
Interpretable Diversity Analysis: Visualizing Feature
Representations In Low-Cost Ensembles

Tim Whitaker
Department of Computer Science

Colorado State University
Fort Collins, CO, USA

timothy.whitaker@colostate.edu

Darrell Whitley
Department of Computer Science

Colorado State University
Fort Collins, CO, USA

whitley@cs.colostate.edu

Abstract—Diversity is an important consideration in the con-
struction of robust neural network ensembles. A collection of
well trained models will generalize better if they are diverse
in the patterns they respond to and the predictions they make.
Diversity is especially important for low-cost ensemble methods
because members often share network structure in order to
avoid training several independent models from scratch. Diversity
is traditionally analyzed by measuring differences between the
outputs of models. However, this gives little insight into how
knowledge representations differ between ensemble members.
This paper introduces several interpretability methods that can
be used to qualitatively analyze diversity. We demonstrate these
techniques by comparing the diversity of feature representations
between child networks using two low-cost ensemble algorithms,
Snapshot Ensembles and Prune and Tune Ensembles. We use
the same pre-trained parent network as a starting point for both
methods which allows us to explore how feature representations
evolve over time. This approach to diversity analysis can lead to
valuable insights and new perspectives for how we measure and
promote diversity in ensemble methods.

I. INTRODUCTION

Ensemble learning has long been known to be an effective
technique for improving generalization on machine learning
tasks. Instead of making predictions with a single model,
ensembles train multiple independent models and combine
their predictions together. The combination of several models
can help to reduce bias that a single model might have. This
idea of diversity is an important topic in ensemble learning as
it is critical in building ensembles that generalize well [10],
[19].

As neural networks and datasets become larger, efficient
algorithms have been introduced to reduce the computational
cost of training several models from scratch. In general, this
is done by sharing information between ensemble members
in some way. For example, Snapshot Ensembles train a single
model and save checkpoints of the model throughout time [8].
Prune and Tune Ensembles train a single parent model and
then spawn independent child networks by pruning random
parameters from the parent [23] followed by fast retraining.
Diversity becomes especially important for these low-cost
ensemble methods as information sharing invariably leads to
higher correlation between predictions.

Many metrics have been introduced to measure diversity
in classifier ensembles [10]. Most of these metrics involve
analyzing the differences between output predictions of differ-

ent members. While this approach enables easy comparisons
between classifiers, output differences can vary greatly de-
pending on the accuracy of individual members. For example,
a group of random models can be highly diverse but have
terrible performance and a group of perfectly accurate models
can have terrible diversity but perform well. Because of this,
output diversity metrics can be misleading when comparing
the results of different ensemble methods.

Neural network interpretability continues to be important
in machine learning research [25]. This field is shifting the
preconceived notions that deep neural networks act as black
box models. By utilizing feature visualization and saliency
attribution techniques, it becomes possible to explore how,
what, and why neural networks make decisions by visualizing
the types of patterns that specific neurons within the network
respond to.

These methods are especially critical for evaluating low-
cost ensemble methods that share network structure, because
we can meaningfully compare feature representations of the
same neuron in two different networks and visualize how
they evolve over time. We explore this idea with Snapshot
Ensembles and Prune and Tune Ensembles by using the
same pre-trained Inception-V3 network as a starting point for
both methods [8], [23]. We generate child networks for each
ensemble by training on ImageNet and we then create neuron
visualizations for each neuron in each of the child networks.
We then quantify the representational diversity by measuring
the similarity between the visualizations using well established
perceptual hashing algorithms [2].

Our results indicate that Prune and Tune Ensembles display
significantly more representational diversity than Snapshot
Ensembles for each of the five benchmark perceptual hashing
algorithms we used to measure similarity. The unique network
topology of Prune and Tune children encourages each ensem-
ble member to learn unique patterns. This insight could be
highly effective for building more robust ensemble techniques
in the future. Our experiments offer a new perspective for ana-
lyzing diversity. The application of interpretability techniques
can be invaluable for better understanding how to measure and
promote diversity in low-cost ensembles.

ar
X

iv
:2

30
2.

