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Abstract—As the use of collaborative robots (cobots) in indus-
trial manufacturing continues to grow, human action recognition
for effective human-robot collaboration becomes increasingly
important. This ability is crucial for cobots to act autonomously
and assist in assembly tasks. Recently, skeleton-based approaches
are often used as they tend to generalize better to different
people and environments. However, when processing skeletons
alone, information about the objects a human interacts with
is lost. Therefore, we present a novel approach of integrating
object information into skeleton-based action recognition. We
enhance two state-of-the-art methods by treating object centers
as further skeleton joints. Our experiments on the assembly
dataset IKEA ASM show that our approach improves the
performance of these state-of-the-art methods to a large extent
when combining skeleton joints with objects predicted by a
state-of-the-art instance segmentation model. Our research sheds
light on the benefits of combining skeleton joints with object
information for human action recognition in assembly tasks. We
analyze the effect of the object detector on the combination for
action classification and discuss the important factors that must
be taken into account.

I. INTRODUCTION

In the course of industry 4.0, cooperation between humans
and situation-aware collaborative robots (cobots) is becoming
increasingly important for manufacturing processes [1]–[3]. In
order to effectively assist in assembly processes, cobots must
first be able to visually perceive the worker and recognize the
current assembly state [4]–[9]. One crucial aspect of attaining
this goal is human action recognition [7], [9].

For human action recognition, often RGB-based approaches
are used. However, these approaches face several challenges
in scenarios where the training dataset and the application
environment do not have a significant overlap. Due to the
difficulties in creating action recognition datasets for assembly
processes [12], these datasets tend to be smaller compared to
other areas such as object detection [13]. As a result, RGB-
based approaches trained on these datasets tend to overfit
and exhibit poor generalization capabilities. This can lead to
difficulties when the person performing the action changes
or when the background or working environment during
deployment are drastically different to training. To overcome
these limitations, skeleton-based action recognition models
are the better alternative, as they tend to generalize much
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Fig. 1. Overview of our approach. We combine skeleton joints and object
information for two human action recognition methods, namely a) VA-
CNN [10] and b) PoseConv3D [11]. Note that, for PoseConv3D, we actually
have one heatmap per joint and stack frames in an additional 4th dimension.
The different colors for object centers are used for visualization purposes only.
Example frames taken from IKEA ASM dataset [12].

better under such circumstances [9]. Nevertheless, skeleton-
based models have the drawback of not being able to process
objects involved in actions, such as when a worker picks up a
hammer or a screwdriver. Similarly, actions in which workers
pick up similar-sized assembly parts, such as a cabinet side
panel or a cabinet back panel, cannot be distinguished based
on skeletons.

In contrast to action recognition, for object detection there
are highly diverse, public datasets [13] available, which enable
the training of very accurate and well generalizing object
detectors [14]. Therefore, our goal in this paper is to develop
a novel approach to improve human action recognition by
incorporating additional object information into skeleton-based
action recognition for trimmed sequences.
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We will demonstrate that a relatively straightforward en-
hancement of the input encoding (as shown in Fig. 1) can
greatly improve the performance of two different methods.
Thereby we use the state-of-the-art dataset IKEA ASM [12],
a comprehensive assembly dataset for action recognition with
human-object interactions. In order to analyze the performance
gain of combining object information with skeleton infor-
mation, we first experiment with ground truth object masks,
which are independent of the accuracy of an object detector.
Afterwards, we examine the effect of using predicted objects
masks and present the impact on the performance caused by
noisier predictions.

Our contributions in this paper can be summarized as
follows:

1) We propose a novel approach to integrate object infor-
mation into skeleton-based action recognition.

2) Our experiments with two different methods for
skeleton-based action recognition demonstrate the use-
fulness of combining skeletons and object positions.

3) We show the influence of ground truth versus predicted
objects on the performance of action recognition.

4) Overall, our approach massively improves the per-
formance of action recognition on the IKEA ASM
dataset [12].

II. RELATED WORK

In this section, we will first present an overview of the
current state of the art for skeleton-based human action recog-
nition, and then specify the methods that we will modify for
incorporating object information as well. Afterwards, we will
outline other work in the field of human action recognition
that specifically incorporate object information.

A. Skeleton-based Action Recognition

The general term human action recognition encompasses
a wide range of subfields. In this paper, however, we want
to focus on the action classification task of pre-trimmed
video clips of human skeleton sequences. This task serves
as a foundation, since other methods for tasks like action
segmentation or action detection, such as PDAN [15] or MS-
TCT [16], typically use models trained on action recognition
of pre-trimmed clips as the backbone of their method.

