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Abstract—This work presents a novel label-efficient self-
supervised representation learning-based approach for classifying
diabetic retinopathy (DR) images in cross-domain settings. Most
of the existing DR image classification methods are based on
supervised learning which requires a lot of time-consuming and
expensive medical domain experts-annotated data for training.
The proposed approach uses the prior learning from the source
DR image dataset to classify images drawn from the target
datasets. The image representations learned from the unlabeled
source domain dataset through contrastive learning are used to
classify DR images from the target domain dataset. Moreover,
the proposed approach requires a few labeled images to perform
successfully on DR image classification tasks in cross-domain
settings. The proposed work experiments with four publicly
available datasets: EyePACS, APTOS 2019, MESSIDOR-I, and
Fundus Images for self-supervised representation learning-based
DR image classification in cross-domain settings. The proposed
method achieves state-of-the-art results on binary and multi-
classification of DR images, even in cross-domain settings. The
proposed method outperforms the existing DR image binary
and multi-class classification methods proposed in the literature.
The proposed method is also validated qualitatively using class
activation maps, revealing that the method can learn explainable
image representations. The source code and trained models are
published on GitHub1.

Index Terms—Self-supervised representation learning, domain
adaptation.

I. INTRODUCTION

In the medical imaging area, artificial intelligence (AI), a
topic characterized broadly by the building of computerized
systems capable of doing tasks [1] & [2] that ordinarily re-
quire human intelligence, has significant potential. Automated
radiology workflows have significantly benefited from machine
learning and deep learning techniques. Although AI models
have the potential to revolutionize clinical practice, they have
been hampered by significant implementation and regulatory
obstacles [3]. Almost all constraints may be traced back to a
major issue: a dearth of medical image data to train and test AI
algorithms [4]. The generalizability and accuracy of developed
solutions are hampered because most research institutions and

1https://github.com/prakashchhipa/Learning-Self-Supervised-
Representations-for-Label-Efficient-Cross-Domain-Knowledge-Transfer-
on-DRF

enterprises only have limited access to annotated medical
images. Large datasets, including high-quality images and
annotations, are still necessary to train, validate, and test the AI
systems [5]. In the absence of data that has been appropriately
labeled, this procedure becomes prohibitively expensive, time-
demanding, and inherently unstable. Labeled biomedical im-

Fig. 1: Schematic presents the contrastive learning-based self-
supervised cross-domain knowledge transfer. Pretraining is
performed on the source dataset (EyePACS), and downstream
tasks are performed on cross-domain targets (APTOS 2019,
MESSIDOR, and Fundus Images).

ages are incredibly scarce, and multiple experts are required to
annotate each image [6] manually. Massive amounts of health
data are being generated and collected. These data range from
in-hospital monitoring to wearable. Coding and annotating this
data is impractical [6] [7]. In addition, the pretrained models
obtained from natural images do not apply directly to medical
images since their intensity distribution is different. Besides
that, annotating natural images is simple; all that is required is
basic human knowledge [8]. Nevertheless, in-depth knowledge
is necessary for the annotation of medical images. The average
medical image has over a billion pixels, significantly larger
than others. The annotation process is highly error-prone and
expensive, and experts cannot always identify a particular
feature. A potential solution is to train models on unlabeled
images using self-supervised learning [9] [10].

Most supervised learning methods require labeled data to
train a machine. Unfortunately, obtaining good-quality labeled
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data can be cost-effective and time-consuming. Additionally,
the data preparation lifecycle can be extremely long and com-
plicated, including cleaning, filtering, annotating, reviewing,
and restructuring according to a training framework [11].
Another approach has been used to deal with scarce biolog-
ical data: domain adaptation-based self-supervised learning.
Self-supervised learning (SSL), an alternative to supervised
learning and transfer learning, has emerged as a viable pos-
sibility [12]. While self-supervised learning is distinct from
transfer learning, both rely on acquiring representations from
a secondary pretext activity and the subsequent transfer of
those representations to the main focus task [13] [14]. The
data utilized for the pretraining phase and the downstream
task might be taken from one or more separate data sources
in domain adaptation self-supervised learning, unlike transfer
learning [15].