05
82

2v
1

 [
cs

.L
G

]
 1

2
Fe

b
20

23

II. BACKGROUND

A. Low-Cost Ensemble Learning

Several methods have been introduced to reduce the costs
of training ensembles, which generally share either network
structure, gradient information, or learned parameters among
ensemble members. This can be effective at reducing com-
putational cost, as each network can leverage the knowledge
learned from other members without needing to be trained
from scratch. However this invariably reduces diversity be-
tween members and can have significant impact on general-
ization performance [10]. In this paper, we explore diversity
using two recent low-cost ensemble learning algorithms, Prune
and Tune Ensembles and Snapshot Ensembles.

B. Prune and Tune Ensembles

Prune and Tune Ensembling (PAT) is an efficient low-
cost ensemble learning method that leverages ideas from
evolutionary and temporal ensembles in order to efficiently
create accurate and diverse networks through pruning.

Prune and Tune Ensembles work by first training a single
parent network, then spawning child networks by cloning and
dramatically pruning the parent using random or anti-random
sampling strategies, and finally fine tuning each of the child
networks with a cyclic learning rate schedule for a small
number of epochs. Pruning and tuning a previously trained
network has an extremely low computational cost. Because
the parent is already optimized, the child networks converge
with only a few epochs of additional training. One can easily
create a parent and dynamically generate many diverse child
networks at a cost that is only slightly more than training a
single network.

As the child networks are all derived from an identical
parent network and tuned for a small number of epochs, one
would assume that the children would be highly correlated.
However, results have shown that Prune and Tune Ensembles
produce extremely accurate ensembles with good output di-
versity. We aim to better explore the feature representations
of these child networks in order to understand how sparsity
affects diversity.

Anti-random pruning was introduced in Prune and Tune
Ensembles as a technique for encouraging more diversity
among pairs of child networks [13], [23]. Anti-random pruning
creates mirrored pairs of child networks, such that whenever
we randomly prune the parent to create a child, a sibling is
created that inherits the opposite set of parameters.

Consider a binary bit string M = {x0, ..., xn : x ∈ {0, 1}},
that is randomly generated with 50% sparsity where 1 rep-
resents parameters that we keep and 0 represents parameters
that are pruned. The anti-random network then is created by
reversing the polarity of all the bits in the mask M , such that:

θ̂1 = θ ◦M and θ̂2 = θ ◦ (1−M)

where θ̂i are the parameters of child network i, θ are the
parameters of the parent network and ◦ denotes the Hadamard
product.

0.52 0.21 -0.3

0.12 0.79 -0.24

-0.57 0.29 0.33
0.52 0.21 0

0.12 0 -0.24

0 0 0.33

0 0 -0.3

0 0.79 0

-0.57 0.29 0

Fig. 1. A parent filter split into two anti-random child filters. The resulting
networks learn diverse feature representations as a result of their unique
topologies.

The resulting two child networks maximize the Cartesian
Distance, CD, between the two binary bit masks a and b,
where a =M and b = 1−M .

CD(a, b) =
√
|a1 − b1|+ ...+ |an − bn|

This process is repeated N times to create an ensemble of size
2N , where each child network has exactly 50% sparsity.

In order to recover accuracy after pruning, each child
undergoes a small tuning phase using a cyclic learning rate
schedule. One-cycle tuning is a two phase schedule that
inversely cycles between growth and decay for both learning
rate and momentum [18]. The first phase grows the learning
rate from ηmin to ηmax, while momentum decays from µmax
to µmin. The cycle then flips to decay the learning rate
from ηmax to ηmin and the momentum from µmin to µmax.
Both learning rate and momentum are updated using cosine
annealing.

F (t) = α0 +
1

2
(α1 − α0)(1 + cos(

t

tmax
π))

where F (t) is the value at iteration t, tmax is the total number
of iterations, α0 is the initial value we anneal from and α1 is
the final value we anneal to.

C. Snapshot Ensembles

Snapshot Ensembling is a popular low-cost ensemble learn-
ing approach. Snapshot Ensembles work by training only a
single model and saving checkpoints of that model’s state over
time.

