhang et
al. [7] released the CLPD dataset, which comprises 1,200
images gathered from multiple sources such as the internet,
mobile phones, and car driving recorders. The authors em-
ployed all images for testing to verify the practicality of their
LPD and LPR models, trained on other datasets. Subsequent
studies have followed this protocol [5], [8], [9], [15], [54]. The
problem is that several vehicles/LPs shown in CLPD are also
shown in the ChineseLP dataset [55] (see Fig. 7). That is, if
not yet, images from the ChineseLP dataset will eventually be
used to train ALPR systems that will then be tested on the
CLPD dataset. These experiments will likely be regarded as
“cross-dataset,” although perhaps they should not.

(a) Images from ChineseLP [55]

(b) Images from CLPD [7]

Fig. 7. There are duplicates even across different datasets. The above images
were taken from the ChineseLP and CLPD datasets, both of which contain
images scraped from the internet. The presence of near-duplicates across
datasets can significantly bias the results of cross-dataset experiments.

One last example that reinforces how this issue has gone
unnoticed in the literature is [56], where the authors presented
a detailed comparison between multiple datasets gathered in
mainland China – including ChineseLP and CLPD – without
noticing the existence of duplicates across them.

It is essential to acknowledge that there are datasets, albeit
very few, where the authors deliberately defined a standard
split with no duplicates within the training and test sets. We
verified that RodoSol-ALPR [6] is one such dataset.

V. CONCLUSIONS

We drew attention to the large fraction of near-duplicates
in the training and test sets of datasets widely adopted in

ALPR research. Both the existence of such duplicates and their
influence on the performance evaluation of LPR models have
largely gone unnoticed in the literature.

Our experiments on the AOLP and CCPD datasets, the most
commonly used in the field, showed that the presence of near-
duplicates significantly impacts the performance evaluation
of OCR models applied to LPR. In the AOLP dataset, the
error rates reported by the models were more than twice
as high in the experiments conducted under the fair splits.
The ranking of models also changed when they were trained
and tested under duplicate-free splits. In the more challenging
CCPD dataset, the models showed recognition rate drops of up
to 5.2%. Specifically, the average recognition rate decreased
from 80.3% to 77.6% when the experiments were conducted
under the fair split compared to the standard one. These
results indicate that duplicates have biased the evaluation and
development of deep learning-based models for LPR.

We created the fair splits for the abovementioned datasets
by dividing their images into new training, validation and test
sets while ensuring that no duplicates from the test set are
present in the training set and preserving the original splits’
key characteristics as much as possible. These new splits and
the list of duplicates found are publicly available.

We hope this work will encourage LPR researchers to train
and evaluate their models using the fair splits we created for
the AOLP and CCPD datasets and to beware of duplicates
when performing experiments on other datasets. This work
also provides researchers with a clearer understanding of the
true capabilities of LPR models that have only been evaluated
on test sets that include duplicates from the training set.

Further examination of the occurrences of near-duplicates in
other ALPR datasets, including those mentioned in Section IV,
will be conducted in future research.
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