
Accelerating Self-Imitation Learning from Demonstrations via
Policy Constraints and Q-Ensemble

ABSTRACT
Deep reinforcement learning (DRL) provides a new way to gener-
ate robot control policy. However, the process of training control
policy requires lengthy exploration, resulting in a low sample ef-
ficiency of reinforcement learning (RL) in real-world tasks. Both
imitation learning (IL) and learning from demonstrations (LfD) im-
prove the training process by using expert demonstrations, but
imperfect expert demonstrations can mislead policy improvement.
Offline to Online reinforcement learning requires a lot of offline
data to initialize the policy, and distribution shift can easily lead
to performance degradation during online fine-tuning. To solve
the above problems, we propose a learning from demonstrations
method named A-SILfD, which treats expert demonstrations as
the agent’s successful experiences and uses experiences to con-
strain policy improvement. Furthermore, we prevent performance
degradation due to large estimation errors in the Q-function by
the ensemble Q-functions. Our experiments show that A-SILfD can
significantly improve sample efficiency using a small number of
different quality expert demonstrations. In four Mujoco continu-
ous control tasks, A-SILfD can significantly outperform baseline
methods after 150,000 steps of online training and is not misled by
imperfect expert demonstrations during training.

KEYWORDS
Deep Reinforcement Learning, Learning from Demonstrations, Self-
Imitation Learning, Sample Efficiency

ACM Reference Format:
. 2023. Accelerating Self-Imitation Learning from Demonstrations via Policy
Constraints and Q-Ensemble. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Deep reinforcement learning (DRL) for sequential decision prob-
lems has shown significant advantages, with excellent performance
in robot control [3, 23]. However, building a control policy based on
DRL requires a fine-grained design of the training process in order
to explore the environment. The DRL agents must struggle with
high sample complexity for a long time, hindering the development
of DRL in robot control. Therefore, researchers have proposed two
approaches for building a DRL control policy. On the one hand,
some methods train the control policy in a simulation environment
with unlimited data sources and perform the sim-to-real transfer
[53]. On the other hand, many methods use offline data collected
from previous training to guide exploration and improve sample
efficiency.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

There are several methods to use expert demonstrations. In imi-
tation learning (IL), the agents do not need environmental rewards
but learn policy by imitating the teacher’s behavior [7, 15, 22, 26, 41].
Therefore, IL requires high-quality expert demonstrations. In prac-
tice, expert demonstrations may be generated by human or simple
control methods, and the quality of expert demonstrations varies.
IL performs poorly in imperfect expert demonstrations. Learning
from demonstrations (LfD) also uses expert demonstrations, com-
bining the advantages of IL and RL to improve the sample efficiency
of online training [40]. Existing LfD methods enhance RL by ei-
ther putting expert demonstrations into a replay buffer for value
estimation or using expert demonstrations to pre-train the policy
[21, 47]. Unfortunately, the utilization of expert demonstration is in-
efficient. Other LfD methods are based on on-policy RL algorithms
that add a demonstration-guided term to guide policy improvement
[10, 24, 42]. Offline RL uses a large number of expert demonstra-
tions to learn the policy without interacting with the environment
[12, 14, 29, 30]. Offline to Online RL combines offline training and
online fine-tuning, enabling policy to achieve better performance
[28, 32, 35, 54]. However, both types of methods require a large
amount of offline data to train the policy, which cannot be effec-
tive under limited expert demonstrations. In addition, Offline to
Online RL methods faces severe Q-function estimation errors due
to distribution shift.

Noting the limitations of existing methods, we propose a LfD
method,Accelerating Self-ImitationLearning fromDemonstrations
(A-SILfD). It is based on the Actor-Critic update framework and
more effectively uses a small number of expert demonstrations to
improve sample efficiency.

The main contributions of this paper are as follows.

• Adaptive adjustment of experience replay buffer: We
add expert demonstrations to the experience replay buffer
and replace old data with better experiences during training
to avoid misleading policy improvement through imperfect
demonstrations.
• Full use of experience data: We use policy constraints to
make the agent imitate agent’s successful experience and
realize the full use of data in the experience replay buffer.
• EnsembleQ-functions: By introducing randomness through
ensemble learning, our method smoother the policy im-
provement process and avoids the performance degradation
caused by distribution shift.

We conducted experiments in four Mujoco continuous con-
trol tasks using expert demonstrations of different quality (expert
demonstrations, mixed expert demonstrations, and imperfect ex-
pert demonstrations). The same demonstrations were used for all
methods in the experiments. Our experimental results show that
our methods are not affected by the quality of the expert demonstra-
tions. Furthermore, our method outperforms all baseline methods
regarding sample efficiency and final performance for different

ar
X

iv
:2

21
2.

03
56

2v
1

 [
cs

.L
G

]
 7

 D
ec

 2
02

2

Table 1: Comparison of different methods.

Method Environmental
Reward

Trajectory
Reward

Number of
Trajectories

Offline
training

Trajectory
Evaluation

Policy
Constraints

Sample
Efficiency Problem

IL ✕ ✕ Small ✕ ✓ ✕ Low Misleading
LfD ✓ ✓ Small Not True ✓ ✓ Medium Misleading and Utilization

Offline to Online RL ✓ ✓ Large ✓ ✕ ✓ High Distribution Shift

quality of expert demonstrations. Moreover, we performed an abla-
tion experiment to analyze the impact of each component on the
algorithm.

2 RELATEDWORK
2.1 Imitation Learning
IL aims to train a policy to mimic an expert policy as closely as
possible and does not use environmental rewards. The simplest
IL method is behavioral cloning (BC) [6], which uses a supervised
learning approach to fit expert demonstrations. GAIL [22] is a classi-
cal adversarial-based IL method that uses discriminators to classify
expert and sampled data. Besides, AIRL [11], IC-GAIL [51], WGAIL
[48] and F-IRL [36] are also adversarial-based IL methods. DAC
[26] extended IL to the Actor-Critic methods. OPOLO [55] empha-
sizes imitating only expert states. Self-Adaptive Imitation Learning
(SAIL) [56] uses sub-optimal expert demonstrations to adaptively
adjust the teacher buffer to bring the policy close to and beyond
the expert’s policy. IL is limited by the expert demonstrations’ qual-
ity and requires additional sample data to learn the discriminator,
resulting in a less efficient sample for the method.

Self-imitation learning (SIL) [38] is different from imitation learn-
ing. SIL is a method that uses the agent’s successful experience to
encourage the agent to explore and improve the sample efficiency.
Our work draws on the idea of SIL.