Regarding skeleton-based action recognition, RNNs have
been used for a long time [17]. Currently 2D CNNs such as
VA-CNN [10], 3D CNNs like PoseConv3D [11] and graph
convolution networks (e.g. 2S-AGCN [18], Si-GCN [19]) are
typically used.

In this paper, we enhance the VA-CNN and PoseConv3D
methods that both achieve state-of-the-art results on common
skeleton-based action recognition benchmark datasets such as
NTU RGB+D [20]. Furthermore, both methods allow for our
modifications to incorporate object information sequences in
addition to skeleton sequences. Here, VA-CNN suited itself
because it is able to train on very long or short clips easily,
since it can process any length of clips due to its input
coding. Our preliminary studies have also shown that VA-CNN

achieved better results than other methods we tested, such
as 2S-AGCN. Furthermore, we chose PoseConv3D because,
unlike most other skeleton-based action recognition methods,
it is able to easily handle multiple people in a frame and
thus multiple instances of the same joint class. Why this is
advantageous and how the two selected methods VA-CNN and
PoseConv3D as well as our modifications work in detail will
be described in Sec. IV.

B. Action Recognition Incorporating Object Information

Object information can play a crucial role in improving
action recognition. Research in this area typically focuses on
advancing human action recognition. Some other studies are
done in the field of human-object interaction recognition, with
the goal of recognizing actions, where the objects used are
included in the action labels.

An example of such work is [21] in which skeletons are
linked with object position information. However, this combi-
nation does not take the object class into account, nor can more
than one object be processed. In contrast, the presented method
in [22] is not limited to the number of objects used. Here,
using a rather simple graph network on a very small dataset,
the authors demonstrated that the combination of object infor-
mation with skeleton information generally works to train an
action classifier. In the recently published work [23], object
information is included in a graph convolutional network to
perform action segmentation. In their experiments, ground
truth object boxes were used exclusively, which benefited the
developed method. However, in our experiments, we show,
that the performance using ground truth objects does not
resemble the real performance when using detected objects.
Furthermore, in [23] neither the contribution of using the
object boxes on the overall performance was shown, nor the
use of detected objects was investigated.

In addition to these studies, there are works which investi-
gate the use of object information through simulation. In [24],
a method is introduced for simulating human actions and
object movements to predict actions and activities. For the
prediction, RNNs and Transformers were employed, but the
performance of the developed methods has not been assessed
on real datasets.

In contrast to related work, our approach can handle multi-
ple objects, while simultaneously encoding class information
along with the object positions. Furthermore, we show the
general performance gain of combining object information
with skeleton information compared to using solely skeleton
information, an approach which has only been sparsely studied
in the current state of the art. Moreover, we demonstrate how
our methods perform on a large dataset with real estimated
object information instead of simply using ground truth object
masks.

III. USED DATASET

As previously described, our focus in this paper is to im-
prove action recognition for cobots in the context of manufac-
turing processes. Action recognition datasets that are closest to
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this scenario are typically assembly datasets. Among them are
datasets mostly recorded in first-person perspective or a very
close surveillance perspective, such as Assembly101 [25] or
Meccano [26]. Yet there are also datasets like IKEA ASM [12]
and ATTACH [27], which were recorded from a surveillance
perspective, which is very similar to the perspective of a cobot
that observes a worker in order to help out.

For our experiments, we have decided to use the furniture
assembly dataset IKEA ASM, which is a very extensive
dataset, captured from multiple perspectives. It consists of
scenes where different furniture types are assembled in various
environments, making the dataset quite challenging. Moreover,
in contrast to ATTACH, it also contains labeled object masks.

IKEA ASM consists of 371 distinct assembly processes,
where 48 participants were instructed to assemble one of four
different furniture types. Each assembly process is captured
by three different Kinect V2 cameras, resulting in 1113
videos and 35 hours of footage at 24fps. For human action
recognition, there are 17K labeled action instances, distributed
over 33 atomic classes. We use the official splits provided
in [12], where about 2/3 is in training and 1/3 in testing. The
pieces of furniture consist of seven different object categories.
For the object instances 1% of the data were manually labeled.
The remaining annotations were obtained by overfitting several
models on the annotated data, resulting in pseudo ground
truth data. However, the object masks are only available for
one view as shown in Fig. 2 at the top. For skeleton data
IKEA ASM provides 2D skeleton predictions obtained from
OpenPose [28] and Keypoint R-CNN [14], of which we use
the better performing Keypoint R-CNN in our experiments.

