2304.03864v2 [cs.OF] 11 Oct 2023

arxXiv

SGDP: A Stream-Graph Neural Network Based
Data Prefetcher

Yiyuan Yang*
University of Oxford
Huawei Noah’s Ark Lab
Oxford, UK
yiyuan.yang @cs.ox.ac.uk

Rongshang Li*
University of Sydney
Huawei Noah’s Ark Lab
Sydney, Australia
roli5128 @uni.sydney.edu.au

Gang Hu Xing Li
Huawei Huawei Noah’s Ark Lab
Chengdu, China Hongkong, China
hugang27 @huawei.com li.xing2 @huawei.com

Abstract—Data prefetching is important for storage system
optimization and access performance improvement. Traditional
prefetchers work well for mining access patterns of sequential
logical block address (LBA) but cannot handle complex non-
sequential patterns that commonly exist in real-world appli-
cations. The state-of-the-art (SOTA) learning-based prefetchers
cover more LBA accesses. However, they do not adequately
consider the spatial interdependencies between LBA deltas, which
leads to limited performance and robustness. This paper proposes
a novel Stream-Graph neural network-based Data Prefetcher
(SGDP). Specifically, SGDP models LBA delta streams using
a weighted directed graph structure to represent interactive
relations among LBA deltas and further extracts hybrid features
by graph neural networks for data prefetching. We conduct
extensive experiments on eight real-world datasets. Empirical
results verify that SGDP outperforms the SOTA methods in
terms of the hit ratio by 6.21%, the effective prefetching ratio
by 7.00%, and speeds up inference time by 3.13x on average.
Besides, we generalize SGDP to different variants by different
stream constructions, further expanding its application scenarios
and demonstrating its robustness. SGDP offers a novel data
prefetching solution and has been verified in commercial hybrid
storage systems in the experimental phase. Our codes and
appendix are available at https://github.com/yyysjz1997/SGDP/.

Index Terms—data prefetching, graph neural networks, logical
block address, data mining

I. INTRODUCTION

In the big data era, the demand for high-performance storage
systems is increasing rapidly. The Input/Output (I/O) speed
gap between different storage devices in a hybrid storage
system might cause high access latency [16]. To fill this
gap, the cache is designed to temporarily keep data that are
likely to be accessed in the future. The performance of cache,
commonly represented by hit ratio, has a direct impact on the
performance of the whole storage system.

To improve the hit ratio, data prefetching is introduced
as an essential technique in the cache. Prefetchers reduce

“Both authors contributed equally to this research. Work done as interns in
Huawei Noah’s Ark Lab.

Qiquan Shi Xijun Li
Huawei Noah’s Ark Lab MIRA Lab, USTC
Huawei Huawei Noah’s Ark Lab

Shenzhen, China
shigiquan @huawei.com

Shenzhen, China
xijun.li@huawei.com

Mingxuan Yuan
Huawei Noah’s Ark Lab
Hongkong, China
Yuan.Mingxuan @huawei.com

access latency by fetching data from their original storage
in slower memory to cache before they are needed [54].
Common block-level cache prefetchers take in logical block
address (LBA) access sequences as input (i.e., some integer
numbers). Prefetchers predict the LBA of the block that might
be accessed in a short time and decide whether to pre-load it or
not. There are two major challenges in the design of effective
prefetchers. First, the LBA access sequences in real-world
applications have complex patterns due to concurrent and
random accesses from different users or applications, which
are common in modern large-scale storage systems [22], [51]].
Second, effective prefetchers need to be accurate. Inaccurate
prefetchers waste both I/O bandwidth and cache space [[19].
Therefore, designing effective prefetchers is vital for storage
systems.

Traditional prefetchers prefetch the data by matching LBA
access sequences to specific predefined rules. However, they
can hardly adapt to complex real-world scenarios as their
predefined rules are limited to specific simple patterns such
as sequential reading [[18[]. To learn complex patterns, sev-
eral learning-based methods [1], [3], [4], [7] are applied.
Recently, long short-term memory (LSTM) based methods
like DeepPrefetcher [20] and Delta-LSTM [5] have shown
promising results. They model the LBA delta (i.e., the dif-
ference between successive access requests), which covers
more LBA accesses. However, due to concurrent accesses,
the chronological order of LBA deltas within a short time
period is likely to be disrupted. DeepPrefetcher and Delta-
LSTM disregard the internal temporal correlation and result
in limited performance.

Graph structures can effectively use nodes and edges to
represent LBA (delta) and access sequence, and can mine
intrinsic access patterns beyond chronological order in hy-
brid storage systems like relational databases. Therefore, to
improve the performance of prefetching especially in appli-
cations with complex patterns, this work models the relations
among LBA deltas using graph neural network, and proposes

[File system] Streams %
7y B _
| e ~ (T
ReadT Write ¢; | Compute Sequential connect v, g Q
. (]

(v) lde,|| 14 matrix Mg Q ldey, [T T T 2 =
LBA sequence 51 b =3 Vh =
Weighted sum o —— g =
lbay, lbay, lbas, ... ld., 1 P . > v Z2 S
¢ Hybrid connection = - = g z
Compute y o m o} =
1., [matrix M s | (T[T = s
. =3 3 =
[LBA delta] Weighted sum é 2 = e
E . = =8
ncoding ¢ 1 Split into ld., |Compute Full-connect] s ld., % — "%
Top ¥ LBA = ' = mmn 2
[d 11;1 1 J streams lde, ld,, matrix Mg g a. g g
elta classes o g ., = g
ld., 1q. | Embedding S I 1™ e

< Stream embedding S, ~ —

Flash memory 1d s u,,

c7
A | D:E I
Storage

N J

system Prefetching =, lbay=lba; +1ldy, (TR) Decoding max
[hag,, | [y | A

[:] Step 1 C] Step 2

Fig. 1. The workflow of the SGDP framework. In

hybrid connection matrix M;, with sequential and global information and embed the LBA delta stream into a matrix Sa. In

, we compress the search space and reduce the learning complexity. In

D step 4

, we compute the
, using gated graph neural

:] Step 3

networks to update the latent node vectors. Each stream is represented as the combination of the local preference v; and global interaction v4 by an attention

network. In
to the four steps of Algorithm [1]

a novel method called Stream-Graph Neural Network-Based
Data Prefetcher (SGDP), as shown in Figure [I} Specifically,
we encode LBA deltas and split them into shorter streams.
Then we build weighted directed graphs based on LBA delta
streams and extract relations of sequential connection and
temporal accesses of LBA deltas from each stream, which are
represented as sequential connect matrices and full-connect
matrices, respectively. By fusing those two matrices, we get
hybrid matrices that contain the relations of LBA deltas.
Finally, the hybrid matrix, along with embedding LBA deltas
of each stream is fed into a gated graph neural network to
learn access patterns for prefetching. Extensive experiments
on eight real-world datasets show that SGDP outperforms the
SOTA prefetchers in terms of performance and efficiency.

