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Abstract—Tiny machine learning (TinyML) is a rapidly grow-
ing field aiming to democratize machine learning (ML) for
resource-constrained microcontrollers (MCUs). Given the per-
vasiveness of these tiny devices, it is inherent to ask whether
TinyML applications can benefit from aggregating their knowl-
edge. Federated learning (FL) enables decentralized agents to
jointly learn a global model without sharing sensitive local data.
However, a common global model may not work for all devices
due to the complexity of the actual deployment environment
and the heterogeneity of the data available on each device. In
addition, the deployment of TinyML hardware has significant
computational and communication constraints, which traditional
ML fails to address. Considering these challenges, we propose
TinyReptile, a simple but efficient algorithm inspired by meta-
learning and online learning, to collaboratively learn a solid
initialization for a neural network (NN) across tiny devices
that can be quickly adapted to a new device with respect to
its data. We demonstrate TinyReptile on Raspberry Pi 4 and
Cortex-M4 MCU with only 256-KB RAM. The evaluations on
various TinyML use cases confirm a resource reduction and
training time saving by at least two factors compared with
baseline algorithms with comparable performance.

Index Terms—Tiny Machine Learning, Meta-Learning, Feder-
ated Learning, Online Learning, Neural Networks, Internet of
Things, Microcontroller.

I. INTRODUCTION

In the past decade, the evolvement of machine learning
(ML) applications has been driven by the advent of big
data and increased processing capability. As a result, large-
scale artificial intelligence (AI) models have been developed
for improved performance, requiring enormous computational
resources and massive power consumption. For example, Mi-
crosoft and NVIDIA have introduced an ML model named
“Megatron-Turing NLG” [1] with 530 billion neurons that uses
approximately 5 GWh of electricity to train. The community
is increasingly aware that deploying an advanced ML model
is costly and unsustainable.

Given these concerns, Tiny machine learning (TinyML) has
risen to popularity at the intersection of ML and embedded
systems, shifting data processing from data centers to ever-
smaller Internet of Things (IoT) units. These low-cost devices
typically run on batteries and are designed to operate for
extended periods using limited resources, e.g., 256-KB RAM
and 64-MHz CPUs. TinyML enables edge Al directly on
IoT devices in near real-time as close to where the action
occurs. By avoiding data transmission to the cloud, TinyML
brings advantages in terms of data privacy, latency, and energy
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efficiency. It is estimated that more than 250 billion embedded
devices are in use today, with a steadily growing demand,
especially in industry '} Given the vast number of IoT devices
deployed in production environments, an important research
direction is to share and integrate insights learned across tiny
devices to improve the performance and robustness of TinyML
applications.

Federated learning (FL) offers a method for learning a
global model on distributed agents/devices. FL can protect
local data privacy from design because only model updates
are merged into the global model, and the raw data are never
copied to the cloud. However, IoT devices are distributed
over the field, and the real-world environment is complex and
constantly changing, making local data generally not uniform
across devices. The environments of two even neighboring
devices can differ significantly. Besides, each device may
have its requirements for the ML task, e.g., different output
classes of interest. Therefore, a common shared model trained
by FL may perform arbitrarily poorly when applied to a
local device. Moreover, most FL algorithms are designed
to run on powerful machines without considering compu-
tational resource constraints. Their communication schemas
transmit weight updates to the central server on a carefully
scheduled and consistent basis. All these are not feasible for
many TinyML applications because IoT devices are highly
resource-constrained in terms of communication, memory, and
computation. An unstable network connection may prevent
communication for long periods, and insufficient on-device
resources may hinder the operations of these algorithms.

To tackle these challenges, we present TinyReptile, a mod-
ified formulation of the well-known Reptile algorithm [2],
to perform model-agnostic meta-learning in a federated set-
ting across tiny devices by leveraging online learning. Meta-
learning intends to find an initial shared model that current
or new agents can quickly adapt to their environments by
performing only a few steps of gradient descent with respect to
a small amount of local data. In other words, meta-learning is
about learning to learn. Our TinyReptile algorithm is based on
the concept of online learning, where we design the algorithm
to enable incremental on-device learning in a distributed
manner while considering resource constraints. With online
learning, we run the model on the data as they arrive in a
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streaming fashion without storing historical data, which is
close to reality in many industrial applications. TinyReptile
also retains the benefits of a serial schema in that devices
can communicate with the central server one after the other
without relying on a consistent and concurrent connection.
Furthermore, it contributes to a more customized model for
each device.