The dataset provides official training and test splits, which
we also use in our experiments.

IV. APPROACH

For integrating additional object information into skeleton-
based action recognition, we build our approach upon two
different state-of-the-art methods for skeleton-based action
recognition, namely VA-CNN [10] and PoseConv3D [11].

A. VA-CNN Modification

VA-CNN [10] is a rather fast method while still achieving
competitive results. Different to many other methods, the
whole trimmed action sequence is utilized instead of a smaller
clip. The main parts of VA-CNN are a specific input encoding,
a view-adaptation module, and a classification network, which
we will all describe in the following.

a) Input Encoding: VA-CNN uses the input encoding
from [29]. The skeletons for the whole action sequence are
transformed into a single RGB image. One column represents
one frame of the action and in each column the skeleton joints
are stacked in a fixed order. The XYZ coordinates of a joint
are transformed to RGB by normalizing and scaling:

ut,j = 255 · vt,j − cmin

cmax − cmin
, (1)

where vt,j denotes the 3D coordinates of the jth joint of the tth

frame in a skeleton sequence, cmin and cmax are the minimum

and maximum of all joint coordinates in the training data,
and ut,j refers to the normalized coordinates. As we work
with the 2D skeletons from IKEA ASM [12], we only have
an image with red and green channels and an empty blue
channel. The resulting output is shown in Fig. 1. For training
and application, each resulting image can then be transformed
to the appropriate input size for the classification network
using image operations.

b) View-Adaptation Module: The view-adaption (VA)
module aims at normalizing the skeletons to one resembling
view. However, we have found that, when using 2D skeletons,
this module does not work as intended and has no effect on
the final performance. Therefore, we omit the VA part and
refer to this modified VA-CNN as 2D-CNN in the remainder
of this paper.

c) Classification Network: Here, any classification net-
work can be utilized. Therefore, we use the popular and
reliable ResNet-50 [30], which was also used in VA-CNN.

d) Incorporating Object Information: Our general idea
for incorporating object information is to consider objects
similar to further skeleton joints. Thus, we combine object
data with skeleton data as early as in the input encoding. We
modify the input encoding by appending additional rows below
the skeleton joints. Specifically, we append one additional line
for each object class that occurs in the dataset.

Since skeleton joints are represented as points, we also need
to convert object masks to this format. Therefore, we calculate
the center of mass for each object mask in order to represent
each object as single point as well. These object coordinates
can then be inserted in the appended lines below the skeleton
joints. As not all object classes appear in all frames, we set
the coordinates for the missing classes to zero, as can be seen
by the black parts in Fig. 1.

Unfortunately, this encoding for 2D-CNN has a drawback.
Since a human typically has only one of each type of skeleton
joints, the encoding was not designed to include multiple
instances of the same joint class. Thus, we are presented with
a challenge when dealing with varying numbers of objects in
each sequence or sometimes even each frame. For example,
during assembling a table, there are multiple table legs, but
only one of these legs can be encoded. Even if each object
class occurs only once, this issue can still occur when working
with a real object detector, which also produces false positives
that cannot be filtered completely by tuning the confidence
threshold.

Therefore, we decided to only use one object coordinate
of each object class. This leaves us with the question which
object to use if there are multiple instances of the same class.
To overcome this challenge, we use a simple heuristic: The
objects a human interacts with are more relevant to action
recognition than others. For interacting with objects, humans
typically use their hands. Therefore, we calculate the euclidian
distance of all object coordinates to the predicted hand joints,
and choose the object with the lowest distance to both hand
joints for each class. Alternatively, we also experimented with
the lowest distance to only one hand joint, which led to slightly

3



G
ro

un
d

Tr
ut

h
Top View Front View Side View

Pr
ed

ic
tio

n
(s

>
0
.1

)

Table Top

Leg

Shelf

Side Panel

Front Panel

Bottom Panel

Rear Panel

Fig. 2. Instance segmentation of our Mask R-CNN with Swin-Tiny backbone trained on IKEA ASM [12]. The colors of the seven object classes are shown
on the right. Ground truth labels are only available for the top view. We also visualize the center of the object masks with a white dot. All predictions with
a confidence score s > 0.1 are shown, as this liberal threshold performed best in our action recognition experiments.

worse results. As we can see in Fig. 2, our heuristic chooses
the table leg that is most important for the current assembly
step.