The contributions of this work are summarized as follows:

1. SGDP can accurately learn complex access patterns by
capturing the relations of LBA deltas in each stream. The
relations are represented by sequential connect matrices and
full-connect matrices using graph structures.

2. To the best of our knowledge, SGDP is the first work that
utilizes the stream-graph structure of the LBA delta in the data
prefetching problem. Using gated graph neural networks and
attention mechanisms, we extract and aggregate sequential and
global information for better prefetching.

3. As a novel solution in the hybrid storage system, SGDP
can be generalized to multiple variants by different stream
construction methods, which further enhances its robustness
and expands its application to various real-world scenarios.

4. SGDP outperforms SOTA prefetchers by 6.21% on hit
ratio, 7.00% on effective prefetching ratio, and speeds up
inference time by 3.13x on average. It has been verified in
commercial hybrid storage systems in the experimental phase

, we predict the candidate with the highest score and decode it to get the next accessed LBA for prefetching. This framework corresponds

and will be deployed in the future product series.

II. RELATED WORK

Traditional Data Prefetcher The most commonly used
prefetcher is the Stride prefetcher [27] which uses a reference
prediction table to store the last few accessed LBAs and the
stride to obtain the required LBA. Although it can capture
a constant stride in sequential access patterns, it can hardly
detect variable strides in irregular access patterns. Temporal
prefetchers learn irregular access patterns by memorizing pairs
of correlated LBAs [8]], [34]], [39]], [40]. However, due to in-
consistent correlation address pairs, these traditional methods
cannot achieve good performance in practice.

Learning-based Data Prefetcher Prefetching needs to
be accurate, as a small error in the numerical value of a
prefetched LBA leads to useless prefetch and a waste of cache
space and I/O bandwidth. Even though prefetching can be
treated as a prediction problem, regression-based time-series
prediction models like ARIMA are not widely considered by
researchers. Classification-based methods seem more favoured
because they can cover more LBA accesses, but not practical
as it is hard to cover all LBAs. For example, in Microsoft
Research Cambridge traces [2], the top-1000 most frequently
occurring LBAs cover only 2.8% of all the LBA accesses,
whereas the top-1000 most frequently occurring LBA deltas
cover 91.7% of all LBA accesses [3]. To learn more complex
access patterns, many deep learning approaches are proposed
and consider the LBA delta as input directly [19]]. Deep-
Prefetcher [20] transforms the LBA sequence into LBA deltas,
then employs the word2vec model and LSTM architecture to
capture the hidden feature in the input sequence. However,
it is inefficient on large-scale trace datasets. Delta-LSTM is

proposed [5] and addresses the large and sparse LBA space by
co-learning top- K LBA delta and I/O size features. Within top-
K (e.g., K =1000) classes, the searching space is restricted,
which alleviates the class explosion problem. However, both
of them do not consider the relations of LBA deltas to capture
the more complex patterns (e.g., the continuous LBA accesses
across many pages), which results in limited performance.

Prefetching with Graph-based Structure Complex pat-
terns in LBA access streams can be constructed by graphs
[43]], [53]. Nexus uses metadata relationship graphs to assist
prefetching decision-making [56]. Ainsworth et al. design a
prefetcher for breadth-first searches on graphs [55]. These
methods transform a sequence of observed LBAs into a
directed graph, in which a node is utilized to represent a block
access event to model block access patterns. However, LBA
accesses are quite sparse, which results in large graphs in these
LBA sequence-based methods and makes these prefetchers
quite ineffective in practice.

III. PRELIMINARIES

Consider an LBA access sequence with length n:
(lba;)?_q = (lbay,lbag, . .., lbay), (1)

in which lba; € N represents the address number of the i-th
accessed blocks. The data prefetching problem can be regarded
as given (lba;)_,, predict lba,y;. Following the previous
learning-based prefetchers, we compute LBA deltas (Id):

le = lbai+1 — lbai7 (2)
(1)1 =t = (ldy, ldg, . . ., 1dy_1). (3)

In order to get the prediction of the next LBA, l/b?anrl, we
predict the delta ld,,. Note that the variables with the ~ symbol
denotes the predicted values. In short, the data prefetching
problem is formulated as follows:

[ban.1 = lbay, + ldy. 4)

To restrict the model size, the number of classes of LBA
deltas that needs to be predicted is capped to a fixed number of
K +1. Here K is acquired by top-K most frequently occurring
LBA delta in (Id;)!Z], and the extra class is for the other infre-
quent LBA deltas. The prefetcher treats this extra class as no-
prefetch because infrequent LBA delta is hard to predict. We
redefine these K +1 classes as LD = {ld.,,ld.,,... ,ldc, .},
ld., representing the no-prefetch class and {ld.,,...,ldc,,, }
representing the top-K ones. The model predicts the [d., of
the next LBA delta, and prefetches it when the predicted class
is in the top-K and does not prefetch if the class is ld,,. Using
the LBA delta and Top-K mechanism can effectively reduce
the sparse problem and the search space of the model.

IV. METHODOLOGY

A. LBA Delta Streams

It would yield expensive costs if building the directed graph
of the LBA delta sequence generated by the whole LBA
sequence (length > 1 x 107). To alleviate this problem, we

Time
1 2 3 4 userl
Requests 11 12 13 14 user2
31 32 33 34 user3
lcombine
LBA sequence 3101 32 2 11 33 3 12 34 4 13 14
lcompute
LBA delta sequence 30 31030 9 2 30 9 22 30 9 1
lconstruct
LBA delta graph
3 -
Cr———O—0

Fig. 2. Example of LBA delta and graph.

use the concept of data access stream. We split the whole
LBA delta sequence into shorter streams which represent
the temporal access patterns. Specifically, we consider LBA
accesses with close access times to be in the same stream.
Whenever the time interval between two LBA accesses is
longer than a preset time limit 7" (e.g. 7" = 0.1ms), the LBA
sequence will be split to generate a new stream. We then split
the LBA delta sequence correspondingly and use a sliding
window inside each stream to generate equal-length LBA delta
streams. A split LBA delta stream sa can be represented by a
vector sp = [lds1,1ds 2, ...,1ds] in the chronological order,
where [d, ; denotes the i-th LBA delta in the stream sa. The
LBA delta stream is not only suitable for building directed
graphs but also implies the temporal locality of LBA accesses.