By comparing TinyReptile with FedAVG and FedSGD [3]],
we show that traditional FL architectures can fail when devices
exhibit heterogeneity in local data. We investigate TinyReptile
on two established and one constructed meta-learning datasets,
namely, “Sine-wave example” for a regression problem, “Om-
niglot” [4] for an image classification task, and our “Keywords
spotting” for an audio classification task. Because most meta-
learning benchmark datasets are designed for image classifica-
tion purposes, we contribute the “Keywords spotting” dataset
to evaluate meta-learning on an audio classification problem,
which is created from the popular TinyML dataset “Speech
commands” [5]. We compare TinyReptile with the baseline
algorithm, namely, Reptile, on Raspberry Pi and Arduino mi-
crocontrollers (MCUs) across these datasets. Evaluation results
show that TinyReptile can reduce computational resources and
the training time by a factor of at least two compared with
the baseline Reptile algorithm while achieving comparable
performance. To guide the deployment of TinyReptile on tiny
hardware, we characterize the hyperparameters in TinyReptile
under various settings and present the results in Appendix

The remainder of this paper discusses related work on
TinyML, online learning, FL, and meta-learning in Section
Section demonstrates TinyReptile and its methodology.
Section describes the benchmarking datasets and the ex-
perimental settings and analyzes the results. Finally, section [V]
concludes the paper and discusses future work.

II. RELATED WORK

TinyML: Recently, we have witnessed significant progress
in TinyML across research and industry. Reviews [6] [7]]
provide an intuitive overview of the different directions of
TinyML, along with challenges and opportunities. In par-
ticular, the related research can be described in three main
aspects: hardware, software, and applications. For hardware,
novel technologies such as analog in-memory computing [S§]]
have been proposed to optimize processing capabilities in
resource-frugal devices. Deep-learning accelerators [9] and
intelligent sensors [10] are specialized to execute Al workloads
efficiently. Software advances are led by the development of
compressing methods [11], management systems [12]], and
efficient algorithms [13]]. However, most available solutions,
such as TensorFlow Lite for MCUs [14], only support the
deployment of static ML models for inference, which prevents
devices from learning the newest knowledge from the field.
Only a few studies [15] [[16] have discussed the possibilities of
model training on tiny devices. Nevertheless, the advancement
of TinyML has started to benefit society, such as in predictive
maintenance [17]] and healthcare [[18]].

Federated Learning: FL focuses on joint training of a global
model under the orchestration of a central server while keeping
training data decentralized. Research on FL first emerged in
2016 [3], when the two gold standard baseline algorithms,
“FedAVG” and “FedSGD,” were proposed. Since then, contin-
ued works have been proposed in various areas: optimization
algorithms [19], model update compression [20]], differential
privacy [21]], and robustness [22]. Some FL studies have been
conducted on edge devices with lower capacities, such as
Raspberry Pi [23]]. However, little effort has been devoted to
applying FL on highly constrained devices in the context of
TinyML. The current state of the art is restricted to two related
works [24] [25]. Their experiments are implemented either in
simulation or in a controlled environment on a small scale,
which cannot reflect situations in the real world. For example,
FL suffers from client heterogeneity, which can lead to slow
and unsatisfactory learning progress.

Meta-learning: Meta-learning is proposed for fast local
adaptation with small datasets, making it an ideal candidate
for TinyML scenarios. Meta-learning is similar to transfer
learning. In transfer learning, a global model can be pretrained
and later fine-tuned on a specific small dataset, but with
no guarantee of learning a good initialization for generaliza-
tion [26]. Conversely, meta-learning trains a common model
with the explicit objective of being easily fine-tuned. The
very first advance in meta-learning, called “model-agnostic
meta-learning” (MAML) [27], brings the concept to light
through gradient-based optimization. This is followed by sev-
eral papers studying its convergence behavior and empirical
properties [28] [29]. However, MAML requires the computa-
tion of higher-order derivatives, making it cumbersome and
computationally intensive. A few lightweight variants with
simpler operations are proposed to alleviate this problem,
including First Order MAML and Reptile [2]]. Besides, meta-
learning has been investigated in federated [30] [31] and
online learning settings [32] [33]]. However, to the best of our
knowledge, no relevant work has focused on applying meta-
learning to constrained devices.