Training is broken up into several cycles, where for each
cycle the learning rate is decayed from a large value to a small
value. The large rates encourage the model to move further in
the parameter space before converging to a local optima which
is then saved [8]. This process then repeats, with the learning
rate resetting to the large value at the beginning of each new
cycle.

The total number of ensemble members that are created for
the final ensemble is governed by the cycle length and total

Table I. Comparison between Low Cost Ensembles using WideResNet-28-10
Architecture. M refers to the total number of models in the final ensemble.
Besides Prune and Tune (PAT) and Snapshot Ensembles, other methods
include: Dropout [7], TreeNet [11], Batch Ensembles [22], Fast Geometric
Ensembles [5], and Multiple-Input Multiple-Output(MIMO) [6]. * indicates
published results taken from [6], [12], [23].

CIFAR-10 CIFAR-100

Method ACC NLL ECE ACC NLL ECE

Dropout* 95.9 0.15 0.024 79.6 0.83 0.05
Treenet (M=3)* 95.9 0.25 0.018 80.8 0.77 0.05
Batch (M=4)* 96.2 0.14 0.02 81.5 0.74 0.05
SnapShot (M=5) 96.27 0.13 0.02 82.1 0.66 0.04
FGE (M=12) 96.35 0.13 0.02 82.3 0.65 0.04
MIMO (M=3)* 96.4 0.13 0.01 82.0 0.69 0.02
PAT (M=6) 96.48 0.11 0.005 82.7 0.63 0.01

training budget. The cycle lengths need to be long enough
to allow for single models to optimize well, however this
can limit the potential number of ensemble members created.
Within each cycle, the learning rate is decayed with cosine
annealing, and the learning rate at any given iteration can be
described with:

a(t) = F (mod(t− 1, dT/Me))

where a(t) is the learning rate at iteration t, F () is the cosine
annealing function, T is the total number of iterations, and M
is the cycle length used for each model.

Snapshot Ensembles are able to create ensembles with good
performance without requiring any more computation than
a single model would have. However, snapshots taken early
in the training process tend to perform worse and snapshots
taken later in the training tend to be highly correlated and less
diverse, thus resulting in less effective ensembles.

To provide context on the relative performance of these
approaches, we include Table 1 which presents results com-
paring Accuracy (ACC), Negative Log Likelihood (NLL) and
Expected Calibration Error (ECE) for both Prune and Tune
Ensembles and Snapshot Ensembles as well as several other
recent and low cost ensemble methods for CIFAR-10 and
CIFAR-100. All methods are trained with roughly the same
computational budget and use a standardized WideResNet-28-
10 convolutional model. Prune and Tune Ensembles outper-
form all other methods with an accuracy of 96.48 on CIFAR-
10 and 82.7 on CIFAR-100 when accounting for a fixed
training budget. Snapshot Ensembles result in accuracies of
96.27 and 82.1 respectively. A full table of results, including
computational costs can be found in the appendix.

D. Output Diversity

Diversity has long been known to be an important con-
sideration in ensemble learning [1], [10], [21]. This is often
explained in ensemble literature with an example of the bias-
variance decomposition of the mean squared error (MSE) [1],
[21]. Given a model’s prediction f and a true target value
from an unknown test distribution y, the mean squared error is

defined to be the expectation of the squared distance between
the models predictions and the true target distribution. Bias is
the difference between the expectation of the model and the
true targets and variance is the squared difference between the
models predictions and its mean.

bias = E[f]− y
var = E[(f − E[f])2]

MSE = E[(f − y)2] = (E[f]− y)2 + E[(f − E[f])2]

MSE = bias2 + var

Given an ensemble of M equally weighted estimators, the
decomposition can be further extended to produce the bias-
variance-covariance decomposition [1].

bias =
1

M

∑
i

(E[fi]− y)

var =
1

M

∑
i

E[(fi − E[fi])
2]

covar =
1

M(M − 1)

∑
i

∑
j 6=i

E[(fi − E[fi])(fj − E[fj])]

MSE = bias2 +
1

M
var + (1− 1

M
)covar

Generalization error for single models relies upon the op-
timization of both bias and variance, where the tuning of a
model towards high bias can cause it to miss important features
and the tuning of a model toward high variance can cause
it to be highly sensitive to noise. When the decomposition
is extended to an ensemble, the generalization performance
additionally depends on the covariance between models. Ide-
ally, ensemble methods that prioritize diversity will be able to
reduce covariance without increasing the bias or variance of
individual models [1], [21].

