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ABSTRACT

Click-Through Rate prediction (CTR) is a crucial task in recom-
mender systems, and it gained considerable attention in the past
few years. The primary purpose of recent research emphasizes ob-
taining meaningful and powerful representations through mining
low and high feature interactions using various components such
as Deep Neural Networks (DNN), CrossNets, or transformer blocks.
In this work, we propose the Deep Multi-Representation model
(DeepMR) that jointly trains a mixture of two powerful feature
representation learning components, namely DNNs and multi-head
self-attentions. Furthermore, DeepMR integrates the novel residual
with zero initialization (ReZero) connections to the DNN and the
multi-head self-attention components for learning superior input
representations. Experiments on three real-world datasets show
that the proposed model significantly outperforms all state-of-the-
art models in the task of click-through rate prediction.
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1 INTRODUCTION

On a daily basis, millions of users interact with different websites to
search for various products, which is reflected in the ever-increasing
importance of online advertisements and recommender systems.
Consequently, accurately predicting the click-through rates (CTR)
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plays an essential role in building effective personalized recom-
mender systems that can positively impact online businesses’ rev-
enue. As a result, several machine learning approaches have been
proposed over the last decade to focus on improving the perfor-
mance of the CTR prediction in various recommendation settings.

One of the main aspects of CTR prediction is effectively learning-
rich latent representations of the different input fields. This aspect
has been tackled by applying various techniques, beginning with
wide and deep networks [2], factorization machines-based models
[3, 5, 10, 11, 19] which rely on inner-product between the latent
representation of the input fields and hence capturing low-order fea-
ture interaction. On the other hand, other approaches rely on deep
neural networks (DNNs), and cross networks [16, 17] that can learn
feature embedding in a very effective manner. However, both DNNs
and cross networks fail to capture the multiplicative relations across
the input fields, limiting the expressiveness of the resulting latent
representations, leading to suboptimal predictive performance. Re-
cently, transformer-based models have gotten much attention by
showing remarkable performances as they successfully capture the
multiplicative (high-order) relations by applying the multi-head
self-attention mechanism [11, 14]. Nevertheless, there is still a mas-
sive untapped potential in combining the latent representation
and strengths of the different approaches for achieving superior
prediction performance.

In this paper, we propose a novel mixture of experts model
DeepMR to capture effective feature interactions that combine the
benefits of DNN-based models and attention-based models via a
parallel architecture.

Noting the cross networks’ success in various recent works high-
lights the importance of integrating residual connections within the
deep learning models. Moreover, recent residual techniques such
as ReZero [1] have shown remarkable performance by employing
learnable weights to the residual connections that tend to better
signal propagation in the model and faster convergence and thus
obtaining more expressive representations.

To leverage these benefits, our proposed DeepMR model inte-
grates ReZero connections in its DNN and multi-head self-attention
blocks allowing it to achieve superior prediction performance com-
pared to other state-of-the-art models. The main contributions can
be summarized as follows:

e We propose DeepMR, a novel mixture of experts model for
CTR prediction that utilizes a DNN and multi-head self-
attention component with ReZero connections.

e We evaluate the proposed model on three real-world publicly
available datasets for CTR prediction. Results show that the
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proposed DeepMR model significantly outperforms all state-
of-the-art models in CTR prediction in Area Under the ROC
Curve (AUC) and Logloss.

e We conduct a comprehensive ablation study to illustrate the
importance of each component in the model.