In our experiments, we show that our enhancement for
incorporating object information results in an exceptionally
high boost in action recognition performance.

B. PoseConv3D Modification

In contrast to VA-CNN, PoseConv3D [11] is a more com-
plex method, using 3D convolutions, while processing 2D
skeletons. Moreover, PoseConv3D is able to process multiple
instances of the same skeleton joint class, since it can handle
multiple detected human skeletons, thereby processing the
joints of the group of persons.

For PoseConv3D the input encoding is also the most inter-
esting part: The skeleton joints of a single frame are embedded
in heatmaps – one heatmap for each joint class – which are
stacked along the channel axis, resulting in a heatmap tensor of
size J×H×W , where J is the number of distinct joint classes
and H and W refer to the height and width of the cropped
frame. The heatmaps are obtained as following: The jth joint
coordinate (c

(j)
x , c

(j)
y , s(j)) with the location (c

(j)
x , c

(j)
y ) and

the confidence score s(j) is embedded in a heatmap K with a
Gaussian kernel centered at the joint:

Kj,x,y = e−
(x−c

(j)
x )

2
+(y−c

(j)
y )

2

2·σ2 · s(j), (2)

where σ denotes the variance of the Gaussian and is set ac-
cording to the original PoseConv3D implementation [11]. For
each joint, the multiple heatmaps over time are then stacked in
an additional time axis T , resulting in a 4-dimensional input
x ∈ RJ×T×H×W , which is illustrated in Fig. 1. This input is
then fed into the 3D-CNN SlowOnly [31], which is directly
inflated from ResNet-50.

Similar to our 2D-CNN method, we can append object infor-
mation to the skeletons, here by using additional heatmaps. For

this, we again consider the object centers as further skeleton
joints and append one additional heatmap for every object
class. In contrast to 2D-CNN, PoseConv3D offers the major
advantage that it can handle multiple instances of the same
joint class. This means that we are not restricted to one single
object per class, but can simply draw a Gaussian for each
object of the same class in one single heatmap. Likewise, for
detected object masks, we have the advantage of also modeling
the estimated confidence directly with the Gaussian.

In order to prove the usefulness of object information for
human action recognition, we experiment with both ground
truth as well as detected object masks from an instance
segmentation model.

V. SETUP

For our implementation, we use the publicly available
code from VA-CNN1 for our 2D-CNN method and MMAc-
tion2 [32] for PoseConv3D. Overall, we followed the original
pipelines and hyperparameters and only adapted the following:
For training, we use the Adam optimizer [33] and a OneCycle
learning rate scheduler with a 10% warmup and different
maximum learning rates. In general, we always perform a
linear learning rate search close to the original learning rates
and repeat each configuration two to three times to obtain
consistent results.

We evaluate the performance of our models using mean
class accuracy (mAcc) as well as top-1 accuracy (top1) as
these are commonly used for pre-trimmed sequences in many
action recognition papers [25], [26], [34], [35]. For the top1
metric, all action clips contribute equally. In contrast, mAcc
averages accuracy across all action classes, which compensates
for class imbalances.

1https://github.com/microsoft/View-Adaptive-Neural-Networks-for-
Skeleton-based-Human-Action-Recognition
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Our experiments are sectioned into two parts: First, in
Sec. VI, we analyze the impact of integrating additional object
information on human action recognition using ground truth
data. Afterwards, in Sec. VII, we train our own instance seg-
mentation model and use the resulting object mask predictions
in combination with skeletons for action recognition.

VI. EXPERIMENTS WITH GROUND TRUTH OBJECT MASKS

In the following, we analyze the extent to which combining
object centers with skeleton joints can improve skeleton-based
human action recognition. In order to demonstrate the general
viability of our approach and to be independent from the
performance of an object detector, we first use the ground
truth data of IKEA ASM for objects (Sec. VI-B). We also
present an ablation study on a modified IKEA ASM dataset
to investigate the benefits of the combination, even if the object
classes have a small influence on the classes to be predicted
(Sec. VI-C). The subsequent section Sec. VII then presents
our experiments with object masks, determined by an instance
segmentation model.