In a classification context, there is no standardized analog to
the bias-variance decomposition [1]. Instead, several metrics
have been introduced as a means to quantify diversity in
classification ensembles [10]. The most popular of which are
the Kullback-Leibler Divergence and Prediction Disagreement
Ratio [4], [6], [12].

Kullback-Leibler Divergence, also known as relative en-
tropy, approximately measures how different one probability
distribution is from one another. This operates on the output
probabilities of each ensemble member and the average is
measured over all pairwise combinations.

dKL(f1, f2) =
1

N

N∑
i=1

f1(xi) log

(
f1(xi)

f2(xi)

)
where N is the number of test samples and fi(xi) is the output
probabilities for a given model fi and test sample xi.

Prediction Disagreement Ratio (PDR) instead measures
the differences between only the predicted class instead of
differences between the full output distributions.

dPDR(f1, f2) =
1

N

N∑
i=1

argmax (f1(xi)) 6= argmax (f2(xi))

Table II. Prediction Disagreement Ratio (PDR) and KL divergence between
ensemble members on CIFAR-10 with WideResNet-28x10. Results reported
from [6], [12], [23]

Methods dPDR ↑ dKL ↑ Acc ↑

Treenet 0.010 0.010 95.9
BatchEnsemble 0.014 0.020 96.2
EDST Ensemble 0.026 0.057 96.4
MIMO 0.032 0.081 96.4
Dense Ensemble 0.032 0.086 96.6
DST Ensemble 0.035 0.095 96.4
Prune and Tune Ensemble 0.036 0.090 96.5

where N is the number of test samples and argmax(fi(xi))
is the predicted class label for model fi and test sample xi.

Table II presents results from several low-cost ensemble
papers on a benchmark CIFAR-10 experiment with a total
training budget of 200 epochs [6], [12], [23]. The results
indicate that output diversity metrics do not directly correlate
with the most accurate ensembles. For example, Dense Ensem-
bles have a prediction disagreement ratio or 0.032 and a KL-
divergence of 0.086 with an accuracy of 96.6. These diversity
metrics are lower than Prune and Tune (PAT) Ensembles and
Dynamic Sparsity Training (DST) Ensembles despite having
a higher accuracy. It’s clear that diversity metrics alone are
not sufficient to fully analyze the generalization capabilities
of different methods.

III. INTERPRETABLE DIVERSITY ANALYSIS

The efficacy of low-cost methods often rely on a trade-off
between training cost, model accuracy, and member diversity.
However, the current state of diversity analysis focuses heavily
on output diversity, which gives little insight into how net-
works actually develop and represent diversity.

This chapter explores diversity by visualizing the feature
spaces of child networks generated in Prune and Tune En-
sembles and compares them to checkpoint models in Snapshot
Ensembles. These networks offer an excellent foundation for
exploring diversity for a number of reasons.

1) Prune and Tune Ensembles demonstrate excellent empir-
ical results and output diversity, despite the fact that each child
network inherits parameters from a shared parent and is tuned
for only a small number of epochs. Visualizing the feature
representations of these models can provide an explanation as
to how and why these methods produce robust ensembles.

2) Child networks in Prune and Tune Ensembles and Snap-
shot Ensembles are derived from an identical parent. We can
look at the index of the same neuron in two different networks
or checkpoints and visualize how feature representations di-
verge and change over time and space.

3) Sparsity has long been an important topic in deep neural
network research. Trained networks can have a significant
number of parameters removed and continue to maintain,
or even exceed the original network’s accuracy with little
additional training. Visualizing how sparsity affects the un-
derlying knowledge representations is an important area for
better understanding the behavior of deep neural networks.