2.2 Learning from Demonstrations
Unlike IL, the idea of LfD is to guide online learning with the
help of expert demonstrations, which require environmental re-
wards. DDPGfD [47] first uses expert demonstrations and train-
ing policy, followed by online fine-tuning. DQfD [21] trains the
Q-network with expert demonstrations to achieve an accurate
Temporal-Difference (TD) error at the beginning of the interaction
between the agent and the environment. POfD [24] uses the idea of
GAIL to reshape a reward function by minimizing the occupancy
measure of agents and experts. LOGO [42] uses demonstrations
to guide exploration during the policy guidance phase, but it is
based on the on-policy method——TRPO [43], resulting in a less
efficient sample. LfD can learn effective policy faster by using fewer
expert demonstrations in combination with online learning, but
the pre-trained policy may also perform poorly in online learn-
ing. Our method allows for more efficient use of imperfect expert
demonstrations.

2.3 Offline RL and Offline to Online RL
Offline RL uses a large amount of pre-collected offline data to train
the policy without online interaction. CQL [30] adds a regulariza-
tion term to the update of the Q-function so that the Q-function

can conservatively estimate a lower bound on the Q-value. TD3-BC
[12] avoids the distribution shift problem by adding additional BC
loss in the policy improvement.

Offline to Online RL emphasizes offline training and online fine-
tuning. However, a severe bootstrapping error is triggered due to the
distribution shift during the online training, which destroys a good
policy for Offline RL training. AWAC [35] solves the distribution
shift by adding regular constraints to the policy. Balanced Replay
[32] sets different priorities for online and offline data. IQL [27]
uses the SARSA style to reconstruct the value function. Offline to
Online RL is ineffective when there are few expert demonstrations.
Moreover, online training can easily cause the offline policy to
collapse. In contrast, our method does not have offline training,
directly uses a small number of expert demonstrations to guide
online training, and is less affected by distribution shift.

Table 1 compares the differences between the three kinds. The
main problems can be summarized as imperfect demonstrations
misleading policy improvement, low utilization of demonstrations,
and performance degradation due to distribution shift. In this work,
we attempt to fill the aforementioned research gaps.

3 LEVERAGE THE CHALLENGES OF EXPERT
DEMONSTRATIONS

In this section, we have compiled the challenges that can be faced
using expert demonstrations.

3.1 Problem Setting
In real-world robotic tasks, a small number of trajectories can be col-
lected by human experts or simple controllers (e.g., PID controllers),
which we call expert demonstrations, defined as Z = {𝜍1, 𝜍2, . . . , 𝜍𝑛},
where 𝜍𝑖 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)𝑇𝑡=1 and 𝑖 = 1 ∼ 𝑛. The quality of these
trajectories can be judged using the reward function. Due to the
difficulty of collecting data in the real world, our goal is to fully use
a small number of trajectories 𝜍 , combined with online training to
improve the sample efficiency. Eventually, the agent outperforms
the imperfect sampling policy and approaches the optimal policy
𝜋∗. We mainly consider off-policy RL algorithms, which can train
the agent with online and offline data. In particular, the Actor-Critic
method can make full use of off-policy data. The two easiest ways
to use expert demonstrations are as follows. (1) Use BC to pre-train
the policy and fine-tune the policy with online training. (2) Pop-
ulate the offline data directly into the replay buffer and train the
policy. However, these methods have the following disadvantages:
(1) They do not take full advantage of the demonstrations; (2) The
demonstrations may be imperfect, leading to negative guidance
during online training [35].

3.2 Imperfect Expert Demonstrations
As shown in Figure 1, the left side represents the best trajectory,
while two imperfect expert trajectories appear on the right. Suppose
the policy is initialized directly using imperfect expert demonstra-
tions. Then, when using this policy for decision-making, the policy
directs the agent to reach the 𝑔𝑜𝑎𝑙 along the sub-optimal route.

goal goal

Optimal Trajectory

goal
start start start

Imperfect Trajectory

Figure 1: Schematic diagram of optimal and imperfect tra-
jectories.

Figure 2: The distribution of different data in the state space.
We use t-SNE to downscale the states of Hopper-v2 to the
two-dimensional plane.

In the continuous state space, the influence of imperfect expert
demonstrations remains. The blue area in Figure 2 shows the state
distribution of the expert demonstrations, and the pink area shows
the state distribution of the data sampled using the BC policy. The
demonstrations collected by the pre-trained policy will overlap with
the expert demonstrations in the state space. As a result, imperfect
demonstrations will be used to update the policy. This negative
guidance may move the agent away from the state space where the
optimal trajectories are located, thus affecting the agent’s explo-
ration.

3.3 Distribution Shift and Bootstrapping Error
Accumulation

If we want to explore the unknown region, we need to increase the
randomness of the policy. As shown on the right side of Figure 2,
the blue area is the state of the expert demonstrations, while the
green area is the state of the sampled data of the policy with more
randomness. While random data may start with the same state
as the expert demonstrations, actions with greater randomness
may result in subsequent states that deviate significantly from the
expert demonstrations. Due to the distribution shift, the data covers
different state-action regions. Therefore, the Q-function cannot
provide accurate value estimates for such out-of-distribution (OOD)
samples. Severe bootstrapping errors can destroy the good initial
policy obtained by pre-training.

Figure 3: Experiments on Walker2d-v2. TD3-Random de-
notes the TD3 algorithm trained from scratch. TD3-BC de-
notes the TD3 algorithm using a BC initialization policy.
TD3-LfD denotes the TD3 algorithm based on the LfD idea.

Let us analyze what the errors associated with the Q-function
are. Let the actual Q-value for the current 𝑘 iterations be 𝑄𝜋 (𝑠, 𝑎)
and the estimated Q-value be𝑄𝑘 (𝑠, 𝑎), and the estimation error can
be expressed as Γ𝑘 = |𝑄𝑘 (𝑠, 𝑎) −𝑄𝜋 (𝑠, 𝑎) |.

The current Bellman error is 𝛿𝑘 (𝑠, 𝑎) =
��𝑄𝑘 (𝑠, 𝑎) − �̂�𝑘−1 (𝑠, 𝑎)

��,
where �̂�𝑘−1 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾E𝑇 (𝑠′ |𝑠,𝑎)

[
max𝑎′ �̂�𝑘−1 (𝑠 ′, 𝑎′)

]
.