A. Preliminary Considerations for Using Ground Truth
Objects

When training with ground truth data for object information,
we are faced with the issue that the IKEA ASM dataset has
three views, but objects are only annotated in the top view
as shown in Fig. 2. To solve this issue, we considered the
following solutions:

a) Only Use Top View Data: One option could be to only
use the camera view on which the objects have been labeled
and discard the other two views. However, this leads to a
smaller and simpler data subset of only one third. Furthermore,
it limits comparability to predicted object masks in Sec. VII.

b) Use All Views, but Add Objects Only to Top View:
Another option could be to use skeleton data from all views
and combine them with object data only in case of the top
view. This allows us to compute results over the whole test
set, leading to better comparability. However, as 2/3 of the
dataset would contain no object information at all, the impact
of additional object information might be limited and it might
be hard to asses the actual potential.

c) Add Object Centers to Every Skeletal Perspective: In
order to increase the impact of additional object information,
we could also add the object centers from the top view to
all views. This seems counterintuitive at first, as the object
center coordinates do not match the skeleton joint coordinates
for front and side view. As we are only dealing with 2D
data and have neither depth information nor extrinsics for
all three views, we are also unable to transform the data to
a corresponding perspective. Yet, in preliminary experiments
with 2D-CNN, we found that option c) leads to the best results,
i.e., 47.8 mAcc, compared to only 37.5 mAcc for option b).
This already shows how important object information seems
to be, if the mAcc is up to 10 percentage points worse, if 2/3
of the training and test data consisted of skeletal data only.
Therefore, we used option c) for all experiments in this section,

enabling us to evaluate the potential of combining object
information with skeleton joints for human action recognition.2

B. Assessing the Potential of Skeleton-Object-Combination

a) – Skeleton Only Baseline: To establish a general
baseline, we first trained both 2D-CNN and PoseConv3D using
only skeletons. As we can see in the first row of Tab. I, the
much more complex PoseConv3D is also significantly better
on only skeleton sequences, so the results from the state of
the art also apply to the IKEA ASM dataset.

TABLE I
RESULTS USING GROUND TRUTH OBJECT MASKS ON IKEA ASM [12]

2D-CNN PC3D
used objects mAcc top1 mAcc top1

✓ 37.7 70.3 39.5 75.0

✓ most relevant 44.0 67.0 45.8 75.0
✓ all — — 51.7 78.5

✓ ✓ most relevant 47.8 79.6 56.5 84.3
✓ ✓ all — — 58.5 85.4

b) – Skeleton-Object-Combination: For analyzing
the combination of objects and skeletons, it must be taken
into account that there are multiple ways to combine ob-
ject information with skeleton joints, depending on the used
methods 2D-CNN and PoseConv3D (as described in Sec. IV).
Therefore, we carried out various experiments in order to be
able to compare the methods as fair as possible.

For our 2D-CNN method, we are restricted to only one
object per class, which we will refer to as the most relevant
objects in the following. In contrast, for PoseConv3D this
restriction does not apply. Thus, first we trained PoseConv3D
with all objects in every frame and second also only with
the most relevant objects for better comparability to 2D-CNN.
Tab. I presents the results of these experiments.

Compared to using only skeletons, the combination with
object information improves the performance to a large ex-
tent for both methods. For 2D-CNN, we can gain about 10
percentage points mAcc. For PoseConv3D the improvement
is even greater with 19 percentage points mAcc. As expected,
PoseConv3D performs better when it has access to all object
data. These results show how important object information is
for skeleton-based action recognition when the acting person
interacts with objects. And thus, these results also show that
purely skeleton-based inputs are severely disadvantaged in
such action recognition tasks and that fundamentally impor-
tant information is typically lost when using only skeleton
sequences.

c) – Only Ground Truth Object Information: Due to
this large performance gain, we decided to investigate how
well the action classifier performs when we train our models
using only ground truth object information, and consequently

2As a side note: The combination of skeleton data and object data according
to option a), i.e., using only the top view for training and testing, the 2D-CNN
method achieved a mAcc of 46.6% on the limited test dataset.
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omit skeleton data. The results are shown in the middle rows
of Tab. I. Surprisingly, the models trained only on ground truth
object information show a very large performance gain com-
pared to the models trained only on skeleton information. This
result shows how much a perfect object detector can contribute
to robust action recognition. Nevertheless, it must be taken into
account that this comparison is not completely fair here, since
the object models were trained and tested exclusively on the
top view perspective. A more fair comparison in which we
only use real predicted object information on all perspectives
is presented in Sec. VII.

Furthermore, we have to keep in mind, that the actions of
the IKEA ASM dataset such as pick up leg or pick up shelf
can be much better distinguished by moving objects than by
a moving skeleton. Therefore, we also carried out an ablation
study on a dataset with combined action classes, which we
will describe in the following section.