A. Feature Visualization

Feature visualization uses optimization to create images
that maximize or minimize activations of specific parts of
the network. This is done by first initializing an image with
random noise. This image is then fed into a fixed network
and gradient descent is used to update the pixel values of the
input image. The resulting images display the types of patterns
a particular neuron or channel responds strongly to.

Various forms of regularization have been shown to improve
image quality, including frequency penalization, transforma-
tion robustness, and learned priors (such as color distribution)
[14]. Additionally, images are preconditioned by decorrelating
and whitening the input such that gradient descent happens
in Fourier Space, with frequencies scaled to have the same
energy [14]. The 2D Fourier Transform for an x-by-y image
X is defined as:

F(u, v) =
x∑
i=0

y∑
j=0

e−2πi/xe−2πi/yXi,j

We then aim to maximize the output activations of a specific
convolutional filter by optimizing the following objective:

F (X) = −
∑
x,y

hn,x,y,z(X)

where h is the output of a neuron, X is the input image, n
is the layer, z is the channel, and x and y are the spatial
positions of the neuron within a channel. In order to generate
an image that minimizes neuron activation, the sign is flipped
for the objective. The image is then optimized using a standard
gradient descent based optimizer:

Xn+1 = Xn − η∇F (Xn)

where η is the learning rate and ∇ is the gradient of the
objective function with respect to the input image.

B. Saliency Maps

Saliency Maps visualize the gradient of a prediction with
respect to the input image, highlighting the parts of the input
that a network responds strongly to. This is done by first
performing a forward pass through the network with a given
input image. The saliency is computed by setting all outputs of
the non-predicted class to 0 and back propagating the predicted
class score back through to the inputs [16]. The resulting
gradient is then normalized and plotted using a heatmap, where
larger values correspond to more salient parts of the input
space.

G(X) =
∂Yc
∂X

where the saliency map G(X) is the gradient of the output of
the predicted class label Yc with respect to the input image
X .

SmoothGrad was later introduced as an extension to the
method described above that reduces noise in the visualizations

28 36 27 31 28

32 34 34 28 28

26 30 28 34 30

26 29 33 29 34

23 38 20 16 28

27.0 33.4 28.4 27.6 29.6

Parent

Child 1

Child 2

A-Hash

P-Hash

W-Hash

D-Hash

C-Hash

40 37 24 39 30

36 38 36 30 34

38 28 26 38 34

36 31 38 34 39

26 57 44 33 49

Mean 35.2 38.2 33.6 34.8 37.2

Snapshot Ensemble Prune and Tune Ensemble

4c:34 4d:164 4e:178 5a:228 5b:70 4c:34 4d:164 4e:178 5a:228 5b:70

Fig. 2. Feature visualizations of a random selection of neurons in child networks from a Snapshot Ensemble and a Prune and Tune Ensemble. Each column is
labeled with (layer index:channel index) to identify the location within the network of the randomly selected neurons. Values reported are the hash distances
between the two child network visualizations. Bold values represent greater distance between representations. The sparsity from Prune and Tune Ensembles
results in much more diverse feature representations than two subsequent checkpoints in Snapshot Ensembles.

by averaging the gradient over several Gaussian perturbed
inputs [17].

SG(X) =
1

N

N∑
i=1

∂Yc
∂X + γi

where SG(X) is the SmoothGrad output for an input image
X and Yc is the output of the predicted class label c. The input
X is perturbed with Gaussian noise sampled from a normal
distribution γi ∼ N (0, σ2).

C. Quantifying Visual Diversity

The most common image similarity metrics are gener-
ally used to measure image quality as a response to noise,
corruption, or compression against a ground truth image.
These include the mean square error, peak signal-to-noise
ratio, structural similarity index, spatial correlation coefficient,
spectral angle mapper, and universal image quality index.
These metrics tend to be highly sensitive to minute differences
and far too noisy when applied to images that contain different
content.