Online learning: An ML system has two tasks: inference
and training. Online ML involves performing these tasks
online, i.e., processing data sequentially without revisiting pre-
vious samples, saving memory resources, and ideally not sac-
rificing model performance. However, less attention is paid to
online learning [34]] [35]] compared with batch/offline learning
because most ML engineers tend to assume that devices and
their data are always available as a batch. River is a popular
Python library for online ML [36]. We believe that online
learning is a perfect fit for TinyML applications. The concept
helps us develop algorithms with lower memory footprints and
keep models up-to-date in changing environments. Interesting
works have been devoted to this area [37] [38]]. In this study,
we integrate online learning into meta-learning to enable meta-
learning on constrained devices in a federated setting.



III. APPROACH

The objective of meta-learning is to teach a neural network
(NN) how to adapt or extrapolate quickly to new tasks
(environments) with only a few training examples. We want
to achieve this objective by leveraging FL across heteroge-
neous and constrained IoT devices, each of which has limited
exposure to labeled samples during training. In this section,
we define the problem setup and present the formulation of
TinyReptile.

A. Meta-learning

First, we describe the optimization problem of meta-
learning. Here we consider a distribution of independent tasks
T that share a similarity, e.g., all tasks use an NN of the same
structure for image classification. However, every task has a
different output of interest, e.g., one is to classify “dog vs.
cat,” and another is to classify “apple vs. pear.” We aim to find
good initial weights ¢ for the NN that can quickly learn when
given a new task ¢ sampled from the distribution 7" that has
never been encountered during training, e.g., the classification
of “bicycle vs. motorcycle.”

We divide the tasks into training tasks T},qining and testing
tasks Tiesting. The meta-learning algorithm F' trains the NN
on Tirqining and evaluates the quality of the trained model
using Tjesting. Each task ¢ has a dataset D split into two
parts: a support set S for training within the task, and a query
set ) for testing within the task. D = (S, Q) typically has a
limited number of samples. To evaluate a trained initialization,
we first need to fine-tune the model weights ¢ on the support
set S across all Ticsring, €ach for k steps, respectively. Then,
the fine-tuned new weights ¢ are tested on the corresponding
query set () of each testing task, and finally, the results for
all Tiesting are averaged. Because meta-learning aims to find
a fast learner, the training step k is typically defined as a
small number. The goal of the meta-learning algorithm F' is
to minimize the loss function across the tasks:

N
L(¢) =Y ln(gh), )

where éﬁ denotes the model weights fine-tuned for %k steps
from the initial weights ¢ on the support set of the task n,
ln(q?),’,j) denotes the loss on the query set of the task n, and N
represents the number of tasks.

One can distinguish the goal of meta-learning from transfer
learning, where meta-learning finds ¢ that can perform well
after a quick fine-tuning on each new task. In other words,
meta-learning seeks the potential performance of a model. On
the other hand, the loss function of transfer learning is defined
as follows:

N
L(¢) = Z ln(¢ﬂ)a )
n=1

which indicates that transfer learning aims to find a good ini-
tialization that works on all tasks without fine-tuning. Namely,
transfer learning looks for the current performance of a model.

B. TinyReptile

We present our federated meta-learning algorithm for
TinyML called TinyReptile. TinyReptile learns an initializa-
tion for an NN by leveraging FL across heterogeneous IoT
devices. The local fine-tuning should be fast when we optimize
the initialization for a new ML problem based on only a
few labeled local examples. TinyReptile is an online learning
version of Reptile tailored for TinyML. By leveraging the
characteristics of online learning, TinyReptile processes data
sequentially as they arrive, saving computing resources and
enabling inference and training directly on constrained IoT
devices.