This work aims to prove that self-supervised learning can
be used as a preliminary step in medical image classification.
Contributions to this work are:
• This work proposes a domain adaptation-based self-

supervised learning approach to learn image representa-
tions from diabetic retinopathy fundus images.

• Self-supervised learning of diabetic retinopathy image
representations from unlabelled datasets has been vali-
dated in cross-domain settings, as shown in Figure 1.

• Results indicate that the proposed work outperforms the
existing methods of DR classification.

II. RELATED WORK

In recent years, unsupervised learning has significantly
progressed (SSL). Since it is useful for learning feature rep-
resentations from image datasets without image labels, it has
become a primary focus for academic investigation. Medical
image classification tasks like detecting diabetic retinopathy,
classifying brain age [35], recognizing cancer in histopathol-
ogy [34], identifying pneumonia in X-ray [37], many others
have shown progress using self-supervised learning meth-
ods, demonstrating state-of-the-art performance. This article
focuses on self-supervised learning techniques pertaining to
images of diabetic retinopathy.
In an approach, Truong et al. proposed the fusion of embed-
dings from multiple SSL models. Then the fused embeddings
are combined with self-attention for feature learning. However,
it did not use domain adaptation, as the datasets used in the
pretext and downstream tasks are the same.
Taleb et al. [20] developed a series of five proxy tasks:
3D contrastive predicting coding, 3D rotation prediction, 3D
jigsaw puzzles, 3D patch location, and 3D exemplar networks
to learn the feature representations in the pretext task. Lin et al.
[21] proposed a multilabel classification method using rotation
SSL with graph CNN to learn fundus images’ representations.
Another work by Srinivasan et al. [22] trained a ResNet50
model using the MoCo-V2 approach in the pretext task to
classify diabetic retinopathy images in the downstream task.
The authors used a similar dataset for both the pretext and
downstream tasks. Yap and Ng [23] proposed a contrastive

learning framework to create a patch-level dataset for pretext
tasks by extracting the class activation maps from the labeled
and unlabelled datasets.

A. SSL methods for DR segmentation

Segmentation of diabetic retinopathy using self-supervised
learning has been explored partially. Tian et al. [18] proposed
a multi-class Strong Augmentation via Contrastive Learning
(MSACL) approach for detecting unsupervised anomalies.
The author also proposes a contrastive loss that combines
contrastive learning with multi-centered loss to cluster the
samples of the same class. These unsupervised models need
to be well-trained. Otherwise, they can learn ineffective image
representations. Another author, Kukacka et al. [19], also
proposed an approach for lesion segmentation by pretraining
a U-net encoder in the pretext task.

B. Reconstruction-based SSL methods for DR classification

Many efforts have been made for the diabetic retinopathy
classification task using reconstruction-based self-supervised
learning methods. Holmberg et al. [16] proposed a cross-
domain U-net-based system to generate the retinal thickness
used for the classification during the downstream task. Other
authors, Ngyyen et al., learned the features of the target dataset
by using a self-supervised contrastive learning method on
reconstructed retinal images. This work reconstructs images
and features learning on the target dataset. In the proposed
work, representations learning is performed on the source
dataset of diabetic retinopathy and applied to those learned
representations to a different dataset of diabetic retinopathy.
In addition, a few authors also proposed a multi-modal-
based reconstruction of images. Hervella et al. [3] performed
multimodal reconstruction using U-Net for the segmentation
task of the optic disk and cup in retinography and angiography
images, and Li et al. [17] trained a CycleGAN model on
the source dataset to learn the mapping function between
the images and also learned both the modality-invariant and
patient-similarity features in the pretext task. One more work
by Cai et al. proposed a transformer-based framework in
combination with a multitask decoder to learn the represen-
tations of the reconstructed images. Most works discussed
above used adversarial learning methods to reconstruct the
images. However, these methods provide inferior performance
or have unstable training. Representation learning is pixel-
based learning in the existing reconstruction-based methods,
but the work focuses on learning representations at the visual
concept level.

As was seen in the preceding review of the relevant
literature, most existing SSL approaches employ the same
dataset for both the pretext task in the source domain and
the downstream task in the target domain. Progress has been
seen in the knowledge transfer field, but no one has extensively
explored the domain adaptation. The proposed work concretely
focuses on cross-domain contrastive learning. To identify DR
images from a different domain, this study presents an SSL



strategy to reuse the representations learnt on one unlabeled
dataset from the source domain during the pretext job.