We can obtain

Γ𝑘 (𝑠, 𝑎) <= 𝛿𝑘 (𝑠, 𝑎) + 𝛾 max
𝑎′
E𝑇 (𝑠′ |𝑠,𝑎) [Γ𝑘−1 (𝑠, 𝑎)] (1)

We want 𝛿𝑘 (𝑠, 𝑎) to be as large as possible because 𝛿𝑘 (𝑠, 𝑎) af-
fects the update of the Q-function, which helps to fit the out-of-
distribution state-action pairs and reduces the estimation error.
However, in practice, out-of-distribution samples lead to a large
estimation error Γ𝑘 , accumulating in each iteration. Thus it can lead
to the training policy that deviates significantly from the optimal
policy.

Figure 3 shows the problem caused by the distribution shift. The
right panel shows the reward curve for the evaluation phase of the
training process, and the left panel captures the first 120,000 steps
of the reward curve. If the BC initialization policy is used, it leads
to a large estimation error Γ𝑘 of the Q-function. The estimation
error accumulates in the early stage of training, thus distorting
the pre-trained policy. As a result, the agent performance may
increase degradation rapidly (as in the green box on the left side of
Figure 3). Although the idea of LfD can be used for pre-training, the
estimation error Γ𝑘 of the Q-function in the unknown region will
also be larger, resulting in the pre-training policy not achieving the
expected results.

4 METHOD
In this section, we describe A-SILfD. Figure 4 illustrates the train-
ing process of A-SILfD. First, Section 4.2 describes how the expert
demonstrations are used and how the experience replay buffer is
adaptively adjusted. Then, in Section 4.3, we introduce our pol-
icy constraints method. Finally, Section 4.4 describes how to train
Ensemble Q-functions and policy.

4.1 Preliminaries
RL is typically modeled with Markovian Decision Processes (MDP)
and is defined as a five-tuple𝑀 = ⟨S,A,𝑇 , 𝑟, 𝛾⟩, where S,A repre-
sent state and action spaces;𝑇 (𝑠 ′ |𝑠, 𝑎) is the state transfer probabil-
ity; 𝑟 (𝑠, 𝑎) represents the reward function; 𝛾 ∈ [0, 1] is the discount

R

Target

𝑄! 𝑄" ⋯𝑄!#

Ensemble Q-functions

𝜋'

Policy loss

MSE

Mean

𝑄! 𝑄" ⋯ 𝑄!#
Target Q-functions

Critic loss

𝑄$ 𝑄%

Randomly	select	indexes	𝑖 and	𝒋

update	policy	𝝅

Agent	Update	Process𝑠(𝑎(

𝑠&'! 𝑎('!)

𝑠(

𝑎(

𝑠&'!

(𝑠&, 𝑎&, 𝑟&, 𝑠&'!) ~ 𝔅

update	𝑸𝟏 ~𝑸𝟏𝟎

𝑎)*

Min

𝜋',

Environment

Online	interaction

(𝑠&, 𝑎&, 𝑟&, 𝑠&'!)

Expert demonstrations 𝜁 = 𝜍., ⋯ 𝜍/ , 𝜍0= (𝑠(, 𝑎(, 𝑟(, 𝑠(1.))2.3

ℬ!

ℬ"

ℬ#

Add

Adaptive	
adjustment

Mini-Batch	𝕭

Replay buffer

Sampling	
by	ratio 𝛼

Agent

Figure 4: The training flow of A-SILfD.

factor [2] indicating the influence of future reward at the current
time.

The goal of RL is to obtain a policy 𝜋 that maximizes the cumu-
lative (discounted) reward:

𝜋∗ = 𝑎𝑟𝑔max
𝜋
E𝜋

[∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡) |𝑎𝑡 = 𝜋 (·|𝑠𝑡)
]

The Actor-Critic methods learn both the value function and the
policy function. Twin Delayed Deep Deterministic policy gradi-
ent algorithm (TD3) [13] is an off-policy Actor-Critic method that
learns Q-function 𝑄𝜙 (𝑠, 𝑎) parameterized by 𝜙 and a deterministic
policy 𝜋\ modeled as a feedforward network, parameterized by \ .
TD3 alternates between critic and actor updates by minimizing the
following objectives respectively:

L𝑐𝑟𝑖𝑡𝑖𝑐 (𝜙) = E
(𝑠,𝑎,𝑠′∈B)

[
𝑄𝜙 (𝑠, 𝑎) − 𝑟 − 𝛾𝑄𝜙′ (𝑠 ′, 𝜋\ (𝑠 ′)

]
L𝑎𝑐𝑡𝑜𝑟 (\) = E

𝑠∈B,𝑎∼𝜋\

[
−𝑄𝜙 (𝑠, 𝑎)

]
where B is the replay buffer and 𝜙 ′ is the target parameters .

4.2 Self-Imitation Learning from
Demonstrations

We propose A-SILfD, which can use expert demonstrations and the
agent’s successful experiences. Our method differs from existing
LfD methods in that we consider the expert demonstration as the
agent’s successful experience as a reference for the agent to learn.

Our method has two replay buffers. First, we store expert demon-
strations and successful experiences into the experience replay
buffer B𝑒 . We store transitions sampled by the agent into the sam-
ple replay buffer B𝑚 .

For the deterministic policy, if the cumulative reward of the
trajectory generated by the policy 𝜋𝑖 is high, it is closer to the
optimal policy 𝜋∗. As the policy is updated, trajectories with high
cumulative reward should be fully used as successful experiences.
In addition, we use the cumulative reward of the whole trajectory
as the basis for judging the quality of the trajectory, which can
effectively avoid the influence of locally optimal actions. Locally

optimal actions may lead to a high reward for a particular step,
but a high cumulative reward means a high quality of the whole
trajectory.

4.2.1 Adjustment of experience replay buffer B𝑒 . We record the
cumulative reward list 𝑟𝑠𝑢𝑚 = {𝑟𝜍1 , 𝑟𝜍2 , ..., 𝑟𝜍𝑛 } of the trajectories in
B𝑒 and derive the minimum cumulative reward 𝑟𝑚𝑖𝑛 (𝜍). During the
training process, we store the transitions of each episode in the tra-
jectory replay bufferB𝜍 . At the end of each episode, we calculate the
cumulative reward 𝑟𝑒 (𝜍) for transitions in B𝜍 . If 𝑟𝑒 (𝜍) > 𝑟𝑚𝑖𝑛 (𝜍),
we add all transitions in B𝜍 to B𝑒 , update the cumulative reward
list 𝑟𝑠𝑢𝑚 and recalculate 𝑟𝑚𝑖𝑛 (𝜍). By tuning B𝑒 , we ensure that the
quality of trajectories in B𝑒 increases gradually as the policy im-
provement, avoiding misleading policy improvement by imperfect
experience.
4.2.2 Usage ofB𝑒 andB𝑚 . SinceB𝑚 stores all transitions sampled
by online interactions, and B𝑒 stores the agent’s successful experi-
ences, some successful experiences will exist in B𝑚 and B𝑒 . Since
the size of B𝑒 is much smaller than that of B𝑚 , when sampling
both proportionally, the successful experiences will have a higher
probability of being sampled as training data, ensuring the full use
of experiences.