Notably, in meta-learning, there are tasks with their datasets,
whereas, in TinyReptile, we have devices that possess their
datasets or sensors to collect data. Building on the concept of
FL, TinyReptile minimizes a version of the loss function [T] by
representing the ML problem of each device as a training task
in meta-learning. TinyReptile improves the adaptation ability
of the initial model across all tasks in the distributed devices
T:

ST } Tk x\12
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where ¢ denotes the initialization, and L represents the
distance between the fine-tuned weights gZA)ff and the optimal
weights ¢; for device ¢. The TinyReptile algorithm is de-
fined as follows (we highlight the major differences between
TinyReptile and Reptile in orange):

Algorithm 1: TinyReptile

1: Central model weights ¢;
2: Central server learning rate «;
3: Clients T' = (Tirqinings Ltesting)» €ach with local
data D. For evaluation, D on Ticsting is
divided into support set (S) and query set (Q),
D =(5,Q);
4: Client learning rate J;
5: for round = 1, 2, ... do
Sample client ¢ from T4qining With respect to
the loss L;;
Send ¢ to the client ¢;
for in the local support set S; do
Compute (Z)f“ = SGD(QZA)f,x, B, L), denoting
step of SGD on the client;
10:  end for
11:  Send (ﬁt back to the server;
12: Update the central model weights:
¢ &+ ol — )
13:  (optional) Evaluate ¢ on Ticstings
14: end for

With online learning, TinyReptile learns incrementally. As
mentioned above, our algorithm is a modified formulation of
the Reptile algorithm [5]. The critical difference between our
method and Reptile is that Reptile performs batch training on
each client, where the NN is trained on the entire support set



(a) Transfer learning

(b) Reptile.
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(c) TinyReptile (ours).

Fig. 1: Demonstration of transfer learning, Reptile, and TinyReptile on the Sine-wave regression example, where we fine-tune
the trained NNs on the support set (eight sampled points) of a testing client for eight local SGD updates. The model consists
of four fully connected layers: 1 — 32 — 32 — 1. This shows that the NN trained with Reptile and TinyReptile can quickly
converge to the sampled sine wave and derive values away from the sampled points, which is difficult with transfer learning.

in a batched manner, and the training data are stacked and
reused, which is resource-demanding. Our method processes
one data point at a time in a streaming process, and that data
can be discarded after each update, which is highly resource-
efficient. In each round, TinyReptile performs stochastic gra-
dient descent (SGD) sequentially against the streaming data
from the support set S of a sampled training client, e.g., real-
time sensor data of an IoT device. Then, the initial central
weights are updated toward the weights obtained after the
SGD update. Next, the trained initialization can be assessed
by the testing clients if evaluation is required. In this manner,
TinyReptile attempts to move the initial weights closer to an
optimal point nearest to all tasks/devices. Thus, TinyReptile
learns an NN initialization that can be quickly fine-tuned on
a new task/device. In other words, TinyReptile optimizes for
generalization. Interested readers can find more theoretical
analysis in the Reptile publication [2]]. The key advantages
of TinyReptile are related to the following:

o Robust: TinyReptile has a serial communication schema.
Many FL algorithms apply parallel communication
schemas, requiring all clients to be stably connected
to a central server during training, and the processing
capabilities of all devices must be similar, which is
unrealistic in many real-world production environments.
A disturbance in the network or some “stragglers” among
the clients may affect or even interrupt the operation. In
contrast, TinyReptile evaluates one device in each round,
facilitating the stability of the learning process, especially
in the TinyML environment, where many IoT devices are
deployed in remote areas with limited network coverage.

o Resource-efficient: on-device learning is difficult on con-
strained devices because they typically do not have suffi-
cient resources for saving and processing large amounts
of data. With online learning, data arrive in a stream
and are processed one after another in TinyReptile. Data
can be effectively discarded after each learning iteration.
At any time, only one data sample lives in memory,

TABLE I: Overview of the models used in the experiments.

Model Type Size Parameters
Sine-wave example Fully connected 19.4 KB 1153
Keywords spotting (4 Classes)  Convolutional 95.7 KB 19812
Omniglot (5 Classes) Convolutional 485.1 KB 113733

and we do not need to store historical data. Compared
with other offline/batch learning algorithms, TinyReptile
requires significantly fewer resources.

e Scalable: The resource efficiency of TinyReptile makes
its core compatible with various devices, from powerful
to tiny ones. Owing to its serial communication schema,
any device running TinyReptile can join and exit the
learning process anytime, making the algorithm scalable
and reliable in production.