2 RELATED WORK

There has been a plethora of related work that focuses on improv-
ing the click-through rate prediction performance throughout the
last few years. The main aim of the different works is to learn in-
formative fields representation for the input interactions. A famous
early work presented by Google is the Deep and Wide model [2],
which benefits from combining the wide component, which helps
to memorize the feature interactions while including the DNN com-
ponent, which maintains the model generalization.
Factorization Machines and CrossNets based models. In light
of understanding more informative feature interactions, Factoriza-
tion Machines (FM) [13] have been broadly used, which enable
the model to capture the second-order feature interactions and
works effectively with sparse data. Neural factorization machines
(NFM) [5] adopt FM for capturing the second-order interactions and
benefit from learning non-linear feature interactions by employ-
ing DNNs. Moreover, factorization machine based neural network
(DeepFM)[3] utilized the FM component and DNN to learn low-high
feature interactions and obtain effective field representations. An
improved version of the DeepFM model named extreme deep fac-
torization machine (xDeepFM) [10] which combines functionalities
from convolutional neural networks (CNN) and recurrent neural
networks (RNN). Instead, xDeepFM proposes the compressed inter-
action network (CIN) to learn degree bounded feature interactions
as the degree increases with increasing the depth of the network.
Furthermore, input aware factorization machines (IFM) [19] use a
factor estimating net to learn input-aware factors for the same input
feature across different instances. In this regard, another model,
dual input aware factorization machines (DIFM) [11] improved over
the IFM model by utilizing multi-head self-attention and DNN si-
multaneously to reweight the feature representations. Other models
[16, 17] rely on Cross Networks which produce the feature crosses
to learn bounded degree feature interactions. A field-embedded
factorization machine model [12] is a simple model which bene-
fits from learning a field pair matrix embedding and higher order
interactions using a DNN.

Attention-based models. More recent works in CTR predic-
tion focus on employing the multi-head self-attention technique
such as automatic feature interaction learning via self-attentive
neural networks (Autoint) [14], and interpretable click-through
rate prediction through hierarchical attention (InterHAt) [9] model,
which uses a multi-head self-attention block followed by hierar-
chical attention layers to capture higher order feature interactions.
Another group of models that considers the temporal dynamics in
the user behaviour, such as deep interest network (DIN) [22] uses
an attention mechanism to capture how the user interest varies
towards certain advertisement and obtain adaptive representation,
deep interest evolution network (DIEN) [21] introduces the use of
an attentional updated gated recurrent neural network (AUGRU)
to overcome the effect of interest drifting and emphasis on relative
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interests. A more recent work, particularly, deep interest with hi-
erarchical attention network (DHAN) [18] employs a hierarchical
attention mechanism to model the user interest.

To this end, our proposed model aims to benefit from combining
both multi-head self-attention and DNN components while extend-
ing their expressiveness capacity through the utilization of ReZero
weighted connects for superior representation learning. Highlight-
ing the main differences between our proposed method and the
closely related work is further explained in Section 3.7.

3 METHODOLOGY

3.1 Problem Formulation

We formulate the click-through rate prediction problem as fol-
lows; Given a dataset of M user-item interaction instances (records)
(X,Y), where each instance x; in X has N fields representing the
features of the target user, the target item and the interaction’s con-
text. Moreover, each instance has a corresponding target y; € {0, 1},
which represents if the item has been clicked by a user or not. Our
main aim in the CTR task is to predict the probability of an item
being clicked by a user given the input feature vector x;.

3.2 Overview

The main goal of our proposed approach is to benefit from com-
bining different field representations of each input instance. As
beforehand seen in the literature, stacking fully-connected layers,
[3, 6, 17] to obtain instance representations has achieved superior
performance with low model complexity. Furthermore, we have
seen many models now using multi-head attention to capture the
relations and similarities between different fields in each instance
[11, 14]. These models were able to attain remarkable performances
by understanding these attention-based (multiplicative) relations.
Therefore, in this work, we propose a multi-representation parallel
structured model (DeepMR) for CTR prediction. The model consists
of three main building blocks field embeddings, ReZero DNN, and
ReZero multi-head self-attention block as shown in Figure 1. Com-
bining these components allows the model to benefit from each
component’s strength and reach a remarkable performance. We
explain the details of each block in the forthcoming sections.