We instead introduce a robust image hash similarity based
approach to quantifying diversity. Image hashing algorithms
compress images into binary bit strings such that images that
are visually similar will result in hashes that are similar. The
bits of the image hash are spatially significant, so the simi-
larity between two hashes can be described by the Hamming
Distance, which is the number of positions in which the bits of
two hashes differ. Images that are more similar will therefore

have a lower Hamming Distance than images that are diverse
[24].

We use several popular image hashing algorithms for mea-
suring the distances between feature visualizations, including:
average hash, perceptual hash, difference hash, wavelet hash,
and color hash [2]. Average hash, difference hash, wavelet
hash and perceptual hash all start by resizing a given image to
an 8x8 pixel square and converting it to grayscale. The hash
is then constructed by assigning a 1 or 0 for each pixel in
the block according to some heuristic. Average Hash assigns
a 1 if the pixel value is greater than the mean pixel value.
Perceptual Hash does the same except all values are converted
to the frequency domain using a discrete cosine transformation
first. Wavelet hash uses a discrete wavelet transform instead of
a discrete cosine transform. Difference hash can be described
as a gradient hash where the difference between pixels values
is compared to the mean difference between pixel values.
Finally, color hash maintains color information by skipping
the grayscale step and instead using the hue, saturation, and
value space of an image separately.

IV. EXPERIMENTS

We conduct a large scale comparison between child net-
works in a Snapshot Ensemble and a Prune and Tune En-
semble. We start with an open source Inception network
pre-trained on ImageNet [15]. Following the hyperparameters
given in the Snapshot Ensemble paper, we continue training of
the pre-trained network for two cycles of 40 epochs in length

Snapshot Ensemble

Child 1 Child 2

Prune and Tune Ensemble

Child 1 Child 2

...

Method Average Hash Perceptual Hash Difference Hash Wavelet Hash Color Hash

Snapshot Ensemble 30.85± 0.27 30.77± 0.25 31.55± 0.28 30.94± 0.28 27.56± 0.39
Prune and Tune Ensemble 31.16± 0.28 31.19± 0.25 31.60± 0.27 31.17± 0.27 32.74± 0.51

Fig. 3. We measure the hash difference between sibling network feature representations using a variety of perceptual hash techniques. Results are the mean
distances between all 1024 neurons in the final convolutional layer before the linear classifier. Each cluster of 4 filter visualizations are from the same neuron
in different child networks that are each derived from a shared parent network. The left overlapping filters are from two successive snapshot checkpoints.
The right overlapping filters are from two prune and tune children. Bolded values correspond to greater distance and greater diversity between child filter
representations.

with a cyclic cosine-annealing decay schedule with an initial
learning rate of 0.1 and a final learning rate of 1e-5 [8].

We use the same pre-trained network as the parent for
the Prune and Tune Ensemble as well. Two child networks
are created using anti-random pruning with an unstructured
sparsity target of 50%. Each child is fine tuned for 40 epochs
using a one-cycle learning rate schedule with a max learning
rate of 0.1 and a final learning rate of 1e-5. We choose these
hyperparameters to match the computational budget defined in
Snapshot Ensembles [8].

Using the child networks constructed above, we create
feature visualizations of identical neurons in each of the
networks [9], [20]. Feature visualizations are optimized using
ADAM with a learning rate of 0.05 for 1024 steps. Several
random data augmentations are applied at each step, including:
jittering by up to 8 pixels, scaling by a factor between 0.95
and 1.05, rotating by an angle between -5 and 5 degrees, and
jittering a second time by up to 4 pixels.

We then compute 64 bit image hashes for each visualization
(average hash, perceptual hash, difference hash, wavelet hash,
and color hash) and report the Hamming Distance between
each pair of child network visualization hashes.

We first present feature visualizations from several neurons
selected at random from different layers within each network.
Figure 2 displays these sample visualizations where each
column corresponds to the same neuron in each of the different
networks. Prune and Tune children often focus on different
elements present in the parent network’s visualization, while
Snapshot checkpoints appear to be much more highly cor-
related with the parent. The table in Figure 2 supports this,
with the Hamming distance between each pair of image hashes
being more distant than those created with Snapshot Ensemble
checkpoints.