B. LBA Delta Based Graph Structure

As discussed in Section |[I, LBA-based graph structure is
ineffective for data prefetching in practice. To solve this prob-
lem, we propose a high-order graph based on the LBA delta.
Here we present a toy example in Figure [2]to show that LBA
deltas can also be represented by a directed graph. Consider
three users sending concurrent sequential read requests. The
concurrent requests are combined into one LBA sequence
before being sent to the storage system. Following the LBA
delta computation progress in Section we can simplify
the original LBA sequence that has 12 different LBAs and
represent it with an LBA delta sequence with only 5 different
nodes. We can build a directed graph based on the LBA delta
sequence by using LBA deltas as a node and linking all the
LBA deltas with their successor.

In contrast to previous works on extracting useful features
from access patterns between nearby accessed LBAs only, we
observed if an LBA request sequence is divided into several
streams, different streams are possible to be accessed by a
similar pattern. Non-sequential features can be extracted from
the observed access patterns by monitoring the change (or
difference) between successive LBA requests. This is achieved
by learning the hybrid connection matrix (which contains

31 30 9 22

ololclo

construct

LBA delta stream

LBA delta class nodes

G @
G—©

Sequential connect

LBA delta stream graphs

Full-connect

Fig. 3. Example of two kinds of graphs.

adjacent and interactive relations) along with the embedded
LBA deltas. Also, the number of the graph nodes is constant,
that is K + 1.

C. Weighted Directed Stream-based Graph

Without loss of generality, each LBA delta stream sa can
be modeled as a directed graph Gs, = (Vs,, &,). Each node
in the directed graph Gs, expresses one of the classes of LBA
deltas ld;, € LD. We build the graph with two kinds of
edges, as shown in Figure [3| The first one (Id; q,lds q41) €
&, represents the order in an LBA delta stream sa by linking
lds q to its successor Ids q4+1. The second one (Ids q,ldsp) €
&, 1s built by fully connecting all nodes in the stream to
capture the global information of each LBA delta stream. We
denote the set of sequential edges as Esi and full-connected
edges as Es};. We compute the adjacency matrices Mg and
Mp of 5SSA and Ssi separately. As every LBA delta node
might appear more than once in a stream, we normalize the
weights on each edge in &,. The weight of an edge is set
to be its occurrence counts divided by the out-degree of its
start node. The higher the weight, the stronger the correlation
between the corresponding two nodes. The incoming parts of
Mg and Mp are computed as Eq. () and (6),

EA11((Idg 0, 1ds ar1)es)

Min — SA
S ; 1((lds,ivlds,a+1)€si)

, (a<n—=1), (5
Kl 1((ldgas s p)er)

Min —
F ; 1((lds,iylds,b)ESFA) X |b—al’

(a,b<n), (6)

where 1(-) is indicator function and the outgoing parts M%*
and M"F"t is computed in the same manner. Then, we ex-
pand Mg and Mg to the same dimension, Mg, Mp €
R+ x2+(K+1) Ty facilitate the fuse of information in Mg
and M, we conduct a weighted sum of them named as hybrid
connection matrix M;,.

Then, the preprocessed LBA delta stream is embedded with
the hybrid connection matrix M;, and fed into a gr@h neural
network. Specifically, we obtain each node vector Id ,; € R¢
that indicates the d-dimensional latent vector of the original

lds; € LD. Each LBA delta stream sa can be presented as
an embedding matrix SA by DeepWalk [58]] where each node
vector ld,; € R denotes a d-dimensional real-valued latent
vector. Note that SGDP can support LBA streams of various
lengths and various graph model constructing strategies.

D. Latent Node Vectors Updating

We apply the vanilla graph neural network (GNN) proposed
by [49] and gated-recurrent-units-based GNN (gated GNN)
[50] to obtain latent features of _godes._)SpeciﬁcaEQ/, for each
LBA delta stream vector Sa = [Id}™!, 1d5™!, ..., 1d% 1] in the
graph Gs,, the update functions can be formalized as,

a' = Ay ' (SaWa' +ba'), (7)

2t = o(Wytal + U, ldt), @®)

rt = o(W,tal + U, ©)

b = tanh(Wytal + Upt(r' © ldY), (10)
ht:(l—zt)Gmifl—th@flt, (11)

where Aj;! € RM™2" is two rows of blocks (outgoing and
incoming) in M, corresponding to node ld!~!. a’ extracts
the contextual features of neighborhoods for node Id! ! with
weight matrix W,' € R%*2? and bias vector b," € R2?
Then, we take a’ and previous LBA delta vector /6%~ as input
and feed them into the gated GNN. The updated functions are
shown in Eq. (8)~(11). z* and r* are the updates and the reset
gate, and control which features to be reserved or discarded.
o(-) represents the logistic sigmoid function and ©® denotes
the element-wise multiplication operator. W, Wt W, !
and U,%, Ut UL! are the weight matrices to be learned.
The final state h? is the latent node vector, which is the sum
of the candidate states and the previous hidden states. Note
that the model will update all nodes until they converge.

E. Generating Stream Hybrid Embedding Vector

The next accessed LBA is strongly correlated with the
previous ones, and that relationship is inversely proportional
to the interval between the two LBAs. Therefore, we apply
a hybrid embedding vector to extract features, i.e., local
embedding and global embedding. Firstly, the local embedding
gctor named v} is defined as the last accessed LBA delta
ldit,

_>
vi=1d!t. (12)

The global embedding vector vg aggregates all node vectors in
the LBA delta stream Sa. Specially, we use the soft-attention
approach to more effectively represent the different levels of

priority, as Eq. and show,
— —
ol =g o(Willd + Wolld ™ 4 bl), (13)

n

—

t_ t77t—1

vg—E o ld; ",
i=1

where W1%, Wy € R¥? and q* € R? are weight matrices,
and b}, € R? is bias vector.

(14)

Finally, the hybrid embedding vector v}, combines the local
embedding vector v; and the global embedding vector v},

linearly, as the Eq. shows,

Vi, = We'[vi; vgl + bn', (15)
where W¢! € R4%2? is weight matrix and bn! € R? is bias
vector. The final hybrid embedding vector v}, of the LBA delta

stream S is in the d dimensions.