4.3 Policy Constraints
The goal of RL is to maximize the expected cumulative (discounted)
rewards [(𝜋\) = E𝜋\ [

∑∞
𝑡 𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)] along the entire decision

process under the current policy 𝜋\ .
We have an experience replay buffer B𝑒 and a sample replay

buffer B𝑚 . We use 𝑑𝜋 (𝑠, 𝑎) to denote the state-action distribution
under the policy 𝜋 . Moreover, we denote the state-action distribu-
tion of the samples in B𝑒 and B𝑚 by 𝑑𝑒 (𝑠, 𝑎) and 𝑑𝑚 (𝑠, 𝑎).

We expect the 𝑑𝜋 (𝑠, 𝑎) and 𝑑𝑒 (𝑠, 𝑎) to be close as the policy is
learned. In addition, we need to avoid over-exploration of the action.
Over-exploration actions can cause the next state to be shifted far
from the known region. So, we represent the policy improvement
as the following constrained optimization problem.

min
\

𝐽 (\) = −[(𝜋\) 𝑠 .𝑡 . D[𝑑𝜋\ (𝑠, 𝑎) | |𝑑𝑒 (𝑠, 𝑎)] < ^

𝑎𝑛𝑑 D[𝑑𝜋\ (𝑠, 𝑎) | |𝑑𝑚 (𝑠, 𝑎)] < ^
(2)

D denotes ameasure of distribution distance.D [𝑑𝜋 (𝑠, 𝑎) | |𝑑𝑒 (𝑠, 𝑎)] <
^ encourages the state-action distribution of the current policy 𝜋

to match the agent’s successful experience state-action distribution.
D[𝑑𝜋 (𝑠, 𝑎) | |𝑑𝑚 (𝑠, 𝑎)] < ^ seems counterintuitive at first glance, but
we aim to avoid exploring too much.

In practice, we avoid explicitly dealing with the inequality con-
straint by solving the dual problem of Equation 2 to solve for Equa-
tion 2. Namely, we consider the Lagrangian

L(\, _) = −[(𝜋\) + _(G(𝜋\) − 2^) (3)

where G(𝜋\) = D[𝑑𝜋\ (𝑠, 𝑎) | |𝑑𝑒 (𝑠, 𝑎)] + D[𝑑𝜋\ (𝑠, 𝑎) | |𝑑𝑚 (𝑠, 𝑎)] and
solve the problemmin

\
max
_>0
L(\, _) by alternately optimizing \ and

_.
Optimizing _ with fixed \ is equivalent to

min
_>0

_(2^ − G(𝜋\)) (4)

and optimizing \ with fixed _ boils down to solving
min
\
−[(𝜋\) + _G(𝜋\) (5)

To solve the above problem, we need to adjust to both \ and _.
In the optimization Equation 4 process, the constraints requires

G(𝜋\) < 2^. Therefore, if G(𝜋\) > 2^, the _ must be increased.
When G(𝜋\) < 2^, the _ can be made as small as possible. All
_ > 0 encourage G(𝜋\) to decrease gradually. From another point
of view, G(𝜋\) > 2^ indicates a constraint violation and requires
an increase in the lambda to impose a larger penalty.

In the optimization Equation 5 process, as the policy continues
to converge, the state-action distributions of 𝑑𝜋\ (𝑠, 𝑎), 𝑑𝑒 (𝑠, 𝑎) and
𝑑𝑚 (𝑠, 𝑎) keep approaching, G(𝜋\) gradually decreases.

To facilitate training, we can fix _ as a hyper-parameter and turn
this problem into a function related only to \ . The optimization
problem becomes

\ ← 𝑎𝑟𝑔min
\
L (\, _) = 𝑎𝑟𝑔min

\
𝐽 (\) + _G(𝜋\) (6)

Since it is difficult to estimate the state-action distribution of
each small batch sample during training and impossible to estimate
G(𝜋\) accurately, we simplify Equation 6. After considering the
implications of G(𝜋\), we take the mean square error between
the predicted action 𝑎′ = 𝜋\ (𝑠) and the actual action 𝑎 as an ap-
proximate estimate of G(𝜋\). Since the data of each mini-batch
is sampled from two replay buffers, B𝑒 and B𝑚 , this approximate
estimation can quickly reach the approximation of G(𝜋\). The final
optimization objective becomes

\ ← 𝑎𝑟𝑔min
\

[
𝐽 (\) + _E𝜋\ [(𝑎 − 𝜋\ (𝑠)2]

]
(7)

We can expand or contract the constraints region by decreasing
or increasing the _. In the early stage of training, we want the
policy 𝜋 to mimic the agent’s successful experience as much as
possible, so we use a larger _. As training continues, we want the
agent to explore the unknown state space gradually, so we gradually
decrease the _, expanding the constraints region.

4.4 Random Selection of Ensemble
Q-Functions

It is well known that the Actor-Critic method has been suffering
from the over-estimation problem [13, 18]. At the same time, the
distribution shift leads to excessive errors in the estimation of the Q-
function, and the combination of the two causes further degradation
in the performance of the Q-function. To more effectively mitigate
the Q-function estimation error due to distribution shift, we use the
idea of the REDQ (Chen et al.) [8] to train the ensemble Q-functions.

Our method is updated in the following way. The estimation of
the Q-function follows the Bellman Equation and is updated using
the Temporal-Difference method. We still use the target network
to avoid the over-estimation problem.

Let the parameters of the ensemble Q-functions be {𝜙1, 𝜙2, ..., 𝜙𝑁 }
and the parameters of the target network be {𝜙 ′1, 𝜙

′
2, ..., 𝜙

′
𝑁
}. The

ensemble Q-functions estimates for (𝑠 ′, 𝑎′) are expressed as

𝑄𝜙 (𝑠 ′, 𝑎′) = min
𝑖∈M

𝑄𝜙′
𝑖
(𝑠 ′, 𝑎′) (8)

whereM denotes a subset of ensemble Q-functions, with the num-
ber of elements in the subset𝑀 < 𝑁 .