3.3 Field Embedding Component

To obtain the field embedding for each input instance, we use
a look-up embedding table to encode the input instance fields

(xl.(l), xl.(Q), ...xl.(N)). In other words, we pass all the fields through a
fully connected layer to learn the latent embedding for each input
field. Subsequently, we add a positional encoding to all the input
fields to distinguish between the different input fields of an instance.
The fields embedding can then be defined as:

oM Dy p) ) ¢ "

where W(") € RZnXdn js the weight matrix, Z, is the vocabulary
(n)

i

and dj, is the fields embedding size, where
(n)
i
the nth field of instance i and Pi(") is the corresponding positional
encoding of size dp, for each field.

size of the input field x

we used same d, size for all fields. x; " is the binary input vector of
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Figure 1: Deep Multi-Representation Model Architecture

3.4 ReZero Deep Neural Network Component

Despite its simplicity, fully connected layers have shown a high
capability to achieve a beneficial, meaningful representation that
helps the models accomplish outstanding performances. In the
ReZero-DNN component, we used a series of fully connected layers
with ReZero residual connections to learn a refined representation
for each input instance. Firstly, the field embeddings are concate-
nated column-wise to form one input vector Epnn; € RIX(N-dn)
PR— 0
n=1:N

Finally this input vector is then fed through the ReZero-DNN

layers to get the final representation Opnn;, € R

OpNN; = ReZero-DNN(Epn ;) 3)

ReZero Connections Residual connections are compelling in
deep learning; they were initially used in image processing with
Deep ResNets [4]. they ascertained performance improvement as
it allows signal propagation through the network, overcome the

exploding weight updates, and achieves faster convergence on the
logloss. In this work, we use the novel technique residual with
zero initialization [1], which applies a simple change to the deep
residual networks. Where a learnable residual weight « rescales
the contribution of the current layer with respect to the previous
one. Hence, the output of the current ReZero layer /;1 is:

©

where «; is the learnable residual weight, and [; is the output of
the previous layer. The empirical interpretation is further discussed
in section 4.3.

lj+1 = lj +0(jlj+1

3.5 ReZero Multi-head Self-Attention
Component

Multi-head self-attention is currently used in many areas, e.g., time

series forecasting, language processing [15], and recommender

systems [7]. DeepMR also utilizes a multi-head self-attention com-

ponent to enrich the extracted field representation by capturing the
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fields’ multiplicative relations in each instance, allowing the model
to learn superior representations. In this case, we concatenate the
input fields embedding row-wise as shown in Figure 1 to obtain the
input matrix Ega, € RNXdn for the multi-head attention block.

(n)
) 5
€ )n:1:N ( )
Afterward, we split the input into Query (Q), Key (K) and Value
(V) among the specified number of heads to apply the multi-head
attention layer as follows:

Esa; = concatroyy (

T

Att(Q,K, V) = softmax A\ 6)

do
H

SAi(Esa;) =
7

concat,; (Att(ESAiWSs ESAI.WI;, ESA[WZ))h:l'H

where Wg WIh( , WZ € Rd'lxdﬁo represent the linear projection
matrices of the head at index h, and H is the number of heads.
SA;(Esa,) represents the column-wise concatenation of the atten-
tion heads. Finally, we have the feed-forward layers to obtain the
component’s final output representation Os4, € R as follows:

Osa, = FFN(SA;) =

concatygn, (¢(SA§”)W(1) + bM)W 4 b<2>) ©)
n=1:N

where W(l), W?2) ¢ RoXdo are the weight matrices of the two

feed-forward layers, and b(l), b(2) € R are their bias vectors. ¢

represent Leaky_ReLU non-linear activation, and concatyo., con-

catenates vectors row-wise.

In contrast to the original multi-head self-attention additive
residual connection, we apply a multiplicative ReZero connection
with learnable parameter ag4 within the multi-head self-attention
block, enabling the network to learn better representations.

3.6 Combination and Prediction

To form the final input representation we combine the output repre-
sentations from the ReZero-DNN and ReZero Multi-Head attention
components using a weighted point-wise sum as follows:

Ocomb, = BOsa; + (1 = BYODNN;» Ocomp; €R%  (9)

where Opnn; is the output of the fully-connected ReZero-DNN
layers, Os 4, is the output of the multi-head self-attention compo-
nent, and S is the weighting factor which decides the contribution
of each branch to the final output representation.