IV. EXPERIMENTS AND EVALUATION

This section first briefly describes two popular meta-
learning datasets: the Sine-wave regression problem and the
Omniglot image classification problem. Then, we introduce
our audio classification dataset “Keywords spotting” for meta-
learning and explain the motivation for using the dataset. Next,
we use the Sine-wave example as a case study to provide
an intuitive overview of meta-learning and demonstrate that
traditional FL algorithms fail in a meta-learning setting. Af-
terward, we compare TinyReptile with Reptile by analyzing
their real-world performance, in terms of convergence speed,
memory requirement, and time consumption, on Raspberry Pi
4 Model 4 [l and Arduino Nano BLE 33 MCU [l For the
experiments, we use the NNs introduced in the MLPerf Tiny
benchmark [39] to ensure consistent and comparable results.
An overview of these NNs is illustrated in Table. E} Finally,
for easy deployment on TinyML devices, the impact of several
hyperparameters in TinyReptile is investigated in Appendix

Zhttps://www.raspberrypi.com/products/raspberry- pi-4-model-b/
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Fig. 2: Training convergence of FedSGD, FedAVG, Reptile
(batched & serial), and TinyReptile on the Sine-wave regres-
sion example. This shows that our TinyReptile can achieve
comparable performance to Reptile. However, it is difficult
for traditional FL algorithms, such as FedSGD and FedAVG,
to learn meaningful knowledge in a meta-learning setting.

We conduct each experiment three times and plot the results
as mean =* standard deviation of the measurements.

A. Meta-learning Datasets

Sine-wave: The Sine-wave regression problem comes
from [27], defined as follows: each client/device has an un-
derlying task of fitting a sine function f(z) = asin(bz + ¢),
where the parameters (a, b, c) are chosen randomly. The goal
of clients is to collaboratively learn a good NN initializa-
tion that can be quickly generalized to a new sine function
fi(x) = agsin(by x + ¢;) given only a few sampled (z,y;)
pairs.

Omniglot: The Omniglot image dataset contains C' = 1623
characters from 50 different alphabets, with 20 samples for
each character. The meta-learning problem is defined as fol-
lows: each client ¢ has a classification task of M characters
(classes) sampled from C'. Although all clients have the same
number of classes, the characters of each client for the classifi-
cation task are randomly selected. For example, if M = 5, all
clients train for five classes with labels 0—4, but each client has
different classification characters. The training goal is similar
to the Sine-wave problem above: learning good initial weights
that can be quickly adapted to a new classification problem
with only a few data examples.

Keywords spotting: The “Keywords spotting” audio dataset
is a modification of the “Speech command” dataset [5]], which
contains 35 individual words with more than 1,000 samples
for each word. We will not describe the meta-learning setting
for this dataset as it is similar to the “Omniglot” classification
problem described above but with different classification ob-
jectives. Instead, we elaborate on the rationale for proposing
this dataset. TinyML is an innovative field that brings ML
power to embedded systems, and its potential applications

are prolific, ranging from gesture detection to voice recogni-
tion. However, we have observed that most established meta-
learning datasets are categorized as image classification, which
does not fully cover the interests of TinyML. Therefore,
we want to contribute a new dataset for evaluating meta-
learning on other TinyML use cases. Although the “Speech
command” dataset was initially constructed for a different ML
problem with limited classes to draw from, we believe that the
community can still benefit from the retrofitted “Keywords
spotting” dataset.

B. Sine-wave example — a case study

We first demonstrate meta-learning on the Sine-wave regres-
sion problem by comparing the behavior of transfer learning,
Reptile, and our TinyReptile, as illustrated in Fig. The
results show that transfer learning cannot learn a meaning-
ful initialization in a meta-learning setting. This is because
transfer learning aims to train an NN that can handle all sine
functions across all clients at once, meaning that a trained
model will ideally return the average value of f(x) of all
tasks. In the Sine-wave example, the average values of the
sine functions E.[f;(x)] are approximated to zero for all x
values due to the random parameters (a,b,c) in each task
f(z) = asin(bz + ¢).

Next, we compare the training progress of FedSGD,
FedAVG, Reptile (serial & batched version), and TinyReptile.
The difference between the batched and serial versions of
Reptile is that the batched version requires the server to
establish connections to multiple clients simultaneously to
train the model on them in parallel. In contrast, in the serial
version, only one client is connected to the server at any
time. As depicted in Fig. 2] the results are consistent with our
expectation that FedSGD and FedAVG cannot learn a proper
initialization when local data exhibit heterogeneity because
their learning goals are similar to that of transfer learning.
However, our TinyReptile can achieve results comparable to
the Reptile algorithm. Although the batched version of Reptile
converges faster in the early training phase, it requires more
computational resources and concurrent network connections
to many clients, which is unsuitable for most TinyML scenar-
ios.