Algorithm 1 A-SILfD
Input:

Initialize experience replay buffer B𝑒 , sample replay buffer B𝑚 ;
Initialize ensemble Q-functions parameters 𝜙1, . . . 𝜙𝑁 ;
To achieve the above goals, we choose the mean \ ;
Initialize target parameters \ ′ ← \ and 𝜙 ′

𝑖
← 𝜙𝑖 (𝑖 := 1 ∼ 𝑁);

Initialize batch size b, experience ratio 𝛼 = 0.25;
1: Add the expert demonstrations to B𝑒 , record the cumulative

reward {𝑟𝜍1 , 𝑟𝜍2 , ..., 𝑟𝜍𝑛 } of the trajectory in B𝑚 and get the
minimum cumulative reward 𝑟𝑚𝑖𝑛 (𝜍);

2: for 𝑖 = 0 to 𝑛_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
3: Initialize trajectory replay buffer 𝑅𝜍 ;
4: for 𝑡 = 0 to 𝑛_𝑠𝑡𝑒𝑝𝑠 do
5: Act 𝑎𝑡 = 𝜋\ (𝑠𝑡) + Y, Y ∼ 𝑐𝑙𝑖𝑝 (N (0, 𝜎),−𝑐, 𝑐);
6: Observe next state 𝑠𝑡+1 and reward 𝑟𝑡
7: Add (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1,done) to 𝑅𝐵 ;
8: Add (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1,done) to 𝑅𝜍 ;
9: if 𝑙𝑒𝑛(B𝑚) > 𝑏 then
10: {𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , . . . }𝛼×𝑏𝑖=1 ∼ B𝑒 , {𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , . . . }

(1−𝛼)×𝑏
𝑖=1 ∼ B𝑚

11: Update parameters 𝜙1, . . . 𝜙𝑁 using the Equation 9;
12: Update parameters \ using the Equation 11;
13: \ ′ ← 𝜏 × \ + (1 − 𝜏) × \ ′;
14: 𝜙 ′

𝑖
← 𝜏 × 𝜙𝑖 + (1 − 𝜏) × 𝜙 ′𝑖 ;

15: end if
16: end for
17: Calculate the cumulative reward 𝑟𝑒 (𝜍) in 𝑅𝜍 ;
18: if 𝑟𝑒 (𝜍) > 𝑟𝑚𝑖𝑛 (𝜍) then
19: B𝑒 ← B𝑒 ∪ 𝑅𝜍
20: Update the cumulative reward {𝑟𝜍1 , 𝑟𝜍2 , ..., 𝑟𝜍𝑛 } of the tra-

jectory in B𝑚 and get the minimum value 𝑟𝑚𝑖𝑛 (𝜍);
21: end if
22: end for
23: return policy 𝜋 ;

Then the loss of the i-th Q-function is

L𝑐𝑟𝑖𝑡𝑖𝑐
𝑖 =

∑︁
(𝑠,𝑎,𝑟,𝑠′) ∈𝔅

(𝑄𝜙𝑖
(𝑠, 𝑎) − 𝑟 − 𝛾 𝑄𝜙 (𝑠 ′, 𝑎′))2 (9)

where𝔅 is the transitions of the currently sampled mini-batch and
𝑎′ = 𝜋\ (𝑠 ′) + Y, Y ∼ 𝑐𝑙𝑖𝑝 (N (0, 𝜎),−𝑐, 𝑐).

We add constraints to the policy improvement to make more
effective use of the agent’s successful experience in B𝑒 and avoid
exploring farther unknown regions.

The following describes how the policy is updated. Estimation
of the Q-value of the current state-action pair (𝑠, 𝑎) by ensemble
Q-functions.

𝑄𝜋\ (𝑠, 𝑎) =
1
𝑁

𝑁∑︁
𝑖=1

𝑄𝜙𝑖
(𝑠, 𝑎) (10)

where 𝑎 = 𝜋\ (𝑠).
The loss of the policy can be expressed as

L𝑝𝑜𝑙𝑖𝑐𝑦 =
∑︁

(𝑠,𝑎,𝑟,𝑠′) ∈𝔅
−𝑄𝜋\ (𝑠, 𝑎) + _(𝑎 − 𝑎)2 (11)

An et al. use the minimum of N Q-functions as the estimate of
Q-value, which can achieve a pessimistic estimation of Q-value
and reduce the estimation error. With the gradual increase of N,

the difference between the gradients of Q-functions gradually in-
creases, which is the fundamental reason for the improved effect
of Q-Ensemble [1]. However, more than a pessimistic estimation
of values in the online training phase can lead to a lack of explo-
ration. Thus, as shown in equation eq15, the TD error is derived
by randomly sampling a subset of Q-functions from the ensemble
Q-functions and computing the minimum of the subset estimates.
The trade-off between pessimistic estimation and exploration is
made by introducing randomness.

In the policy improvement phase, ensemble Q-functions esti-
mates’ average value is used as the current estimated value. This
is because the average value represents the intermediate level of
the estimation error of the current state-action pair, which can
effectively reduce the estimation error.

5 EXPERIMENT EVALUATION
We conducted extensive experiments aimed at answering the fol-
lowing questions.
• Sample Efficiency: Does A-SILfD have a higher sample
efficiency than other methods (see Figure 5)?
• Imperfect Expert Demonstrations: Can A-SILfD perform
better despite imperfect expert demonstrations (see Figure
5)?
• Is A-SILfDmore advantageous than other Ensemble Q-functions
based methods (see Table 3)?
• What is the impact of each part of A-SILfD on the overall
performance (see Figure 6 and Figure 7)?

5.1 Setup
In our experiments, we chose four classic Mujoco control tasks:
Ant-v2, HalfCheetah-v2, Hopper-v2 and Walker2d-v2, which can
be used as representatives of robot control tasks.

For each task, our expert demonstrations come from the im-
plementation provided by the OPOLO1, and the imperfect expert
demonstrations come from the implementation provided by the
SAIL2. All tasks were performed on three random seeds (10, 20, 30)
using four trajectories with no more than 1000 steps.

Our method uses a single hidden layer feedforward network
as the actor-network and critic-network (Q-function) on all tasks,
with 256 neurons. Based on the ensemble learning, we have ten
critic networks with the same structure and random initialization,
respectively.

All experimental results are evaluated in the corresponding in-
tensive reward environment provided by OpenAI Gym for the
final performance. The horizontal coordinates of all figures are the
number of steps that have interacted with the environment during
training, and the vertical coordinates are the cumulative reward
of the current evaluation. The figures allow us to see the sample
efficiency of the different algorithms.

5.2 Sample Efficiency
Our baseline methods are shown in Table 2. All methods are off-
policy, based on the TD3 [13] or the Soft Actor-Critic (SAC) algo-
rithm [18], with high data utilization. In particular, REDQ does not
1https://github.com/illidanlab/opolo-code
2https://github.com/illidanlab/SAIL

require expert demonstrations and is trained from scratch, achiev-
ing state-of-the-art results compared to similar methods.