Finally, the model prediction of the probability of the item i being
clicked by user u is calculated by reducing and summing the values
of the O;opmp, vector elements then applying a sigmoid activation
as follows:

do
i = ”(Zl o ) (10)
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Hence our objective function for CTR binary classification can
be defined as follows;

M
1 N N
L=-1 2; yilog (§) + (1-y)(1~log (4) (1)
where y; are the actual labels and 7j; are the predicted probabilities,

and M is the number of input instances.
The pseudo-code of DeepMR is described in Algorithm 1.

Algorithm 1: DeepMR (X, Y)
input :A set of user-item interaction records (X, Y) with
N fields .
output: The predicted items click probabilities Y
1 Initialize the model parameters

2 for E epochs do
3 Draw a list-wise batch b from (X, V)

4 Calculate the field embeddings ei(n) for each instance

5 Concatenate the field embedding column-wise to form
the ReZero-DNN input Epn N using Eq.(2)

6 Concatenate the field embedding row-wise to form the

multi-head self-attention input Es4 using Eq.(5)
7 Update the ReZero-DNN layers to obtain Opnn
8 Jointly update the multi-head self-attention block
parameters to obtain Ogy

9 Combine both outputs using Eq.(9)

10 Predict items click probabilities using Eq.(10)
11 end

3.7 Relationship to Related Work

By removing the DNN component of the model and the ReZero
connections in the multi-head self-attention block, our model will
be very similar to the Autoint model [14]. In contrast, to DIFM,
we do not employ re-weighting layers or the factorization ma-
chines for the final prediction layer. However, we similarly use a
self-attention component and a fully connected layers component,
but with weighted residual connections on the fully connected
layers and multiplicative weighted residual connections in the self-
attention block. Additionally, we use a different combination layer
with a fixed or learnable parameter f.

4 EXPERIMENTS

In this section, we conducted experiments to answer the following
research question;

RQ1 How well does the model perform against the state-of-the-art
models?

RQ2 What is the impact of adding the ReZero connection to the
model?

RQ3 What are the impacts of the different components of DeepMR?
RQ4 What is the effect of learning the combinatorial factor Beta?

4.1 Experiment Settings

4.1.1 Datasets. We evaluate the CTR prediction task on three pub-
lic datasets: the Frappe mobile app usage dataset, which has been
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Method Frappe MovieLens LastFM
AUC Logloss Logloss AUC Logloss

DeepFM [3] 0.9713 + 3e-3 0.1922 + le-2 0.9399 + 5e-5 0.2846 + 1e-3 0.9388 + 6e-4 0.3038 =+ 2e-3
M [5] 0.9780 + 1e-3 0.1955 + 3e-3 0.9368 + 6e-4 0.3378 + 4e-3 0.9356 + 3e-3 0.3428 + 3e-3
XDeepFM [10] 0.9803 + le-4 0.1795 + 3e-3 0.9570 + 3e-4 0.2365 + 9e-4 0.9469 + 1e-3 0.2847 + 2e-3
Autolnt+ [14] 0.9797 + 4e-4 0.1679 + 4e-3 0.9419 =+ 3e-4 0.3023 + 3e-3 0.9388 + 2e-3 0.3317 + 4e-3
FiBiNet [6] 0.9781 + 2e-3 0.2093 + 4e-3 0.9434 + 1e-3 0.2894 + le-2 0.9398 + 1e-3 0.3432 + 3e-3
DIFM [11] 0.9778 + 1e-3 0.1814 + 1e-3 0.9569 =+ 3e-4 0.2363 +2e-4 0.9441 + 7e-4 0.2871 + 2e-3
DCN-Mix [17] 0.9806 +6e-4 0.1673 + 6e-4 0.9536 + 6e-4 0.2633 + 4e-3 0.9455 +5e-3 0.2907 + 1e-2
DeepMR (ours) | 0.9851" + 34e-5 0.1395" + 84e-5 | 0.9654" + 73e-5 0.2293" + 26e-4 | 0.9592" + 16e-5 0.2840 * 56e-5

Significantly outperforms the best baseline at the *0.01 level
Table 1: Model performance and comparison against baselines. Bold represents the best performance, and underline represents

the second-best obtained results.