C. Verb-focused Action Recognition Study

The IKEA ASM dataset contains classes for action recogni-
tion, which can only be distinguished by the object used, such
as: attach back panel, attach side panel, or attach shelf. For
the subject area of human-object interaction recognition, this
question is highly relevant, but for some applications, such
as general human action recognition, it is sufficient to know
only the action in general, i.e., the verb describing the action.
In order to investigate the usefulness of combining object
information with skeleton joints for such application domains,
we modify the IKEA ASM dataset such that the action classes
to be predicted are no longer so heavily dependent on the
objects used. Thus, we summarize the 33 action classes based
on the verbs, resulting in an only verbs version of the IKEA
ASM dataset. This leads to 12 remaining action classes (align,
attach, flip, insert, lay down, pick up, position, push, rotate,
slide, spin, tighten).

Subsequently, we repeated experiments conducted above on
the only verbs dataset and present results in Tab. II. Note that
these results cannot directly be compared to the results in other
tables, as the only verbs dataset consists of combined action
classes, leading to fewer confusions between different classes.

TABLE II
RESULTS ON OUR ONLY VERBS VERSION OF IKEA ASM [12]

2D-CNN PC3D
used objects mAcc top1 mAcc top1

✓ 63.7 82.6 64.7 85.8

✓ most relevant 63.8 78.3 74.2 83.6
✓ all — — 77.4 88.9

✓ ✓ most relevant 69.4 86.7 81.4 91.5
✓ ✓ all — — 81.1 92.0

First, generally speaking, the same trends can be seen as on
the original IKEA ASM dataset. The more computationally
intensive PoseConv3D is generally always better than the
2D-CNN. Likewise, the combination of skeleton joints and

object information again shows to be enormously beneficial.
The mAcc for 2D-CNN is improved by 6 percentage points
and for PoseConv3D by 17 percentage points compared to
training only on skeleton joints. While using only objects
results in similar mAcc performance to using only skeletons
for 2D-CNN, we are still observing a large performance gain
of 13 percentage points for PoseConv3D.

Therefore, we could effectively demonstrate that the perfor-
mance gain of incorporating object information cannot only be
attributed to the way the action classes are defined in IKEA
ASM dataset. On the contrary, even for the verbs-only action
classes, object information still increases performance to a
large extent.

VII. EXPERIMENTS WITH PREDICTED OBJECT MASKS

In the previous section, we presented the potential of
combining object information with skeleton joints by utilizing
the ground truth object masks. For the following experiments,
we first train an instance segmentation model (Sec. VII-A).
Afterwards, we combine its predicted object masks with skele-
ton joints for human action recognition (Sec. VII-B). Thus, we
show the impact of using non-perfect predicted object masks,
which typically also contain false positive as well as false
negative predictions.

As mentioned before, so far we could only use object
coordinates from top view, since there are no labels for the
other two views. In this section, we will counteract this
issue by applying our trained instance segmentation model
to predict object masks for all views. This allows us to
combine object and skeleton information from corresponding
perspectives. Moreover, we can investigate how non-matching
object and skeletal perspectives might have negatively affected
the learning process, leading to potentially worse performance.

A. Instance Segmentation

For training an instance segmentation model on the IKEA
ASM dataset, the 1% manually labeled frames from top
view are used. The authors of the IKEA ASM dataset [12]
already provide pretrained weights for Mask R-CNN [14] with
ResNet-50, ResNet-101 as well as ResNeXt-101 backbone.
Moreover, we also train our own Mask R-CNN with a Swin
Transformer Tiny [37] backbone, as the Swin Transformer
is a state-of-the-art model outperforming ResNet in many
applications. For training on the IKEA ASM dataset, we used
a model pretrained on MS COCO [13] and finetuned it for

TABLE III
PERFORMANCE OF MASK R-CNN INSTANCE SEGMENTATION MODELS

WITH DIFFERENT BACKBONES ON IKEA ASM [12].

mask bbox
backbone weights AP AP50 AP AP50

ResNet-50 [30] [12] 58.1 77.2 59.5 77.7
ResNet-101 [30] [12] 62.1 82.0 64.6 81.8
ResNeXt-101 [36] [12] 65.9 85.3 69.5 86.4
Swin-Tiny [37] ours 63.9 89.4 72.5 92.1
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12 epochs using the AdamW optimizer [38] and a OneCycle
learning rate scheduler with a maximum learning rate of
5·10−5. While having similar complexity with ResNet-50, our
Swin-Tiny Mask R-CNN reaches an even higher performance
than the ResNeXt-101 model in most metrics, as shown in
Tab. III. Qualitative results of our trained model on all three
views are shown in the second row of Fig. 2. Overall, we
observed very few false negative predictions, but – depending
on the confidence threshold – several false positive predictions.