F. Forecasting and Prefetching

After extracting the hybrid embedding vector v}, we predict
the score of each LEA delta candidate Z! in stream sa by
multiplying v and ld‘™' as
o~ P

byt Td

z; =

(16)

We take the candidate with the highest score as the predicted
LBA delta. Besides, in order to train with labels, we need to
compute the probability of each node y* € RX*! in the next
step using the softmax function, which is

y' = Softmaz(z"). 17

The loss function is the cross-entropy of prediction y¢ and
ground truth y! with regularization, as shown in Eq. .
L") = =D lyilog(¥)+(1-yi)log(1-F)I+AI0]I3, (18)
i=1
where A is [2-norm penalty factor, 6 is weight vectors.
Finally, we decode the index of maxZ! to Id; 1, predict
the next accessed LBA by Eq. (@), and prefetch the correspond-
ing block from storage into the cache. Overall, we summarize
the proposed SGDP framework in Algorithm 1.

V. EXPERIMENTAL SETTINGS
A. Datasets

We use representative eight datasets in production servers
from different applications, including six datasets from an
open-source benchmark MSRC and two datasets from a real
enterprise storage system HW:

MSR (Microsoft Research Cambridge) [2]: It collects a
1-week LBA sequence of live enterprise servers at Microsoft.
We use its five datasets from different application scenes
named {hm_1, mds_0, proj_0, prxy_0, srcl_2}.

HW: It consists of three datasets collected from a real-world
commercial hybrid storage system, which describes storage
traffic characteristics on enterprise virtual desktop infrastruc-
ture and production servers. It intercepts the stream from
an intra-enterprise storage system under different application
scenarios and reads the storage system record logs directly.
We named these three datasets as {hw_1, hw_2, hw_3}.

Table [I] provides the detail of the eight datasets from two
data sources. Memory means the total amount of storage space
that has been accessed in the trace. Sequential shows the
percentage of sequential accesses in the trace.

“http://iotta.snia.org/traces/388

Algorithm 1 The Workflow of SGDP Framework
Input: An LBA sequence (lba;)._, = (lbay,lbas,...,lba;)
, the top number of most frequent LBA delta K, di-
mension of embedding vector of each LBA delta stream
d, cache size N, maximum iteration (), stop criteria
tol.
1: Step 1: LBA stream preprocessing
2: Compute delta of each adjacent LBA pair in (lba;)!_, and
get LBA delta (Id;)\=1 = (Idy,ldy, . .., ldp_1).
3: Encode lds in all LBA streams by top(K) to LD.
4: Generate LBA delta stream sa by time limit and slide
window.
5: Step 2: Embed LBA delta stream to a graph
6: Compute Mg by Eq. (5) and My by Eq. (6).
7: Expand Mg and My and conduct weighted sum to get
M;,.
8: Conduct embedding of each s € R™ into Sa € Réxn,
9: Step 3: Update hybrid embedding vector and training

10: Initialize the parameters in the gated GNN model.

11: forg=1,...,Q do

12: Compute the Eq.(7) ~ Eq.(I§) to fit each stream with
the input M;, and Sa.

13: Update the weight matrices list {W,, Wy, Wy, U,,
Uy, Un, W1, W2, We} and vectors list {bg, b} by
Adam with ground truth y.

14: Convergence checking: if £(y) < tol, break; otherwise,
continue.

15: end for

16: Step 4: Conduct forecasting and data prefetching

17: Conduct Eq. and get maxz with the updated model.

18: Decode it to Id,, and conduct Eq. to get [bay 1.

19: Read the corresponding block and prefetch it into the

cache or conduct no prefetching.

Qutput: @n+1, blocks € RY in cache.

TABLE I
DATASETS DESCRIPTION

Source Dataset Length Memory (GB) Function Sequential (%)
hm_1 1.08x 106 6.36 Hardware monitoring 39.9
mds_0 4.23x10° 8.48 Media server 65.2
MSRC proj_0 1.17x108 4.056 Project directories 57.3
prxy_0 4.03x10° 5.18 Firewall/web proxy 37.6
srel 2 1.15x10° 2.0 Source control 58.5
hw_1 1.39x10° 930.29 hybrid storage system 55.8
HW hw_2 2.58x10° 600.46 hybrid storage system 95.1
hw_3 1.73x10° 902.22 hybrid storage system 43.7

B. Compared Methods

We compare SGDP with the following methods from three
categories: traditional prefetchers, regression-based prefetch-
ers, and learning-based prefetchers.

No_pre means without any prefetching facilities and is used
as a baseline to show the gain by other schemes.

Naive Prefetcher treats the LBA stream as a whole se-
quence, i.e., ld, = ld,_1, and directly uses Eq. to predict

LBA.

Stride Prefetcher [6] simultaneously records 128 LBA
access streams, and each of them tracks the last 3 LBA
accesses. Each access is mapped to a stream based on hashing
the most significant LBA. If the difference between the 3
LBA accesses matches, it will detect a stride and conduct a
prediction.

ARIMA [9]] treats the problem as a time-series prediction
problem and applies the ARIMA model built from ¢ — § to ¢
to forecast the next LBA.

Informelﬂ [11] is the SOTA for time-series forecasting.
Same as ARIMA, it takes the previous LBA delta sequence
as input and predicts the following LBA.

DeepPrefetcher [20] captures the LBA delta patterns by
employing the word2vec model and LSTM architecture for
prefetching.

Delta-LSTME] [5] is another learning-based prefetcher,
which uses an LSTM-based model to predict the LBA delta
for prefetching.

Besides, we set the sequences of LBA delta as the input
for a fair comparison. There is a class explosion problem in
DeepPrefetcher, which makes it unrealistic to train. To solve
the problem, we restrict the top-K class with X' = 10000. This
K = 10000 value is to balance the efficiency and accuracy
based on our preliminary study. For Delta-LSTM and SGDP,
we set top-1000 frequently occurring LBA deltas as input.

C. Evaluation Criteria

HR@N (Hit Ratio) is the number of cache hits divided
by the total number of memory requests over a given time
interval. It is an important storage indicator given a fixed cache
size N. That is,

_ Cache Hits

" Cache Hits + Cache Misses
EPR@N (Effective Prefetching Ratio) is the ratio of the

number of correctly prefetched data to all executed prefetches

given a fixed cache size N, which is strongly related to the
prefetcher’s efficiency. That is,

HR x 100%.