Method Frappe

AUC Logloss

MovieLens LastFM
AUC Logloss | AUC Logloss

DeepMR w/ ReZero | 0.9853  0.1395
DeepMR w/o ReZero | 0.9849  0.1657

0.9651  0.2293 | 0.9590  0.2840
0.9624 0.2322 | 0.9609 0.3141

Table 2: Effect of adding ReZero connections on the model performance.

used for context-aware mobile-app recommendation. It includes
user IDs, App IDs, and eight contextual features such as weather,
city, etc. Secondly, the MovieLens dataset! focuses on the personal-
ized tag recommendation; each instance includes the user ID, Movie
ID, and tag. Furthermore, we study the musician listing LastFM
dataset?, we learn the personalized user-artist tag recommendation,
it contains the user ID, Artist ID, tag, and date information such as
day, month, and year. We applied the same feature pre-processing
asin [5, 19].

Dataset Instances | User# | Item# | Fields

Frappe 288,609 957 4,082 10
MovieLens | 2,006,859 | 17,045 | 23,743 3

LastFM 186,479 2099 18,744 6

Table 3: Datasets Statistics

4.1.2  Evaluation Protocol. We follow the same evaluation protocol
as [5, 19] by randomly sample two negative items that the user has
not interacted with for each data instance. We split each of the three
datasets into 8:1:1 for training, validation, and testing, respectively.
The datasets statistics are summarized in Table 3. For evaluation,
we adopted the Area Under the Curve (AUC) which indicates the
score of the model’s ability to assign higher scores to positive items
than negative items, and logloss defined in equation 11 which we
aim to minimize. We report the mean and standard deviation of 5
runs of the best hyper-parameter setting.

4.1.3 Baselines. We compare the proposed method against the
following state-of-the-art models for CTR prediction.

!https://github.com/hexiangnan/neural_factorization_machine/tree/master/data
Zhttps://grouplens.org/datasets/hetrec-2011/

e DeepFM [3]: A model with wide and deep architecture,
which learns the features interactions using factorization
machines and three multi-layer perceptron (MLP) layers.

e NFM [5]: Learns the second order feature interactions from
FM along with non-linear neural networks interactions.

e xDeepFM [10]: An updated version of the DeepFM model
that utilizes a compressed interaction network and a DNN to
capture the higher order feature interactions in an explicit
and implicit fashion.

e FiBiNet [6]: A model which utilizes squeeze-excitation net-
work (SENET) to learn feature importance and fine-grained
interactions.

e Autoint+[14]: A model which uses multi-head self-attention
to capture high-order feature interactions.

e DIFM [11]: A dual input-aware factorization machines model
that leverage deep neural networks (DNN) along with multi-
head self-attention and residual networks to obtain informa-
tive representations of the instances.

e DCN-Mix [17]: A state-of-the-art mixture model of low-
rank deep and cross networks for CTR prediction.

Hyperparameters Settings. We ran our experiments using
GPU RTX 2070 Super and CPU Xeon Gold 6230 with RAM 256
GB. We used Tensorflow for implementation; for reproducibility
purposes, our code is available here 4. For running all baselines,
we used the publicly available DeepCTR? library. For selecting the
model hyperparameters, we adopted a grid search on the field em-
beddings between [30 - 600], on the learning rate between [0.000005
and 0.0001], the L2-regularization lambda between [0.0001 and 0.2],
and the dropout rate between [0.01 and 0.9]. The best parameters
for dropout, L2-regularization, embedding size and learning rate
respectively are 0.35, 0.03, 512 and 9e-05 for Frappe dataset, while
Shttps://www.tensorflow.org

*https://github.com/Shereen-Elsayed/DeepMR
Shttps://github.com/shenweichen/DeepCTR
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Method Frappe

AUC Logloss

MovieLens LastFM
AUC Logloss | AUC Logloss

DeepMR Multi-ReZero | 0.9853  0.1395
0.1404

DeepMR Add-ReZero | 0.9838

0.9651  0.2293 | 0.9590  0.2840
0.9551  0.2699 | 0.9565  0.2833

Table 4: Effect of using additive vs multiplicative ReZero connections on the model performance.

for LastFM dataset 0.35, 0.05, and 7e-06 with 512 embedding size,
finally for MovieLens dataset 0.45, 0.009 and 8e-05 with 600 la-
tent embedding size. We used the ReLU activation function for all
the models’ layers and the Leaky ReLU activation function in the
feed-forward layer within the attention block, which has shown
better performance. Finally, we employ Adam[8] for optimizing the
proposed model.