C. Evaluation Results

We evaluate the performance of Reptile and TinyReptile on
Raspberry Pi 4 and Arduino Nano BLE 33 MCU. We do not
consider other FL algorithms because they are ineffective for
meta-learning problems. As mentioned, the NNs we consid-
ered in the experiments are described in Table [} We attempted
the following ranges of different hyperparameters and found
possible combinations that work well for the problems: the
client learning rate 8 (0.001-0.02), training steps k (1-32),
and support set size S (1-32). However, we did not fine-tune
the hyperparameters to optimize the final results.

Memory requirement: To run the algorithms on hardware,
we need to measure their memory usage for the considered
NNs. Notable outcomes are presented in Table. [lIl Owing to
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Fig. 3: Training convergence of Reptile (serial) and TinyRep-
tile on the Sine-wave regression example on Raspberry Pi 4
and Arduino Nano 33 BLE Sense MCU. This demonstrates
that TinyReptile can achieve comparable results to Reptile.
The overall performance on the MCU is slightly worse,
especially with Reptile, which may be due to the limited
numerical precision of the MCU.

TABLE II: Comparison of memory requirement (the results
are measured under the support set size S = 32).

Reptile TinyReptile

(batched & serial)  (ours)
Sine-wave example 10.7 KB 4.8 KB
Keywords spotting (4 Classes) 5816.4 KB 437.2 KB
Omniglot (5 Classes) 3778.1 KB 667.2 KB

online learning, TinyReptile provides a significant reduction
in memory consumption by a factor of at least two across
all tasks compared with Reptile. The results also show that
only the Sine-wave example can be used for experiments on
the Arduino Nano 33 BLE Sense board because this MCU is
equipped with only 256 KB of memory.

Training convergence: In Fig.[3] we present the convergence
performance of Reptile (serial) and TinyReptile on the Sine-
wave example, where we also demonstrate the feasibility of
running TinyReptile on the Arduino MCU. Arduino Nano
33 BLE Sense MCU is equipped with a 64-MHz Cortex-
M4 CPU, 256-KB memory, and 1-MB flash, whose speci-
fication is within the typical range of TinyML devices. We
choose the following hyperparameters in the experiments:
Straining = 32, B = 0.01, and local epoch £ = 8 (for
training with Reptile). We observe a slower convergence, more
fluctuations, and slightly worse results on the Arduino MCU
than on the Raspberry Pi 4, which may be due to the limited
numerical precision of the hardware. Nevertheless, given a
sufficient number of training rounds, the model can still
achieve reasonable performance on the MCU. In particular,
Reptile (serial) performs worse than TinyReptile on the MCU.
Our explanation is that because of the limited numerical
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(a) Omniglot with five output classes.
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(b) Keywords spotting with four output classes.

Fig. 4: Training convergence of Reptile (batched & serial)
and TinyReptile on Omniglot and Keywords spotting datasets
on Raspberry Pi 4. This shows that TinyReptile can achieve
comparable performance to Reptile given sufficient training
rounds.

precision of the MCU, the effect of the gradient calculated
over the batch data may be canceled out and make the already
less precise gradient even less precise.

Because the Arduino board is constrained for the Omniglot
task and Keywords spotting task, we compare the training
progress of Reptile and TinyReptile on these two datasets
only on Raspberry Pi 4 in Fig. @] Here, we choose the
following hyperparameters in the experiments: Syqining = 16,
B = 0.002, local epoch E = 8 (for training with Reptile),
and the number of sampled clients in each round 7" = 32
(for training with the batched version of Reptile). The results
confirm that TinyReptile requires slightly more training rounds
to obtain the same accuracy as Reptile, which is reasonable
because TinyReptile updates on only one data point at a time,
whereas Reptile trains on the entire support set in a batch.

Time consumption: We investigate the training time con-
sumption of Reptile and TinyReptile to demonstrate the ef-



TABLE III: Comparison of time consumption of one training
round on the Sine-wave example on Arduino Nano 33 BLE
Sense (the results are measured under the support set size
S = 32).