19)

Correct Prefetchings
All Prefetchings

Note that HR and EPR describe the prefetching results
more precisely and feasible refer to Accuracy and Recall in
DeepPrefetcher [20] and Delta-LSTM [5]], respectively. We use
HR and EPR in our work because they describe the prefetching
results more precisely. Besides, there is a trade-off between
HR and EPR in the subsection and some results are
shown in Figure []

Besides, we feed the next step predicted LBA into the cache
simulator based on the Least Recently Used (LRU) strategy for
prefetching. LRU is a classical cache elimination algorithm. It
selects the most recently unused LBA to retire.

EPR = x 100%. (20)

Thttps://github.com/zhouhaoyi/Informer2020/
*https://github.com/Chandranil2606/Learning-I0-Access-Patterns-to-
improve-prefetching-in-SSDs-/

D. Implementation Details

We implemented SGDP for offline training and online
testing by PyTorch [57]. All experiments are trained and tested
on a computing server equipped with an Intel Xeon Platinum
8180M CPU@2.50GHz and an NVIDIA Tesla V100 GPU.

For a more fair and effective comparison, we normalize all
LBA in increments of 8KB blocks and according to the I/O
size of the 8KB block alignment and increment operations.
We apply the 10-fold cross-validation method for training and
testing, the same as SOTA methods. As for neural networks,
all parameters are initialized with a Gaussian distribution with
a means of 0 and a standard deviation of 0.1 with the latent
vectors d equaling 200 for all 8 datasets. Moreover, we set
the initial learning rate to 1.5x 1073 with decay by 95% after
every 3 epochs, the batch size to 128 with 10 epochs, and
the [2-norm penalty factor to 107°. Adam optimizer [12]
with default parameter is applied for optimization. We set the
stream split time interval 7" as 0.1ms for HW and 0.01ms for
MSRC, and set the top number of most frequent LBA delta
K as 1000 for SGDP. Note that since the preprocessed LBA
stream is shorter, the training epoch can be smaller to prevent
over-fitting, which is also useful to shorten the training time.

VI. EXPERIMENTAL RESULTS
A. Results of Single-Step Prefetching

We analyze the results of data prefetching conducted by
SGDP and the compared methods on different datasets in the
case of single-step Prefetching, as reported in Table [lIl The
detailed analysis is presented in the following.

ARIMA and Informer Time-series forecasting models
(ARIMA and Informer) perform the worst, excepting the case
of hw_2 trace where ARIMA achieves around 80% HR as this
dataset has a very high degree of sequential access (95.1%).
ARIMA and Informer take LBA delta inputs as scalar variables
and can produce a correct prediction if the input sequences
are steady. As there are frequent large fluctuations in complex
non-sequential access patterns, ARIMA and Informer prompt
incorrect LBA access. The worst results shown in almost all
cases confirm our claims that regression-based approaches are
not feasible for accurate and complex data prefetching.

Naive and Stride Prefetcher Traditional prefetchers (Naive
and Stride) have relatively stable performances in sequential
access. However, for the random accesses, those traditional
prefetchers encounter a big gap compared to SGDP. Moreover,
Stride always achieves higher EPR while lower HR as it is
more laziness and only prefetches when detecting an inside-
page stride. As a result, it prefetches less and has higher
accuracy for sequential access. In other words, although Stride
has a high EPR, it prefetches less and gets quite low HR, which
makes it impractical. Overall, the robustness performance
of the Naive and Stride Prefetcher is poor, especially for
completely random access.

Delta-LSTM, DeepPrefetcher and SGDP Learning-based
prefetchers (Delta-LSTM, DeepPrefetcher and SGDP) cover
all highest HR and almost the highest EPR. SGDP has higher

TABLE II
SINGLE-STEP RESULTS. THE RESULTS ARE IN PERCENTAGE, THE BEST RESULTS ARE IN BOLD, THE SECOND ONES ARE UNDERLINED, /N IS THE CACHE

SIZE.
Dataset hw_1 hw_2 hw_3 hm_1
Metric HR@N EPR@N HR@N EPR@N HR@N EPR@N HR@N EPR@N
m 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000
No_pre 0.0 0.3 54.2 0.0 0.0 0.0 1.0 1.1 1.1 0.0 0.0 0.0 0.0 0.1 13 0.0 0.0 0.0 2.7 253 983 0.0 0.0 0.0
Naive | 57.5 580 632 | 633 645 645 | 925 926 927 | 933 937 940 | 477 479 488 | 48.0 483 487 | 31.7 438 974 | 305 312 56
Stride | 437 440 658 | 805 81.1 80.6 | 91.0 91.1 9.1 | 991 992 992 | 384 386 396 | 81.6 820 823 | 271 470 99.1 | 823 844 884
ARIMA 1.9 4.0 8.8 1.9 43 6.2 82.8 829 83.0 859 862 86.4 0.3 0.3 13 0.2 0.3 0.3 35 190 952 2.7 52 25
Informer 0.2 0.9 5.8 0.3 0.9 2.9 1.0 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 1.1 140 904 0.1 0.7 0.7
DeepPrefetcher | 743 746 79.2 754 759 765 922 925 928 | 934 940 945 504 507 517 504 507 512 385 59.1 99.3 385 56.0 46.1
Delta-LSTM | 744 748 793 | 755 760 76.6 | 925 928 93.1 | 937 942 947 | 564 568 579 | 662 668 672 | 300 506 993 | 577 728 876
SGDP | 79.2 795 858 | 829 835 81.6 | 93.0 930 931 | 975 977 978 | 760 766 775 | 889 895 90.1 | 381 557 994 | 87.8 90.1 86.2
SGDP; | 785 788 849 | 82.1 827 80.6 | 929 93.1 932 | 970 972 974 | 785 79.0 798 | 83.6 842 84.7 43.1 614 99.1 463 60.8 244
SGDP, | 757 782 83 776 804 79 937 940 942 | 944 950 954 | 481 483 496 | 72.1 731 75.1 439 629 994 | 468 63.8 348
Dataset mds_0 proj_0 prxy_0 srel_2
Metric HR@N EPR@N HR@N EPR@N HR@N EPR@N HR@N EPR@N
m 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000
No_pre | 132 350 61.0 0.0 0.0 0.0 6.1 28.7 352 0.0 0.0 0.0 20.1 407 488 0.0 0.0 0.0 39 348 482 0.0 0.0 0.0
Naive | 543 682 852 | 478 5l.1 522 | 61.1 70.1 74.3 587 597 608 | 464 643 727 351 385 409 | 605 73.0 808 599 63.1 66.3
Stride | 473 622 798 | 823 90.6 898 | 51.0 61.1 654 | 825 881 883 | 403 565 638 | 69.6 81.1 814 | 483 63.8 734 | 81.0 89.6 920
ARIMA | 16.6 374 583 8.6 9.2 120 | 129 335 393 | 120 101 104 | 199 422 523 6.5 72 82 146 420 548 | 195 177 192
Informer 9.6 283 545 0.3 1.2 52 39 19.8 347 0.1 0.5 23 13.7 321 46.9 0.0 0.0 0.2 1.7 225 453 0.0 0.1 0.6
DeepPrefetcher | 60.7 73.7 88.5 669 775 833 726 9.1 82.8 750 78.6 815 570 702 774 | 635 704 739 | 745 829 89.0 762 809 87.0
Delta-LSTM | 57.3 69.6 86.2 802 87.8 89.8 623 69.1 73.3 843 862 874 | 522 642 713 | 757 793 809 | 700 796 86.2 | 77.5 813 87.2
SGDP | 66.0 763 91.6 | 802 870 884 | 734 785 821 | 840 876 82 | 622 732 799 | 763 833 841 | 754 831 888 | 825 8.5 90.8
SGDP; | 66.1 77.5 92.1 654 739 796 | 755 8l.1 84.6 | 79.8 83.6 856 641 765 83.0 | 657 743 784 | 763 839 894 | 81.5 874 893
SGDP, | 674 798 926 | 687 819 879 | 737 813 852 | 745 802 839 639 762 83.0 | 649 726 76.1 749 848 9.8 | 76.1 840 873
TABLE III