We extend these feature visualizations by analyzing every
channel in the final convolutional layer. Thus, for each pair
of child networks, 1024 feature visualizations are created
for each. All of these visualizations are hashed using the
algorithms described above and then the distance between
sibling network hashes are measured. These final neurons are
especially relevant for a comprehensive comparison as they are
the last stop before being fed into the fully-connected classifier
layers. They most closely illustrate how each child network
represents concepts and the differences over all the neurons
in this layer will provide a comprehensive overview on the
diversity between network representations.

Figure 3 displays a subset of these visualizations along with
a table that reports the mean Hamming distances between each
pair of child networks over all feature visualization hashes. For
every hashing algorithm we see more diversity in the Prune
and Tune representations than in the Snapshot Ensemble.

We then explore how each ensemble method interprets input
by creating saliency maps for each of the 50,000 samples in the
ImageNet ILSVRC2012 validation set [3]. Figure 4 reports the
average Root Mean Square Error, Average Hash, Perceptual
Hash, Difference Hash, and Wavelet Hash distance over all
50,000 images between each pair of child networks.

Snapshot Checkpoint 1

Prune and Tune Child 1

Input Parent

Snapshot Checkpoint 2

Prune and Tune Child 2

RMSE A-Hash P-Hash D-Hash W-Hash

SSE 0.06±0.001 10.01±0.04 18.12±0.04 10.00±0.04 15.13±0.04

PAT 0.07±0.001 11.13±0.04 19.95±0.04 11.03±0.04 15.97±0.04

Fig. 4. Mean distances between Snapshot Ensemble (SSE) and Prune
and Tune Ensemble (PAT) saliency maps for all 50,000 samples in the
ILSVRC2012 ImageNet validation set. Also included is an example of how
saliency maps can be useful with ambiguous input. Included are SmoothGrad
saliency maps for a shared parent network, two snapshot ensemble check-
points, and two prune and tune child networks. Both snapshot checkpoints
focus on the dog while the prune and tune children split their attention between
the dog and the cat. The diversity encouraged by prune and tune ensembles
helps to reduce bias present in the parent network.

Figure 4 also includes a visualization of how saliency
maps can be useful in analyzing ensemble diversity when
dealing with ambiguous inputs. We feed an image containing
a puppy and a kitten to each child network in the Snapshot
and Prune and Tune Ensemble and compute their saliency
maps using SmoothGrad. The parent network and the Snapshot
checkpoints focus primarily on the puppy in the input image.
The Prune and Tune children split their attention, where one
child focuses on the puppy and the other on the kitten. This
diversity can be valuable in building robust ensembles as
techniques that encourage diverse representations can help to
reduce bias (focus on the puppy) that is inherent in the parent
network.

V. CONCLUSIONS

Diversity is an important property of robust neural net-
work ensembles. However, traditional measures of diversity
focus only on model outputs and give little insight into how
ensemble members represent knowledge differently within
the model. We introduce a combination of interpretability
methods and perceptual hashing as an effective approach for
qualitatively analyzing diversity and measuring the similarity
between representations.

Diversity is especially important for low-cost ensemble
methods as they tend to share information between members
in order to reduce computational cost. In particular, temporal
ensembles and evolutionary ensembles create members that
inherit parameters and network structure from previous itera-
tions, which allows for meaningful comparisons between the
same neurons of different networks.

Our experiments explore how feature visualization and
saliency maps could be useful in comparing the diversity be-
tween members in two low-cost ensemble methods, Snapshot
Ensembles and Prune and Tune Ensembles. We find that the
sparsity and unique network topology of Prune and Tune
children is highly effective for encouraging diverse feature
representations when compared to Snapshot Ensembles. Anti-
random pruning ensures that the convolutional filters are
geometrically opposed which results in convergence to unique
and diverse optima. Despite the significant pruning that these
children undergo, Prune and Tune Ensembles maintain high
classification accuracy [23].