Due to the limited availability of the LfD methods code, we
cannot access all source codes. Moreover, many LfD methods are
based on the idea of on-policy, which has low sample efficiency. So
we implement REDQ-LfD based on the idea of LfD in combination
with REDQ methods and compare them in Section 5.3.

Table 2: Comparison of baseline methods.

Algorithm Types Basic algorithm Year

REDQ [8] Scratch TD3 2021
AWAC [35] Offline to Online RL SAC 2020
IQL [28] Offline to Online RL SAC 2022
SAIL [56] Imitation learning TD3 2022

OPOLO [55] Imitation learning TD3 2020
DAC [26] Imitation learning TD3 2019

REDQ-TD3 is only compared to A-SILfD alone because it does
not use expert demonstrations, reflecting the higher sample effi-
ciency that A-SILfD can achieve with a small number of expert
demonstrations. Figure 5 shows the performance of all methods
on Mujoco’s four tasks, in which we experimented with expert
demonstrations, mixed expert demonstrations, and imperfect ex-
pert demonstrations, respectively. In all experiments, our method
was not affected by the quality of the expert demonstrations and
had a higher sample efficiency.

5.2.1 Expert demonstrations (Figure 5, first row). This part of the ex-
periment uses four expert trajectories. Our method outperforms the
baseline methods in all four tasks. AWAC and IQL have a higher ini-
tial cumulative reward due to the initial pre-training phase. Affected
by the distribution shift, AWAC suffered from a sudden performance
degradation at the beginning. The strict policy constraints and the
small amount of offline data lead to poor results of the IQL. At
the same time, A-SILfD can avoid performance degradation at the
initial moment due to the distribution shift. SAIL applies to the
case of imperfect expert demonstrations, which perform poorly in
this case. Although DAC and OPOLO do not use environmental
rewards, the sample efficiency is lower, and the training process is
volatile.

5.2.2 Mixed expert demonstrations (Figure 5, second row). This part
of the experiment uses two expert trajectories and two imperfect
expert trajectories. A-SILfD is ahead of the baseline method on
all tasks except the Hopper-v2 task. The IL methods OPOLO and
DAC can be misled by imperfect expert demonstrations, leading to
poor performance. SAIL does not distinguish well between differ-
ent quality demonstrations. AWAC and IQL perform better than
Section 5.2.1 because demonstrations of varying quality can occupy
a larger region of the state space, resulting in better initial results
for the Q-function.

5.2.3 Imperfect Expert demonstrations (Figure 5, third row). This
part of the experiment uses four imperfect expert trajectories. A-
SILfD effectively uses imperfect demonstrations. The IL methods
OPOLO and DAC fail to learn effective control policy on Hopper-v2,

Figure 5: Results for the Mujoco tasks. We conducted experiments on four Mujoco tasks using expert demonstrations (first
row), mixed expert and imperfect expert demonstrations (second row), and imperfect expert demonstrations (third row), re-
spectively. The solid lines and shaded regions represent the mean and standard deviation across three runs.

Ant-V2 and Walker-V2 due to the limitation of the quality of the ex-
pert demonstrations. While SAIL can outperform imperfect expert
demonstrations, it cannot achieve better performance. AWAC and
IQL are only close to the performance of A-SILfD on Hopper-v2
and underperform on other tasks. IQL has no significant perfor-
mance improvement in the online training. This experiment shows
that A-SILfD can better use imperfect expert demonstrations to
improve sample efficiency and avoid imperfect data misleading
policy improvement.

5.3 Comparison of Methods based on
Ensembles Q-functions

In this section, we discuss the effect of ensemble Q-functions. Based
on the idea of ensemble Q-functions, we implemented the following
method to enhance sample efficiency using expert demonstrations.
• REDQ-LfD: Due to the limited availability of the LfD meth-
ods code, we implemented REDQ-LfD based on the LfD idea.
We use the offline data for pre-training before the REDQ -
TD3 training and still use the offline data for the subsequent
online training.
• REDQ-BC: We use BC combined with expert demonstra-
tions to initialize the policy and then train the policy online.

Table 3 shows the results of our experiments. Evaluated Perfor-
mance indicates the ratio of the cumulative reward to the basic
reward at the time of evaluation at 500,000 online interaction steps.
Surpass the basic reward indicates the number of interactions re-
quired to exceed the basic reward smoothly. On the four Mujoco

Table 3: Comparison of the method based on the ensemble
Q-functions.

Benchmark Ant HalfCheetah Hopper Walker2d

(S,A) (111,8) (17,6) (11,3) (17,6)

Basic Reward 4600 6000 3500 3400

Evaluated Performance/Surpass the Basic Reward

REDQ 1.17/340k 1.13/320k 0.95/No 1.09/410k
REDQ-BC 1.20/380k 1.25/180k 1.01/420k 1.20/260k
REDQ-LfD 1.22/210k 1.46/120k 1.02/240k 1.37/200k

Ours 1.24/180k 1.48/120k 1.05/180k 1.43/130k

tasks, the ideas of BC and LfD combined with Ensemble Q-functions
can improve the sample efficiency. However, A-SILfD requires fewer
steps and has higher sample efficiency than the other methods. In
addition, the A-SILfD algorithm still achieves better performance
after 500,000 step iterations. The results show that in addition to the
idea of ensemble Q-functions, other parts of A-SILfD can effectively
improve the algorithm’s performance.

5.4 Ablation Experiment
5.4.1 The Importance of Policy Constraints. As shown in Figure 6,
the red curve indicates the A-SILfD’s performance without policy

Figure 6: The importance of policy constraints. Basic means
no policy constraints is added.

Figure 7: Comparison of different 𝑟𝑎𝑡𝑖𝑜 on the four Mujoco
tasks.

constraints, and the black curve indicates the A-SILfD’s perfor-
mance after adding policy constraints. The training data of each
mini-batch contains the agent’s successful experience and other
sampled data. Therefore, the results show that the policy constraint
term has the following two effects. (1) Make the policy try to mimic
the agent’s successful experience so that the algorithm performance
reaches the expert’s performance more quickly. (2) Constrain the
exploration region of the policy to make the algorithm represen-
tation more stable. The experimental results show that the policy
constraints can effectively improve the performance of A-SILfD.