AVERAGE RESULTS OF MULTI-STEP PREFETCHING. THE RESULTS ARE IN PERCENTAGE, THE BEST RESULTS ARE IN BOLD, AND THE CACHE SIZE IS 100.

Metric HR@100 EPR@100
Method Step [2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
DeepPrefetcher | 740 761 767 77.1 772 771 771 770 770 769 | 731 607 525 465 420 383 353 328 307 288
Delta-LSTM | 702 749 771 780 785 789 793 796 798 800 | 815 723 659 60.6 563 526 495 468 445 423
SGDP | 770 783 789 793 796 798 800 80.1 803 803 | 884 805 740 689 646 609 577 549 527 505
SGDP, | 789 807 814 8§18 822 824 825 826 827 827 | 805 702 629 57.5 531 496 466 440 418 398
SGDP, | 757 774 781 786 789 790 792 793 795 795 | 789 683 608 551 50.6 468 437 411 388 367
HR than DeepPrefetcher/Delta-LSTM in 19/24 out of all 24 HR-EPR Trade-off
cases, and 24/19 about EPR. Specifically, Delta-LSTM and 0.9
DeepPrefetcher share a similar structure and show a similar 0.85
effect. DeepPrefetcher has a larger LBA delta candidates pool 0.8
which leads to more prefetching and lowers accuracy, reflected x 0.75
in lower average EPR (71.6% compared to 80.3%). On the i 0.7
contrary, Delta-LSTM prefetches more accurately but with 0.65
fewer blocks, which leads to lower HR (70.8% compared to
73.5%). To be fair, as SGDP takes the top-1000 LBA delta as 06
input (same as Delta-LSTM), the comparison to Delta-LSTM 0.55
0.4 0.5 0.6 0.7 0.8 0.9

can prove that SGDP has better feature extraction ability.

B. Ablation study and SGDP Variants by Stream Construction

1) Retaining top-K delta value (SGDP;): SGDP considers
the top-1000 most frequently occurring LBA delta in the whole
search space. Considering more LBA delta values further
increases the model coverage, but also increases the search
space and degrades the accuracy of the model. So to explore
it quantitatively and prove the HR-EPR trade-off, we apply
the top-10000 LBA delta for model building and name it
SGDP;4yge, or SGDP; for brevity.

The experiment of SGDP; confirms the trade-off of HR-
EPR. As Table shows, SGDP; achieves 1.5% slightly
higher than SGDP in terms of HR while showing a large
gap with 9.6% loss than SGDP in terms of EPR. Compared

HR
DeepPrefetcher -+-Delta-LSTM

—~—SGDP — SGDP_I

Fig. 4. HR-EPR trade-off.

to DeepPrefetcher, which also uses top-10000 LBA delta as
input, SGDP; maintains higher HR in 23 cases and higher EPR
in 20 cases. Notice that for dataset hm_1, SGDP; gets a low
EPR@1000 (24.4%). The reason is that with an extremely high
HR@1000 (99.4%, almost all hit), SGDP; prefetches extra
useless blocks without harm to HR, leading to an obvious
decline of EPR.

To further verify the effectiveness of SGDP and the HR-
EPR trade-off, we conduct extra tests on dataset prxy_0 by

TABLE IV
THE NUMBER OF PREDICTIONS INFERRED PER SECOND BY
LEARNING-BASED METHODS.

Mot Dataset | 1 hw.2 hw3 hml mds.0 prxy_0
DeliaLSTM | 894 874 945 924 907 OI5 884 951 | 012
DeepPrefetcher | 2082 1545 1942 1601 2484 1784 1879 2496 | 1977
SGDP | 6445 6924 6661 5152 5435 5533 4700 5507 | 5795

SGDP; | 6347 6869 6147 5001 6514 6639 5263 6707 | 618.6

SGDP, | 599.5 6456 5939 5670 4917 5293 5748 5587 | 570.1

proj_0 srcl_2 avg

testing Delta-LSTM, DeepPrefetcher, SGDP and SGDP; on 20
different cache sizes ({5, 10, 20, --- ,90 and 100, 200, - - -,
900, 1000}). As shown in Figure {4} the top-10000 methods
(SGDP; and DeepPrefetcher) show higher HR but lower EPR
than their top-1000 counterparts (SGDP and Delta-LSTM).
The two pairs of top-K comparisons confirm that SGDPs
achieve better performance consistently than other methods.

2) Stream partition with page (SGDP)): Considering the
spatially localized relevance of LBA access patterns, we divide
the entire search space by 64MB size page, record the LBA
access streams on each page simultaneously, and perform
parallel prediction in each page stream for prefetching the
next block inside the page stream. We call it SGDP,,. SGDP,,
models LBA deltas, as 64MB page contains 8192 unique
blocks, the total LBA delta candidate class of SGDP,, is 16383
(£8191) instead of top-K classes.