III. DIABETIC RETINOPATHY DATASET DESCRIPTION

Diabetic retinopathy is a major cause of blindness among
people of working age in developed countries. It is a prevalent
eye disease that affects more than 93 million people globally.
Diabetic retinopathy detection is currently a time-consuming
and laborious technique that requires a skilled person to
analyze and interpret digital color fundus images of the retina.
The public datasets for diabetic retinopathy are:

A. Subset of EyePACS

Eye disease Diabetic Retinopathy (DR)2 is linked to long-
term diabetes. If DR is caught early enough, visual loss can
be halted. A comprehensive collection of high-resolution retina
images captured using various imaging settings are accessible.
Every subject has both a left and right field available to them.
Images are identified not just with a subject id but also as being
on the left or the right. A medical professional has determined
diabetic retinopathy on a scale of 0 to 4.

B. APTOS 2019

Numerous people are affected by diabetic retinopathy, the
most common reason for vision loss among adults in their 40s
and 50s. Aravind Eye Hospital can help people in rural areas
without easy access to medical screening in India’s efforts
to find and prevent this condition there. The answers will
be available to other Ophthalmologists through the 4th Asia
Pacific Tele-Ophthalmology Society (APTOS) Symposium3.
A vast collection of retina images was collected using fundus
photography in various situations made available. A clinical
expert has determined that each image has been graded for its
severity on a scale of 0 to 4.

C. MESSIDOR-I

Diabetic retinopathy detection is now a labor-intensive and
time-consuming method that requires a qualified doctor to
use digital color fundus images of the retina. It is known as
MESSIDOR (Methods to Evaluate Segmentation and Indexing
Techniques in the Field of Retinal Ophthalmology in French)4

[24]. The retinopathy grades are determined on a scale of 0
to 3.

D. Fundus Images

The Department of Ophthalmology provided the 757 color
fundus images [37] included in this collection from the Hos-
pital de Clnicas, Facultad de Ciencias Médicas, Universidad
Nacional de Asunción, Paraguay. The Zeiss brand’s Visucam
500 camera was utilized for the process of acquiring the
retinographies. Fundus images have been classified into 7
distinct groups on a scale of 1 to 7.
Table I shows the dataset description of diabetic retinopathy.

2https://www.kaggle.com/c/diabetic-retinopathy-detection/data
3https://www.kaggle.com/competitions/aptos2019-blindness-detection/data
4https://www.adcis.net/en/third-party/messidor

Dataset Total Images No. of Classes
Subset of EyePACS 31615 5

APTOS 2019 3660 5
MESSIDOR-I 1200 4

Fundus Images 747 7

TABLE I: Diabetic retinopathy dataset description

Fig. 2: Sample images- (a)(b) subset of EyePACS Dataset,
(c)(d) Messidor-I dataset, (e)(f) APTOS 2019 dataset, (g)(h)
Fundus images.

IV. SELF-SUPERVISED CROSS DOMAIN KNOWLEDGE
TRANSFER FRAMEWORK

The proposed framework consists of two main tasks: (i)
pretext task, i.e., representation learning of images from source
domain DR dataset (a subset of EyePACS) (ii) downstream
task, i.e., classification of DR(Diabetic Retinopathy) images
from the target domain datasets ( APTOS 2019, Messidor-
I and Fundus Images). In the pretext task, the proposed
approach applies various augmentations like flipping, affine
transformations, jitter, grayscale, etc., to create different views
from the images. The different views created from the same
image act as positive pairs, and views from different images
act as negative pairs. Then, image representations are learned
through contrastive learning from positive and negative pairs of
images. These learned representations of images act as input
to the downstream task. This task does not require labeled
images for representation learning as shown in Figure 1.
The downstream task involves binary as well as multi-class
classification of DR images. The model pretrained for learning
image representation during the pretext task act as initializa-
tion for performing the downstream task, i.e., classification of
DR images. Now the downstream task requires fewer labeled
images for performing DR classification. Figure 1 provides a
detailed architecture of the proposed approach. The objective
of the proposed approach is to obtain representations that are
robust to domain shift and generalizable to the downstream
task. The proposed approach uses an unlabeled source dataset