5.4.2 Effect of Sampling Ratio. When sampling the training data,
the data in the sample replay buffer and the experience replay buffer
are sampled proportionally. 𝑟𝑎𝑡𝑖𝑜 indicates the percentage of data
from the experience replay buffer for each mini-batch. We consider
four settings. 𝑟𝑎𝑡𝑖𝑜 ∈ {0.25, 0.5, 0.75} means that each mini-batch
samples a different proportion of experience data, while 𝑟𝑎𝑡𝑖𝑜 = 0.0
means that the data in the experience replay buffer is not used.
As shown in Figure 7, we can see that 𝑟𝑎𝑡𝑖𝑜 = 0.0 is ineffective,
showing the importance of expert demsonstration and the agent’s
successful experience. The 𝑟𝑎𝑡𝑖𝑜 = 0.75means that each mini-batch

uses more of the agent’s successful experience, and the training
data lacks exploration, resulting in poor performance. 𝑟𝑎𝑡𝑖𝑜 = 0.25
considers both the imitation of the agent’s successful experience
and environmental exploration, and we finally choose 𝑟𝑎𝑡𝑖𝑜 = 0.25.

6 CONCLUSION
In this paper, we discuss how to effectively use fewer expert demon-
strations to improve the sample efficiency of DRL. Considering that
the expert demonstrations may be small and imperfect, the exist-
ing methods cannot use them effectively. Therefore, we propose an
Actor-Critic framework-based LfDmethod namedA-SILfD. A-SILfD
stores expert demonstrations as the agent’s successful experience in
the experience replay buffer. During the training process, A-SILfD
evaluates the quality of the trajectory and dynamically adjusts the
data in the experience replay buffer. Our experimental results in
the Mujoco control task show that.
• Our method can improve sample efficiency using different
quality expert demonstrations.
• Through effective self-imitation learning, we can fully use
the agent’s successful experience to learn the policy so that
the policy can eventually achieve higher performance.
• By ensemble Q-functions, our methodmakes the policy train-
ing process smoother and avoids the performance degrada-
tion caused by distribution shift.

Although our method could significantly speed up the training
process using fewer expert demonstrations, it encountered some
limitations. First, there is a challenge in designing the weights
for the policy constraints; we set the initial weight to 1 and de-
cay it with the training process. However, the weights must be
adjusted separately for different environments to achieve higher
performance. Second, although the experimental results surface
that the ensemble Q-functions can reduce the estimation error due
to distribution shift, we do not provide detailed proof of this point.
Finally, since our method relies on the reward function to evaluate
the trajectory quality and uses the TD error learning Q-function, it
may not work well in a sparse reward setting.

REFERENCES
[1] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. 2021.

Uncertainty-based offline reinforcement learning with diversified q-ensemble.
Advances in neural information processing systems 34 (2021), 7436–7447.

[2] Alex M Andrew. 1998. Reinforcement Learning:: An Introduction. Kybernetes
(1998).

[3] OpenAI: Marcin Andrychowicz and Baker. 2020. Learning dexterous in-hand
manipulation. The International Journal of Robotics Research 39, 1 (2020), 3–20.

[4] David A. Anisi. 2003. Optimal Motion Control of a Ground Vehicle. Master’s thesis.
Royal Institute of Technology (KTH), Stockholm, Sweden.

[5] Sam Anzaroot and Andrew McCallum. 2013. UMass Citation Field Extraction
Dataset. University of Massachusetts. Retrieved May 27, 2019 from http://www.
iesl.cs.umass.edu/data/data-umasscitationfield

[6] Michael Bain and Claude Sammut. 1995. A Framework for Behavioural Cloning.
In Machine Intelligence 15. Oxford University Press, 103–129.

[7] Kianté Brantley, Wen Sun, and Mikael Henaff. 2020. Disagreement-Regularized
Imitation Learning. In ICLR. OpenReview.net.

[8] Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. 2021. Randomized
Ensembled Double Q-Learning: Learning Fast Without a Model. In ICLR. Open-
Review.net.

[9] Kenneth L. Clarkson. 1985. Algorithms for Closest-Point Problems (Computational
Geometry). Ph.D. Dissertation. Stanford University, Palo Alto, CA. UMI Order
Number: AAT 8506171.

[10] Gabriel V Cruz Jr, Yunshu Du, and Matthew E Taylor. 2017. Pre-training neural
networks with human demonstrations for deep reinforcement learning. arXiv
preprint arXiv:1709.04083 (2017).

[11] Justin Fu, Katie Luo, and Sergey Levine. 2017. Learning robust rewards with ad-
versarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248 (2017).

[12] Scott Fujimoto and Shixiang Shane Gu. 2021. A minimalist approach to offline
reinforcement learning. Advances in neural information processing systems 34
(2021), 20132–20145.

[13] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In International conference on machine
learning. PMLR, 1587–1596.

[14] Scott Fujimoto, David Meger, and Doina Precup. 2019. Off-Policy Deep Reinforce-
ment Learning without Exploration. In ICML (Proceedings of Machine Learning
Research, Vol. 97). PMLR, 2052–2062.

[15] Seyed Kamyar Seyed Ghasemipour, Richard S. Zemel, and Shixiang Gu. 2019. A
Divergence Minimization Perspective on Imitation Learning Methods. In CoRL
(Proceedings of Machine Learning Research, Vol. 100). PMLR, 1259–1277.

[16] Barbara J. Grosz and Sarit Kraus. 1996. Collaborative Plans for Complex Group
Action. Artificial Intelligence 86, 2 (1996), 269–357.

[17] Yijie Guo, Junhyuk Oh, Satinder Singh, and Honglak Lee. 2018. Generative
adversarial self-imitation learning. arXiv preprint arXiv:1812.00950 (2018).

[18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[19] Torben Hagerup, Kurt Mehlhorn, and J. Ian Munro. 1993. Maintaining Discrete
Probability Distributions Optimally. In Proceedings of the 20th International Col-
loquium on Automata, Languages and Programming (Lecture Notes in Computer
Science, Vol. 700). Springer-Verlag, Berlin, 253–264.

[20] David Harel. 1978. Logics of programs: axiomatics and descriptive power. MIT
Research Lab Technical Report TR-200. Massachusetts Institute of Technology,
Cambridge, MA.

[21] Todd Hester and Vecerik. 2018. Deep q-learning from demonstrations. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[22] JonathanHo and Stefano Ermon. 2016. Generative Adversarial Imitation Learning.
In NIPS. 4565–4573.

[23] Yandong Ji, Zhongyu Li, Yinan Sun, Xue Bin Peng, Sergey Levine, Glen Berseth,
and Koushil Sreenath. 2022. Hierarchical reinforcement learning for precise
soccer shooting skills using a quadrupedal robot. arXiv preprint arXiv:2208.01160
(2022).