After training our model, we predicted object masks for all
frames of all views. We saved all predictions with a confidence
score s > 0.1, which allows us to later experiment with
different thresholds for human action recognition.

B. Human Action Recognition

In the following, we first describe the main motivation of the
series of experiments in this section and the resulting different
training settings we need to consider. We also describe how
we choose which of the dedicated object masks to use for
training and testing, and the different resulting training con-
figurations. Finally, we conclude with the experimental results
and compare them to our baseline, as well as the results on
ground truth object masks.

a) Preliminary Considerations: The purpose of the fol-
lowing experiments on human action recognition is twofold
and thus we have to consider two different training settings.

1) Top View: On the one hand, we want to evaluate the
potential performance drop of using predicted instead
of ground truth object masks. In order to compare
these results with our experiments in Sec. VI, we also
use predicted object masks only for the top view, but
combine them with skeletons from the other two views
as well.

2) All Views: On the other hand, we want to investigate the
benefit of combining real predicted object masks and
skeleton joints for action recognition closer to a real-
world application. Thus, the perspective of the predicted
objects mask should always match the perspective of the
skeleton joints. This should also make it easier for the
models to combine the data appropriately and facilitate
the learning process.

b) Selecting the Detected Object: For 2D-CNN, we are
restricted to one object per class, which we determine by
calculating the distance to the hand joints. However, different
confidence thresholds for the predicted objects lead to different
chosen objects. Therefore, we performed an equidistant line
search to determine the best confidence threshold for all exper-
iments. Overall, a threshold of τs = 0.1 led to the best results,
and we present all results using this threshold. We assume
that the distance to the hand joints is a good heuristic for
obtaining the most relevant object, even when the predictions
contain several false positives as shown in Fig. 2. We therefore
hypothesize that higher thresholds with more false negatives
(i.e., more missing objects) have a greater adverse effect than
smaller thresholds with more false positives. In the following
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2D-CNN

Ground Truth (top view) Detected (top view) Detected (all views)

PoseConv3D

Ground Truth (top view) Detected (top view) Detected (all views)

Fig. 3. Comparison of action recognition performance on IKEA ASM [12]
with : only skeletons, : only objects and : the combination of both.

experiments, models trained with this kind of object pre-
selection are again marked as most relevant objects used.

For PoseConv3D, this restriction does not apply. We are
able to use all objects, and scale the maximum values in
the heatmaps by the predicted confidence scores. Implicitly,
this should give the model the intuition that objects with a
higher confidence value might be more relevant. Experimental
results from this training setting are consequently marked as
all objects used. However, for comparison reasons we also
experiment on PoseConv3D with most relevant objects used.

We use the predicted object masks from Mask R-CNN
with Swin-Tiny backbone in all of our experiments in this
section. As the results on instance segmentation in Tab. III
have already indicated, using predictions from other models
led mostly to worse action recognition results in prelimi-
nary experiments and for the more computationally expensive
model with ResNext-101 backbone to no clear advantage.

c) Results with Detected Object Masks: We present the
results for the settings described above for our experiments
of combining detected object masks and skeleton joints in
Tab. IV.

Likewise, in Fig. 3 we present these results in comparison to
our skeleton only baseline and the experiments with the combi-

TABLE IV
RESULTS USING DETECTED OBJECT MASKS ON IKEA ASM [12]

2D-CNN PC3D
used objects mAcc top1 mAcc top1

to
p

vi
ew ✓ ✓ most relevant 43.9 75.6 44.4 75.1

✓ ✓ all — — 41.6 72.1

al
l

vi
ew

s

✓ ✓ most relevant 47.2 77.7 49.0 80.2
✓ ✓ all — — 49.9 79.7
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nation of ground truth object masks. For a better overview, this
figure shows only the best results of PoseConv3D regarding
the setting which objects were used.