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/competitions/aptos2019-blindness-detection/data
https://www.adcis.net/en/third-party/messidor


to learn the representations and a labeled target dataset to
solve the classification task by reusing these features learned
from the source dataset. The representations have been learned
using the SimCLR (simple framework for contrastive learning)
method [25]. As discussed, positive and negative pairs of DR
images are created from unlabelled DR images using different
augmentations like a Gaussian blur, flipping, translation, rota-
tion, jitter, etc. These positive and negative pairs of images are
fed to the encoder network. The encoder network consists of
a ResNet-50 backbone and a projection head containing two
fully connected layers of 2048 and 1024 neurons, respectively.
This network is trained on positive and negative views of
images using Normalized Temperature-scaled Cross-Entropy
(NT-Xent) as the loss function, which tries to pull positive
pairs close and push away the negative pairs. This loss function
is defined as:

` (zi, zj) = − log
exp (sim (ZiZj) /T )∑2n
k=1 1k 6=i exp (ZiZk/T )

...(1)

Where zi and zj are representations of positive pairs, T is the
temperature parameter, n is the number of images, and sim()
represents the similarity function. This loss function is the
negative log-likelihood of similarity between positive pairs to
the ratio of similarities between all possible positive and nega-
tive pairs. This loss function is a softmax function normalized
using a temperature parameter. In the downstream task, the
proposed approach performs binary and multi-classification
of DR images separately from the target domain datasets
(Messidor-I and APTOS 2019). During this phase, primary
augmentations such as resizing, flipping, and cropping are
applied to the target dataset of DR images to create different
views. The encoder backbone ResNet-50 weights trained for
the pretext task are used as the initialization for the network
being trained for the downstream task. The projection head of
the network used in the pretext task is replaced with two fully
connected layers, i.e. (2048, 512) and (512, no. of classes). The
proposed approach performs binary and multi-classification on
APTOS 2019, Messidor-I, and Fundus Images datasets during
this phase.

V. EXPERIMENTS AND RESULTS

To investigate the proposed domain adaptation framework,
three datasets are explored - APTOS 2019, Messidor-I, and
Fundus Image dataset. The investigation is performed in a
manner that self-supervised pretrained the model on one
source dataset, a Subset of EyePACS, and finetuned on the
above-mentioned three target datasets. The classification task
is performed on all the target datasets. Binary and multi-
classification on all three target datasets are performed in the
downstream task. This work also explored label efficiency by
performing the experiments on 10, 30, 50, and 100 percent data
from the datasets. The data augmentations are applied to gen-
erate two views of a single image which can be further tested
for similarity. During the pretext task, flipping, cropping,
translation, scaling, grayscale, rotation, blurring, and resizing
augmentation techniques are applied to input medical images

to obtain better and more generalizable results. Due to the
small dataset size, it is required to investigate various finetune
scenarios. Only a few primary augmentations, like resizing and
cropping, are used during the downstream task to make this
approach more compelling. After performing numerous ex-
periments with varied parameter settings, the hyperparameter
values that gave promising results during the pretext task are
given in Tables II & III. Table II shows the hyperparameters
used for binary classification of diabetic retinopathy images
for datasets APTOS 2019 and Messidor-I. It shows various
probability values used for different augmentation techniques
during the pretext task. The batch size used is 128, and the
optimizer used for training is LARS (Layer-wise Adaptive
Rate Scaling). The initial learning rate used is 0.79, and the
weight decay is 10-6. The performance metrics are defined
below.

Augmentations Parameters
Resize 224 X 224

Horizontal Flip P=0.5
Vertical Flip P=0.5

Grayscale P=0.2
Gaussian Blur P = 0.5,Kernel size = [21, 21]

Batch size 128
Optimizer LARS

Learning Rate 0.79
Weight-decay 10−6

TABLE II: Hyperparameters for binary classification

Table III shows the hyperparameters used for a multi-
classification of diabetic retinopathy images for the dataset
APTOS 2019. The augmentations in the multi-classification of
DR images are – jitter, affine, and normalization, along with
the augmentations used in the binary classification for better
performance. The batch size used for multi-classification is
256, and the optimizer used for training is LARS.