[24] Bingyi Kang, Zequn Jie, and Jiashi Feng. 2018. Policy optimization with demon-
strations. In International conference on machine learning. PMLR, 2469–2478.

[25] Donald E. Knuth. 1997. The Art of Computer Programming, Vol. 1: Fundamental
Algorithms (3rd ed.). Addison Wesley, Reading, Massachusetts.

[26] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and
Jonathan Tompson. 2019. Discriminator-Actor-Critic: Addressing Sample In-
efficiency and Reward Bias in Adversarial Imitation Learning. In ICLR (Poster).
OpenReview.net.

[27] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2021. Offline reinforcement
learning with implicit q-learning. arXiv preprint arXiv:2110.06169 (2021).

[28] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2022. Offline Reinforcement
Learning with Implicit Q-Learning. In ICLR. OpenReview.net.

[29] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. 2019.
Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. In NeurIPS.

11761–11771.
[30] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-

tive q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems 33 (2020), 1179–1191.

[31] Leslie Lamport. 1994. LATEX: A Document Preparation System (2nd ed.). Addison-
Wesley, Reading, MA.

[32] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. 2021.
Offline-to-Online Reinforcement Learning via Balanced Replay and Pessimistic
Q-Ensemble. In CoRL (Proceedings of Machine Learning Research, Vol. 164). PMLR,
1702–1712.

[33] Yihuan Mao, Chao Wang, Bin Wang, and Chongjie Zhang. 2022. MOORe: Model-
based Offline-to-Online Reinforcement Learning. arXiv preprint arXiv:2201.10070
(2022).

[34] Volodymyr Mnih and Kavukcuoglu. 2015. Human-level control through deep
reinforcement learning. nature 518, 7540 (2015), 529–533.

[35] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. 2020. Awac:
Accelerating online reinforcement learning with offline datasets. arXiv preprint
arXiv:2006.09359 (2020).

[36] Tianwei Ni, Harshit S. Sikchi, Yufei Wang, Tejus Gupta, Lisa Lee, and Ben Eysen-
bach. 2020. f-IRL: Inverse Reinforcement Learning via State Marginal Matching.
In CoRL (Proceedings of Machine Learning Research, Vol. 155). PMLR, 529–551.

[37] Barack Obama. 2008. A More Perfect Union. Video. Retrieved March 21, 2008
from http://video.google.com/videoplay?docid=6528042696351994555

[38] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. 2018. Self-imitation
learning. In International Conference on Machine Learning. PMLR, 3878–3887.

[39] Georgiy Pshikhachev, Dmitry Ivanov, Vladimir Egorov, and Aleksei Shpil-
man. 2022. Self-Imitation Learning from Demonstrations. arXiv preprint
arXiv:2203.10905 (2022).

[40] Jorge Ramírez, Wen Yu, and Adolfo Perrusquía. 2022. Model-free reinforcement
learning from expert demonstrations: a survey. Artificial Intelligence Review 55, 4
(2022), 3213–3241.

[41] Siddharth Reddy, Anca D. Dragan, and Sergey Levine. 2020. SQIL: Imitation
Learning via Reinforcement Learning with Sparse Rewards. In ICLR. OpenRe-
view.net.

[42] Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep M. Kalathil, and Srinivas
Shakkottai. 2022. Reinforcement Learning with Sparse Rewards using Guidance
from Offline Demonstration. In ICLR. OpenReview.net.

[43] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International conference on machine
learning. PMLR, 1889–1897.

[44] Joseph Scientist. 2009. The fountain of youth. Patent No. 12345, Filed July 1st.,
2008, Issued Aug. 9th., 2009.

[45] David Silver and Huang. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[46] Yunhao Tang. 2020. Self-imitation learning via generalized lower bound q-
learning. Advances in neural information processing systems 33 (2020), 13964–
13975.

[47] Mel Vecerik and Hester. 2017. Leveraging demonstrations for deep reinforce-
ment learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817 (2017).

[48] Yunke Wang, Chang Xu, Bo Du, and Honglak Lee. 2021. Learning to Weight
Imperfect Demonstrations. In International Conference on Machine Learning.
PMLR, 10961–10970.

[49] JT-Y Wen and Kenneth Kreutz-Delgado. 1991. The attitude control problem. IEEE
Transactions on Automatic control 36, 10 (1991), 1148–1162.

[50] Michael J. Wooldridge and Nicholas R. Jennings. 1995. Intelligent Agents: Theory
and Practice. The Knowledge Engineering Review 10, 2 (1995), 115–152.

[51] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and
Masashi Sugiyama. 2019. Imitation learning from imperfect demonstration.
In International Conference on Machine Learning. PMLR, 6818–6827.

[52] Deheng Ye, Guibin Chen, Peilin Zhao, Fuhao Qiu, Bo Yuan, Wen Zhang, Sheng
Chen, Mingfei Sun, Xiaoqian Li, Siqin Li, et al. 2020. Supervised learning achieves
human-level performance in moba games: A case study of honor of kings. IEEE
Transactions on Neural Networks and Learning Systems (2020).

[53] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. 2020. Sim-to-real
transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE, 737–744.

[54] Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, and Joni Pajarinen. 2021.
Adaptive Behavior Cloning Regularization for Stable Offline-to-Online Reinforce-
ment Learning. (2021).

[55] Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. 2020. Off-policy imitation
learning from observations. Advances in Neural Information Processing Systems
33 (2020), 12402–12413.

[56] Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. 2022. Self-Adaptive Imita-
tion Learning: Learning Tasks with Delayed Rewards from Sub-Optimal Demon-
strations. (2022).

http://www.iesl.cs.umass.edu/data/data-umasscitationfield
http://www.iesl.cs.umass.edu/data/data-umasscitationfield
http://video.google.com/videoplay?docid=6528042696351994555

	Abstract
	1 Introduction
	2 Related Work
	2.1 Imitation Learning
	2.2 Learning from Demonstrations
	2.3 Offline RL and Offline to Online RL

	3 Leverage the Challenges of Expert Demonstrations
	3.1 Problem Setting
	3.2 Imperfect Expert Demonstrations
	3.3 Distribution Shift and Bootstrapping Error Accumulation

	4 Method
	4.1 Preliminaries
	4.2 Self-Imitation Learning from Demonstrations
	4.3 Policy Constraints
	4.4 Random Selection of Ensemble Q-Functions

	5 Experiment Evaluation
	5.1 Setup
	5.2 Sample Efficiency
	5.3 Comparison of Methods based on Ensembles Q-functions
	5.4 Ablation Experiment

	6 Conclusion
	References