4.2 Model Performance and Comparison
Against Baseline (RQ1)

In this section, we report the results of the proposed DeepMR
method and compare its performance against state-of-the-art mod-
els. The results reported in Table 1 indicate the effectiveness of
the proposed method and its ability to outperform all baselines on
the AUC metric with a considerable improvement. While on the
logLoss, DeepMR outperforms other models on Frappe and Movie-
Lens datasets significantly while showing comparable results on the
LastFM dataset logloss. However, other methods which incorporate
different components to obtain high-order feature interactions, e.g.,
xDeepFM, achieve the second-best AUC performance on the Movie-
Lens dataset. While including a Mixture of Low-rank Deep and
Cross Network (DCN-Mix) has shown high competitiveness on the
Frappe dataset and the second-best AUC on the LastFM dataset. The
DIFM model utilizes multi-head self-attention and stacked fully con-
nected layers, and Factorization machine components show better
performance than AutoInt+ on the MovieLens dataset. In contrast,
Autolnt+, which relies on the multi-head self-attention, outper-
forms DeepFM and DIFM on the Frappe dataset. The performance
of the CTR models highly depends on the datasets; thus, the ob-
tained results differ from one dataset to another. Concerning the
logloss, the best performances were achieved by DCN-Mix on the
Frappe dataset, DIFM on the MovieLens dataset, and xDeepFM on
the LastFM dataset.

4.3 Effect of Adding ReZero Connections (RQ2)

In this section, we study the effect of adding the weighted residual
connections with learnable weights to the DNN and the multi-head
self-attention blocks. First, we removed all ReZero connections in
the DNN and the attention block, and we kept the residual con-
nection that existed in the original transformer architecture [15].
Results in Table 2 show that the residual connections significantly
improved the model’s performance across the Frappe and Movie-
Lens datasets. On the other hand, it was not very effective on the
LastFM dataset. Regarding the logloss metric, it is clear that the
ReZero connections affected the logloss performance significantly,
which is one of the main benefits of applying ReZero connections
which help improve performance and faster convergence.

Furthermore, we investigated the effect of using the multiplicative

residual connection within the multi-head self-attention block ver-
sus additive connections. Multiplicative residuals were applied in
various image processing operations [20] and positively impacted
the obtained results. Results in Table 4 show that adding multi-
plicative ReZero connections within the attention block positively
impacted the model performance on all datasets on the AUC. Sim-
ilarly, the logloss fell behind when using the additive residuals
except on the LastFM dataset, which has shown slight improve-
ment from 0.2840 to 0.2833. Finally, it is worth mentioning that we
applied the multiplicative connections on the DNN component, but
it was not as effective in that case.

4.4 Impact of Combinatorial Factor Beta (RQ3)

Given that the proposed model combines two components, partic-
ularly, it can be considered a mixture of experts with setting the
number of experts to two. We combine the final output with the
weighted sum of the two model branches. Therefore, each model
part contributes to the final output probabilities. Figure 2 illustrates
the effect of changing , which varies from 0 to 1, where g = 0
means that the ReZero-DNN is the active branch while f = 1 means
that the multi-head self-attention is the functional one. As shown
in Figure 2 the best f value differs from one dataset to another as
for Frappe, and LastFM datasets best values are 0.8 and 0.7, while
for MovieLens, the best value is at 0.5. However, for most of the
datasets, it is clear that the multi-head self-attention branch has a
higher contribution to the final output, specifically for Frappe and
MovieLens datasets.