Interpretability methods are making deep neural networks
more accessible and understandable, and we believe the in-
troduction of these methods to ensemble learning can provide
better insights into diversity and aid in the construction of
more robust low-cost ensembles.

REFERENCES

[1] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods:
A survey and categorisation. Information Fusion, 6:5–20, 03 2005.

[2] J. Buchner. Imagehash. https://github.com/JohannesBuchner/imagehash,
2021.

[3] J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, 2009.

[4] S. Fort, H. Hu, and B. Lakshminarayanan. Deep ensembles: A loss
landscape perspective, 2020.

[5] T. Garipov, P. Izmailov, D. Podoprikhin, D. Vetrov, and A. Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. arXiv
preprint:1802.10026, 2018.

[6] M. Havasi, R. Jenatton, S. Fort, J. Liu, J. Snoek, B. Lakshminarayanan,
A. Dai, and D. Tran. Training independent subnetworks for robust
prediction, 2021.

[7] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R. Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors, 2012.

[8] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. Hopcroft, and K. Wein-
berger. Snapshot ensembles: Train 1, get m for free. arXiv preprint
arXiv:1704.00109, 2017.

[9] L. Kiat. Lucent. https://github.com/greentfrapp/lucent, 2021.
[10] L. Kuncheva and C. Whitaker. Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy. Machine
Learning, 51:181–207, 05 2003.

[11] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra.
Why m heads are better than one: Training a diverse ensemble of deep
networks. arXiv preprint:1511.06314, 2015.

[12] S. Liu, T. Chen, Z. Atashgahi, X. Chen, G. Sokar, E. Mocanu, M. Pech-
enizkiy, Z. Wang, and D. Mocanu. Freetickets: Accurate, robust and
efficient deep ensemble by training with dynamic sparsity, 2021.

[13] Y. Malaiya. Antirandom testing: getting the most out of black-box
testing. In Proceedings of Sixth International Symposium on Software
Reliability Engineering. ISSRE’95, pages 86 – 95, 1995.

[14] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature
visualization. Distill, 2017. https://distill.pub/2017/feature-visualization.

[15] PyTorch. Torchvision pre-trained models.
https://pytorch.org/vision/stable/models.html, 2022.

[16] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important
features through propagating activation differences. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70,
ICML’17, page 3145–3153. JMLR.org, 2017.

[17] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smooth-
grad: removing noise by adding noise, 2017.

[18] L. Smith and N. Topin. Super-convergence: Very fast training of
neural networks using large learning rates. In Artificial Intelligence and
Machine Learning for Multi-Domain Operations Applications, 2018.

[19] P. Sollich and A. Krogh. Learning with ensembles: How overfitting
can be useful. In Advances in Neural Information Processing Systems,
volume 8. MIT Press, 1996.

[20] Tensorflow. Lucid. https://github.com/tensorflow/lucid, 2021.
[21] N. Ueda and R. Nakano. Generalization error of ensemble estima-

tors. In Proceedings of International Conference on Neural Networks
(ICNN’96), volume 1, pages 90–95 vol.1, 1996.

[22] Y. Wen, D. Tran, and J. Ba. Batchensemble: An alternative approach to
efficient ensemble and lifelong learning, 2020.

[23] T. Whitaker and D. Whitley. Prune and tune ensembles: Low-cost
ensemble learning with sparse independent subnetworks. In Proceedings
of the 36th AAAI Conference on Artificial Intelligence, 2022.

[24] Christoph Zauner. Implementation and benchmarking of perceptual
image hash functions. 2010.

[25] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang. A survey on neural
network interpretability. IEEE Transactions on Emerging Topics in
Computational Intelligence, 5(5):726–742, 2021.

	I Introduction
	II Background
	II-A Low-Cost Ensemble Learning
	II-B Prune and Tune Ensembles
	II-C Snapshot Ensembles
	II-D Output Diversity

	III Interpretable Diversity Analysis
	III-A Feature Visualization
	III-B Saliency Maps
	III-C Quantifying Visual Diversity

	IV Experiments
	V Conclusions
	References