SGDP,, keeps the best HR results on half of all cases. Its
average HR is slightly lower than SGDP and SGDP;, but still
higher than other methods. HR of SGDP,, on hw_3 encounters
a severe drop. The reason is that hw_3 is the shortest and has
the second-largest storage capacity, which means the LBAs are
much more sparse. SGDP,, needs at least an LBA stream with
length 2 to generate an LBA delta stream. But as hw_3 cross
over 1.4 x 10* pages, the average length of inside-page-stream
is 12.4, which means SGDP could not perform prefetching
on 1/12 of data points. Nevertheless, SGDP,, obtains the
highest HR (79.9%) on all datasets except hw_3 on average.
Therefore, it could be concluded that SGDP,, performs well
in real-world scenarios with sufficient data.

C. Multi-step Prefetching

We further evaluate the performance of SGDP methods in
multi-step prefetching based on rolling prediction. We feed
the prediction of LBA back to the aforementioned learning-
based prefetchers and get the rolling prediction for the next
LBAs. The experiments are performed on cache size 100 with
a rolling step from 2 to 10. The average results of HR@ 100
and EPR@100 are reported in Table Overall, SGDP;
has the best HR@100 on all steps on average, and SGDP
achieves the best EPR@100. SGDP,, shows worse results than
SGDP and SGDP;. SGDP,, gets the highest HR@100 (from
79.6% to 83.8%) on average in all steps on all the datasets
except hw_3 as it is too sparse. The second best method is
SGDP;, of which HR@100s range from 78.9% to 83.0%.
These results demonstrate that SGDP methods are able to keep
their superiority and robustness in multi-step prefetching.

D. Offline Training and Online Testing Efficiency

The offline training time in dataset hw_1 for SGDPs is 0.37
hours, and the training time for other learning-based methods
is about 1.1 hours. The GPU utilization is 24%, the parameter
number is 192,500, and the flop number is 48,570,779. For
the online inference test, the GPU utilization is 10%, the
model size is 1.47 MB, and the flop number is 1,884,055.
Furthermore, to verify the practicality of SGDP compared to
the other methods, we collect statistics of inference time as
shown in Table SGDPs process 469 to 670 LBA deltas
per second, while Delta-LSTM and DeepPrefetcher can only
process 91.2 and 197.7 on average. SGDP; speeds up inference
time up to 3.13x than DeepPrefetcher. Overall, SGDPs show
much higher efficiency and practicality for real deployment
applications.

VII. CONCLUSIONS

To improve the performance of the data prefetcher in
practice, this paper proposed SGDP, a novel stream-graph-
based data prefetcher. SGDP takes each LBA delta stream as a
weighted directed graph fusing both sequential and global fea-
tures. By gated GNN and attention mechanism, SGDP extracts
and aggregates the sequential and global information for better
data prefetching. The experiment results from eight different
real-world datasets demonstrate that SGDP outperforms SOTA
methods and high speeds up inference time. The generalized
SGDP variants can further adapt to extensive application
scenarios. This novel data prefetcher has been verified in
commercial hybrid storage systems in the experimental phase
and will be deployed in the future product series.

REFERENCES

[11 N. Wu and Y. Xie, “A survey of machine learning for computer
architecture and systems,” arXiv preprint arXiv:2102.07952, 2021.

[2] C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sug-
awara, “Understanding storage traffic characteristics on enterprise virtual
desktop infrastructure,” in Proceedings of the 10th ACM International
Systems and Storage Conference, 2017, pp. 1-11.

[3] Y. Chen, Y. Zhang, J. Wu, J. Wang, and C. Xing, “Revisiting data
prefetching for database systems with machine learning techniques,” in
2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 2021, pp. 2165-2170.

[4] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Ma-
chine learning-based prefetch optimization for data center applications,”
in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009, pp. 1-10.

[5] C. Chakraborttii and H. Litz, “Learning i/o access patterns to improve
prefetching in ssds,” ICML-PKDD, 2020.

[6] A. Ki and A. E. Knowles, “Stride prefetching for the secondary data
cache,” Journal of Systems Architecture, vol. 46, no. 12, pp. 1093-1102,
2000.

[71 A. Laga, J. Boukhobza, M. Koskas, and F. Singhoff, “Lynx: A learning
linux prefetching mechanism for ssd performance model,” in 2016 5th
Non-Volatile Memory Systems and Applications Symposium (NVMSA).
IEEE, 2016, pp. 1-6.

[8] Z.Li, Z. Chen, S. M. Srinivasan, Y. Zhou et al., “C-miner: Mining block
correlations in storage systems.” in FAST, vol. 4, 2004, pp. 173-186.

[9]1 N. Tran and D. A. Reed, “Automatic arima time series modeling for
adaptive i/o prefetching,” IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 4, pp. 362-377, 2004.

[10] Q. Shi, J. Yin, J. Cai, A. Cichocki, T. Yokota, L. Chen, M. Yuan,
and J. Zeng, “Block hankel tensor arima for multiple short time
series forecasting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, 2020, pp. 5758-5766.

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[32]

[33]

H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of AAAI, 2021.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

G. Wu and X. He, “Reducing ssd read latency via nand flash program
and erase suspension.” in FAST, vol. 12, 2012, pp. 10-10.

I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasub-
ramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “Ssd failures in
datacenters: What? when? and why?” in Proceedings of the 9th ACM
International on Systems and Storage Conference, 2016, pp. 1-11.

V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R. Stan, “How i learned
to stop worrying and love flash endurance.” HotStorage, vol. 10, pp.
3-3, 2010.

H. Kim and U. Ramachandran, “Flashfire: Overcoming the performance
bottleneck of flash storage technology,” Georgia Institute of Technology,
Tech. Rep., 2010.

D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching,”
ACM SIGARCH Computer Architecture News, vol. 19, no. 2, pp. 40—
52, 1991.

S. Boboila and P. Desnoyers, “Performance models of flash-based solid-
state drives for real workloads,” in 2011 IEEE 27th Symposium on Mass
Storage Systems and Technologies (MSST). 1EEE, 2011, pp. 1-6.

M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
in International Conference on Machine Learning. PMLR, 2018, pp.
1919-1928.