Besides, Figure 2 shows the influence of varying the combinato-
rial weight on the Logloss. For the Frappe dataset, the differences
in the Logloss are minimal between the rate 0.2 and 0.6. In con-
trast, the best Logloss is acquired at 0.6, concerning the MovieLens
dataset, the model attained the best Logloss at 0.8, finally for the
LastFM dataset selecting a less weight 0.4 had the best Logloss.

4.5 Impact of Learning Combinatorial Factor
Beta (RQ4)

As explained earlier, our model is a mixture of two components,
each of those two branches has a certain impact on the final output
of the model. Such that the final output is the weighted sum of
the two components as shown in Equation 9, where the weight (f)
adjusts the contribution of each component. We have shown in the
previous section an ablation study of the impact of changing the
weights and how it can affect the final performance consequently.
Another way of adapting the contribution weight of each compo-
nent is to learn how each part impacts the model performance. In
other words, we can learn the weighting factor § along with the
models’ parameters to optimize our objective function. To this end,
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Method Frappe MovieLens LastFM
AUC Logloss | AUC Logloss | AUC Logloss
DeepMR 0.9853  0.1395 | 0.9651  0.2293 | 0.9590  0.2840
DeepMR With fr | 0.9856  0.1408 | 0.9611  0.2260 | 0.9589  0.2850

Table 5: Effect of learning the factor Beta on the model performance.
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Figure 2: Effect of changing Beta on the model performance.
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Figure 3: Effect of different Beta values, number of layers and number of heads on the AUC.

we initialize the weight  with 0.5 and set it to be trainable simulta-
neously with the model parameters. Table 5 illustrate the obtained
results of learning the combinatorial factor f with we denote as
Br . As shown in Table 5 the results, there is a positive impact of
learning the weight on the Frappe dataset; alternatively, for the
MovieLens and LastFM datasets, it rather caused a reduction in
model AUC. Figure 5 show how learning f changes over epochs;

for Frappe and MovieLens datasets, beta steadily increased to 0.66
for Frappe and 0.92 for MovieLens, while for the LastFM dataset, it

slightly decreased from 0.5 to 0.44.
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Figure 5: Effect of learning Beta over epochs.

4.6 Model Settings

In this section, we study different model settings and the effect of
each parameter on the model performance. Firstly, for the multi-
plicative ReZero-DNN component, we study the effect of having
different number of ReZero layers in the model. As shown in Figure
3 including three layers after the embedding layer for Frappe and
two for LastFM datasets are sufficient to achieve the best perfor-
mance. In contrast, the MovieLens dataset’s five layers showed the
best performance. Regarding the multi-head self-attention block,
we report the effect of using different self-attention heads in Figure
3 which exemplify the impact of changing the number of heads.
The best number of heads varies from one dataset to another for the
LastFM dataset; six heads obtained the best result. For the Frappe

dataset, the performance increased when adding more heads, reach-
ing the best result at seven heads. Finally, the MovieLens dataset
required ten self-attention heads.

As aforementioned, the model performance is highly dependent
on the dataset and the optimized metric. Figure 4 illustrates different
logloss performances based on the multi-head self-attention block’s
different number of heads and the number of ReZero layers in the
DNN. The model achieves the best logloss performance by using
a few layers, as the ReZero connections also allow the model to
converge faster. The best number of layers were 1, 2, 2 for Frappe,
MovieLens and LastFM, respectively. Concerning the number of
self-attention heads employed, the best number varies between the
datasets. However, we can notice that 8, 9, and 6 heads were the best-
selected values for Frappe, MovieLens and LastFM, respectively.

5 CONCLUSION

This paper proposes DeepMR, a mixture of experts model that in-
tegrates the benefits of two feature representation components: a
ReZero DNN and a multi-head self-attention component. We lever-
age the non-linearity in the DNN to capture the additive high-order
feature interactions. We incorporate weighted residual connections
(ReZero) to the DNN, enabling the model to propagate the ini-
tial signal through the layers, achieve better field representations,
and enhance model performance. On the other hand, we capture
high-order multiplicative feature interactions using the multi-head
self-attention component. Ultimately, we conducted experiments
on three publicly available datasets; results show that the proposed
model outperforms state-of-the-art models consistently.
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