The classification task is performed on three datasets –
APTOS 2019, Messidor-I, and Fundus Images. Table IV
shows the results obtained for the binary classification on
APTOS 2019 dataset. For APTOS 2019, the proposed method
obtains an accuracy of 99.59%, a precision of 100%, a recall
of 99.54%, and an F1- score of 99.26% on only 10% images.

Augmentations Parameters
Resize 224 X 224
Horizontal Flip P = 0.5

Normalization
Mean=(0.425, 0.297, 0.212)

Standard deviation = (0.276, 0.202, 0.168)
Jitter Brightness: 0.4; Contrast: 0.4; Saturation: 0.4; Hue: 0.1
Affine Degrees= (-180, 180), Translate= (0.2, 0.2)
Grayscale P = 0.2
Batch size 256
Optimizer LARS
Learning Rate 10−3

Weight-decay 5x10−4

TABLE III: Hyperparameters for multi-classification



Dataset used Accuracy Precision Recall F1-Score
Pretext Downstream
EyePACS APTOS 2019 10% 96.88 100 94.23 96.44

20% 99.48 100 98.54 99.01
50% 99.56 99.01 99.62 99.18
100% 99.59 100 99.54 99.26

TABLE IV: Results for binary classification using the pro-
posed approach on APTOS 2019

Dataset used Accuracy Precision Recall F1-Score
Pretext Downstream
EyePACS Messidor-1 10% 67.48 71.43 69.89 72.56

20% 70.31 75.21 74.87 70.55
50% 74.96 81.47 73.66 76.75
100% 98.49 98.65 100.00 99.99

TABLE V: Results for binary classification using the proposed
approach on Messidor-I

For 100% images, the accuracy improved by 2.71%, recall by
5%, and F1-Score by 3%.

For another dataset- Messidor-I, the highest accuracy ob-
tained is 98.49%, precision is 98.65%, recall is 100%, and F1
score is 99.99% as shown in Table V.

For the third dataset- Fundus Images, the accuracy obtained
on 100% images is 98.96%, precision is 96%, recall is 99.43%,
and F1 score is 99.67% as shown in Table VI.

Dataset used Accuracy Precision Recall F1-Score
Pretext Downstream
EyePACS Fundus Images 10% 92.15 93.44 91.56 93.32

20% 93.75 95.66 91.54 95.98
50% 96.43 98.32 98.22 96.44
100% 98.96 100.00 99.43 99.67

TABLE VI: Results for binary classification on Fundus Images

Table VII shows the results of the multi-classification of DR
images by using the same dataset for pretext and downstream
tasks, i.e., the Subset of EyePACS. Table VIII shows the
outcomes of the three datasets’ multi-classification of DR im-
ages. The downstream dataset used for the multi-classification
of diabetic retinopathy images is APTOS 2019, Messidor-I,
and Fundus Images, where the proposed method obtained an
accuracy of 83.43%, 66.39%, and 91.67%. The proposed self-
supervised learning method outperforms prior state-of-the-art
techniques on two datasets - Aptos 2019 and Fundus Images.

Dataset used Accuracy Precision Recall F1-Score
Pretext Downstream
Eyepacs Eyepacs 10% 74.56 69.31 75.32 70.02

20% 77.23 72.78 76.99 73.21
50% 77.76 75.98 77.06 74.99
100% 77.82 73.71 77.41 74.98

TABLE VII: Multi-classification results on eyepacs dataset

Figure 3 represents the class activation maps (CAMs) gen-
erated for the three downstream datasets.

A. Comparison with the existing work
Domain adaptation-based self-supervised learning on

Messidor-I, Fundus Images, and APTOS 2019 datasets is

Fig. 3: CAMs representations for the datasets used. (a) & (b)
APTOS 2019 (c) & (d) Messidor I (e) & (f) Fundus Images

Dataset used Accuracy Precision Recall F1-Score
Pretext Downstream
EyePACS APTOS 2019 10% 76.04 78.45 89.23 88.45

30% 78.15 62.32 83.34 78.76
50% 83.12 81.12 82.76 84.45
100% 83.43 81.09 85.54 77.86