Sending  Local Training  Receiving  Total
Reptile 1.58 s 832s 1.65 s 11.55's
TinyReptile (ours) 1.58 s 0.44 s 1.65 s 3.67s

TABLE IV: Comparison of time consumption of one training
round on Raspberry Pi 4 (the results are measured under the
support set size S = 32).

Reptile TinyReptile

(batched & serial)  (ours)
Sine-wave example 0.56 s 0.24 s
Keywords spotting (4 Classes) 11.96 s 345s
Omniglot (5 Classes) 22.53 s 10.11 s

ficiency of TinyReptile. The results in Tables. and
show that TinyReptile outperforms Reptile across all tasks
in terms of training speed. In particular, on the constrained
Arduino board, a 16X local training time reduction is achieved,
indicating that TinyReptile is a perfect candidate for TinyML.

Lastly, we provide interested readers with the analysis of
different hyperparameters in TinyReptile in Appendix [A] to
support the easy deployment of TinyReptile.

V. CONCLUSIONS AND FUTURE WORK

According to Prof. Reddi and Pete Warden, the future of ML
is bright and tiny [ﬂ Meta-learning is appealing for TinyML
applications because we frequently require a customized ML
solution for each TinyML device due to the heterogeneous
deployment environment, and the number of MCUs keeps in-
creasing. However, these constrained IoT devices are typically
bare-metal devices without an operating system, making on-
device learning an open challenge. Most TinyML solutions
only support inference on them. This study presents TinyRep-
tile, a lightweight meta-learning algorithm modified from the
Reptile algorithm and tailored for TinyML scenarios. Building
on the concepts of FL and online learning, TinyReptile can
leverage distributed IoT devices with limited resources to
collaboratively learn a solid NN initialization that can sub-
sequently be quickly adapted to a new device/environment.
Our contributions are as follows:

o We propose TinyReptile, which, to the best of our knowl-
edge, is the first attempt to implement meta-learning on
resource-constrained devices.

o We introduce the audio classification dataset “Keywords
spotting,” derived from the “Speech command” dataset,
enlightening a new classification problem for evaluating
meta-learning in the context of TinyML.

« We evaluate TinyReptile for various meta-learning tasks,
compare it with other approaches, and measure its real-

4https://pll.harvard.edu/course/future-ml-tiny-and-bright?delta=0

world performance on Raspberry Pi 4 and Arduino Nano
BLE 33 Sense MCU. The results confirm that TinyReptile
can achieve comparable performance to the baseline algo-
rithms while saving at least 50% in resource consumption
and training time.

e We study the impact of several hyperparameters in
TinyReptile, as illustrated in Appendix [A] to guide its
real-world deployment.

Future work already underway includes further improve-
ment of the algorithm, such as applying learning rate annealing
techniques, providing best practices in real-world deployment
by fine-tuning hyperparameters, benchmarking on other meta-
learning tasks, comparing the algorithm with other state-of-
the-art approaches, extending the evaluations to other tiny
devices, applying the algorithm to large-scale industrial use
cases, and investigating the impact of the reduced numerical
precision of MCUs.
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APPENDIX

A. Recipe for real-world deployment

Here, we study how the ingredients, i.e., hyperparameters,
impact the performance of TinyReptile and provide guidance
for the real-world deployment of TinyReptile.

First, we investigate the effect of 8 and Sirqining On the
Sine-wave example on the Arduino board. The results in Fig. [3]
show that larger support set size of training clients Si,qining
can result in improved performance. Besides, a higher client
learning rate 3 can contribute to faster convergence in the early
training phase but not necessarily to better final performance.
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Fig. 5: Training convergence of TinyReptile on the Sine-wave
regression example on the Arduino Nano 33 BLE Sense MCU.
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This suggests that a learning rate annealing technique can be
helpful in practice.

Next, we discuss the effect of the support set size of
testing clients Stesting because TinyML clients frequently
have very limited or even no labeled data for local fine-
tuning. Specifically, we want to investigate how much data are
necessary for local fine-tuning to achieve good performance.
As depicted in Fig. [6] the global initialization trained with
TinyReptile does not generalize well if no support data are
available. However, a significant improvement can be achieved
when we provide the model with even one data pair for
adaptation. Moreover, the larger the Sicsiing, the better the
performance.
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Fig. 6: Testing accuracy of TinyReptile as a function of support
set size Siesing Of testing clients on the Sine-wave example,
Omniglot, and Keywords spotting datasets.
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