Examining these results, the obvious first observation is
again that PoseConv3D performs better than 2D-CNN on
the combination of skeleton joints and objects. However,
the difference is nowhere near as large as in the previous
comparisons. When comparing the skeleton-only baseline and
the combination of skeleton joints with detected object masks,
a large performance gain can be seen in Fig. 3. On all views,
for example, both the 2D-CNN and the PoseConv3D are
about 10 percentage points better on the mAcc. This shows
that our modified methods can handle imperfectly predicted
object masks well, and thus we highly encourage to also
combine skeletons with predicted object masks for human
action recognition in real-world applications.

When comparing the results with ground truth object masks
and the results with predicted object masks, we need to look
at the experiments on top view respectively. Here we can see
that the models produce worse results, with the PoseConv3D
showing a much greater performance drop than the 2D-CNN.
This shows that our instance segmentation model, which
achieves a very high segmentation AP50 of 89.4, still has
significant weaknesses in predicting object masks, and that
these false detections make action recognition significantly
more difficult compared to the usage of ground truth object
masks.

However, our instance segmentation model offers a major
benefit in that it can predict object masks for all perspectives.
When comparing the results of combining predicted object
masks and skeleton joints for top view and all views, we clearly
see a considerable improvement. The 2D-CNN effectively
utilized predicted object masks on all views and skeleton joints
to achieve results that are on par with those obtained with
ground truth object masks. This indicates that the influence
of noisy predictions can be better compensated by the models
when the perspective of the predictions fits the perspective of
the skeleton joints.

The impact of noisy predictions is also shown by the PC3D
results when comparing the difference between most relevant
and all objects over top view and all views. When training
with less data (top view), it has shown to be necessary to
filter the most relevant objects to handle the noisy predictions.
When training on more data (all views), the model learns to
compensate for the noisy predictions by itself.

Finally, we examine the results utilizing only object masks
without skeletons. As expected, the models consistently
achieve worse results than with ground truth object masks.
However, we can also see that the results for predicted object
masks are significantly better on all views compared to only
using top view. Again this shows that the models trained on all
views benefit from more diverse training data from different
perspectives to compensate for the noisy predictions.

d) Training on Ground Truth and Testing on Detected
Object Masks: For human action recognition, one could also
consider training with ground truth objects and then apply

the trained action recognition model and test with predicted
objects. However, we want to emphasize that this setting
leads to considerably worse results. Our 2D-CNN trained with
ground truth object masks and tested with predicted object
masks (both from top view) achieves a mAcc of only 40.2,
which is 4 percentage points worse than if we had trained
directly with predicted object masks from top view. These
results show that the performance drops considerably, if the
object detector used in a real-world application does not match
the object detector used for training. This is consistent with
literature, where this phenomenon is described as sudden
concept drift between training and deployment [39], [40].

VIII. CONCLUSION

In this paper, we extended two state-of-the-art methods
for skeleton-based action recognition to be able to process
object information in addition to skeleton joints. Using these
modified methods, we then performed investigations on the
challenging assembly dataset IKEA ASM [12]. We evaluated
the benefit of object information for action classification of
human-object interaction classes, as well as for verb-based
action classification only. We also showed the importance of
matching the perspective of objects to skeletons and examined
the influence of noisy predictions of an object detector on the
performance of action classification.

Overall, incorporating additional object information into
skeleton-based action recognition improves the performance to
a large extent. Our proposed approach works extremely well
for the two considered state-of-the-art skeleton-based action
recognition methods 2D-CNN and PoseConv3D. Moreover,
we assume that our approach of treating objects similar to
further skeleton joints can also be transferred to other end-
to-end deep-learning-based methods for skeleton-based action
recognition.

However, the combination of object and skeleton informa-
tion is a relatively new area of study with ample opportunities
for future exploration. For example, one could also think of us-
ing complete object masks, instead of the center of mass, e.g.,
the input encoding from PoseConv3D would be very suitable
for this. Moreover, instead of combining the inputs, one could
also use a dual-branch network and fuse skeleton and object
information in the network. Furthermore, this approach could
also be applied to other applications besides assembly, where
object information also plays a great role, such as cooking
applications (e.g. on the dataset EPIC-KITCHENS-100 [41]).
Perhaps it could even improve action recognition for more
general applications, for which the Kinetics400 dataset [34]
could be utilized in combination with a general object detector
trained on MS COCO [13].

With our findings, we hope to have paved the way for more
researchers to experiment with combining object information
and skeleton data for human action recognition. We expect that
more research in this area enables cobots to recognize human
actions more robustly and accurately. This would improve
human-robot collaboration, which is one of the major goals
of industry 4.0.
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