Messidor-I 10% 54.16 67.23 91.75 69.34
30% 47.22 54.12 51.34 54.97
50% 65.83 64.54 65.45 72.21
100% 66.39 70.87 68.79 71.23

Fundus Images 10% 75.0 67.98 67.65 80.40
30% 81.25 85.90 91.43 88.49
50% 82.00 84.12 80.32 91.23
100% 91.67 86.01 92.43 94.54

TABLE VIII: Multi-classification results on three downstream
datasets

unexplored. This work has considered various methods applied
to these datasets for comparison purposes, including super-
vised learning-based methods. Table IX compares the results
obtained from the proposed work with the existing methods
for binary classification on Messidor-1, Fundud Images, and
APTOS 2019 datasets. Chakraborty et al. [26] used ANN for
binary classification and achieved an accuracy of 97.13% on
the Messidor dataset. A CNN-based model proposed by Islam
et al. [27] for the DR classification APTOS 2019 dataset
achieved an accuracy of 98.36%. However, the proposed
method reports improved results (accuracy of 99.59%, 98.49%,
and 98.96%) on APTOS 2019, Messidor, and Fundus Images
datasets.



Method Accuracy Precision Recall
Dataset - Messidor

Abramoff et al [28] 96.7 96.80 87.00
Chakraborty et al [26] 97.13 97.20 97.00

Dhanasekaran et al. [29] (SVM) 97.89 98.68 100.00
Dhanasekaran et al. [29] (PNN) 94.76 96.64 98.46

Proposed work - SSL Cross domain 98.49 98.00 100.00
Dataset - APTOS 2019

Islam et al [27] 98.36 98.37 98.36
Proposed work - SSL Cross domain 99.59 100.00 99.00

TABLE IX: Comparative results for binary classification

Table X displays the results of a comparison between the
proposed study and previous work in multi-class classification
of DR images. Kassani et al. [32] reported the highest accu-
racy for multi-class classification was 83.09%. The remaining
works reported an accuracy below 75% for classifying diabetic
retinopathy images.

Authors Accuracy Precision Recall
Kassani et al [32] 83.09 88.24 82.35

Gangwar & Ravi [33] 72.33 - -
Proposed Work - SSL Cross domain 83.43 81.00 85.00

TABLE X: Comparative results for multi-classification on
APTOS 2019 dataset. No suitable previous work found for
other datasets for multi-class classification

The comparisons in Tables IX and X suggest that the
performance achieved with the proposed work is improved
over previous works for binary and multi-classification of
diabetic retinopathy images.

B. Label efficiency in cross-domain knowledge transfer

The proposed self-supervised cross-domain knowledge
method obtains concrete evidence for label efficiency. Result
comparisons on both downstream tasks show that model
achieves comparable performance when only 50% labels (half
supervised) are used against fully supervised models with
100% labels. It is observed that downstream task performance
differences between partially supervised and fully supervised
are in close on at-least two datasets out of three target datasets
for both classification tasks. Further, it is noticeable that the
training portion of all the target datasets consists of only a few
labeled examples in the range of 500 to 2500. Label efficiency
is illustrated in the figures 4 & 5.

VI. CONCLUSION

This work proposes a label-efficient self-supervised rep-
resentation learning-based method for diabetic retinopathy
image classification in cross-domain settings. The proposed
work has been evaluated qualitatively and quantitatively on
the publicly available EyePACS, APTOS 2019, MESSIDOR-I,
and Fundus Images datasets for binary and multi-classification
of DR images. The qualitative evaluation shows that the
proposed approach learns explainable image representations.
Moreover, the proposed approach uses only a few training
samples for training and outperforms the existing DR image

Fig. 4: Label efficiency on binary classification tasks for all
three target datasets, which shows cross-domain knowledge
transfer achieves comparable performance with only 50% label
being used against the fully supervised model.

Fig. 5: Label efficiency on multi-class classification tasks for
all three target datasets, which shows cross-domain knowledge
transfer achieves comparable performance with only 50% label
being used against the fully supervised model.

classification methods, even in cross-domain settings. In future
work, the proposed approach can be used to investigate other
downstream tasks, such as segmentation and localization.
Further, non-contrastive methods for representation learning
can be examined to perform downstream tasks on DR images
in cross-domain settings.
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