G. O. Ganfure, C.-F. Wu, Y.-H. Chang, and W.-K. Shih, “Deep-
prefetcher: A deep learning framework for data prefetching in flash
storage devices,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 11, pp. 3311-3322, 2020.
Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 861-873.
J. Basak, K. Wadhwani, and K. Voruganti, “Storage workload identifi-
cation,” ACM Transactions on Storage (TOS), vol. 12, no. 3, pp. 1-30,
2016.

P. G. Harrison, S. Harrison, N. M. Patel, and S. Zertal, “Storage
workload modelling by hidden markov models: Application to flash
memory,” Performance Evaluation, vol. 69, no. 1, pp. 17-40, 2012.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4-24,
2020.

C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the
processor-memory performance gap with 3d ic technology,” IEEE De-
sign & Test of Computers, vol. 22, no. 6, pp. 556-564, 2005.

R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen, “Duracache: A durable
ssd cache using mlc nand flash,” in Proceedings of the 50th Annual
Design Automation Conference, 2013, pp. 1-6.

J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” ACM SIGMICRO Newsletter, vol. 23, no. 1-2, pp.
102-110, 1992.

T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetching
for high-performance processors,” IEEE Transactions on Computers,
vol. 44, no. 5, pp. 609-623, 1995.

K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in 10th International Symposium on High Performance
Computer Architecture (HPCA’04). 1EEE, 2004, pp. 96-96.

M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2015, pp. 141-152.

J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1EEE, 2016, pp. 1-12.

S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” ACM SIGARCH Computer Architecture
News, vol. 34, no. 2, pp. 252-263, 2006.

M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 2019 IEEE International Sym-

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

posium on High Performance Computer Architecture (HPCA). 1EEE,
2019, pp. 399+411.

T. E. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal streams in commercial server applications,” in 2008 IEEE
International Symposium on Workload Characterization. 1EEE, 2008,
pp. 99-108.

——, “Practical off-chip meta-data for temporal memory streaming,”
in 2009 IEEE 15th International Symposium on High Performance
Computer Architecture. 1EEE, 2009, pp. 79-90.

Z. Hu, M. Martonosi, and S. Kaxiras, “Tcp: Tag correlating prefetchers,”
in The Ninth International Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings. 1EEE, 2003, pp. 317-
326.

Y. Chou, “Low-cost epoch-based correlation prefetching for commercial
applications,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). 1EEE, 2007, pp. 301-313.

A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 247-259.

H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin, “Tem-
poral prefetching without the off-chip metadata,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 996-1008.

H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient metadata
management for irregular data prefetching,” in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2019, pp. 1-13.

M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2018, pp.
131-142.

R. Xu, X. Jin, L. Tao, S. Guo, Z. Xiang, and T. Tian, “An efficient
resource-optimized learning prefetcher for solid state drives,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2018, pp. 273-276.

J. Liao, F. Trahay, B. Gerofi, and Y. Ishikawa, “Prefetching on storage
servers through mining access patterns on blocks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 9, pp. 2698-2710,
2015.

L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality
and context-based prefetching using reinforcement learning,” in 2015
ACM/IEEE 42nd Annual International Symposium on Computer Archi-
tecture (ISCA). 1EEE, 2015, pp. 285-297.

L. Peled, U. Weiser, and Y. Etsion, “A neural network prefetcher for
arbitrary memory access patterns,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 16, no. 4, pp. 1-27, 2019.

C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 793-803.

S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2019, pp. 346-353.

G.-S. Xie, J. Liu, H. Xiong, and L. Shao, “Scale-aware graph neural
network for few-shot semantic segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 5475-5484.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” [EEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61-80, 2008.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

X. Li, Q. Shi, G. Hu, L. Chen, H. Mao, Y. Yang, M. Yuan, J. Zeng, and
Z. Cheng, “Block access pattern discovery via compressed full tensor
transformer,” in CIKM, 2021.

J. Liao and S. Chen, “Optimization of reading data via classified block
access patterns in file systems,” IEEE Access, vol. 4, pp. 9421-9427,
2016.

D. Zhu, H. Du, Y. Sun, and Z. Tian, “Ctdgm: A data grouping model
based on cache transaction for unstructured data storage systems,” arXiv
preprint arXiv:2009.14414, 2020.

A. J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, no. 3, p.
473-530, sep 1982. [Online]. Available: https://doi.org/10.1145/356887.
356892

https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/356887.356892

[55]

[56]

[57]

[58]

S. Ainsworth and T. M. Jones, “Graph prefetching using data
structure knowledge,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS "16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2925426.2926254

P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: a novel weighted-
graph-based prefetching algorithm for metadata servers in petabyte-
scale storage systems,” in [EEE International Symposium on Cluster
Computing & the Grid, 2006.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014.

https://doi.org/10.1145/2925426.2926254

APPENDIX A: ALL RESULTS OF ROLLING PREDICTION
BASED MULTI-STEP PREFETCHING

We summarize the detailed results of multi-step prefetching
in Table [V] As reported in the Table[V] SGDP and its variants
achieve the best results in 80 cases and 52 cases in terms of
HR@100 and EPR@100, respectively. We also visualize the
results of the averaged results of all datasets and two repre-
sentative datasets as shown in Fig. E} On hw_1 dataset, SGDP
stably performs the best with both the highest HR@100 and
EPR@100. On srcl_2, SGDP, maintains highest HR@100
while SGDP have highest EPR@ 100.

APPENDIX B: INFERENCE EFFICIENCY

To verify the practicality of SGDP compared to the SOTA
methods, we collect statistics of inference time and report the
detailed results of the number of LBA delta predictions that
can be inferred per second by learning-based methods in Table
SGDP and its variants process 469 to 670 LBA deltas
per second, while Delta-LSTM and DeepPrefetcher are only
able to process 91.2 and 197.7 on average respectively. SGDP;
speed up inference time up to 3.13 times than DeepPrefetcher.
Overall, SGDP and its variants show much higher efficiency
and practicality.

APPENDIX C: ALL RESULTS OF SINGLE-STEP
PREFETCHING BASED ON DIFFERENT CACHE SIZES

We summarize the results of single-step prefetching
about all eight datasets based on 20 different cache sizes
({5, 10,20, - - - ,90, 100, 200, - - - , 900, 1000}) from Table [VI]|
to TabléXIV] As reported in the Tables, SGDP and its variants
(SGDP; and SGDP,,) achieve the best results in all 160 cases
and 83 cases in terms of HR and EPR, respectively. As for
EPR, our models are not far from the maximum (mostly within
1%) in the non-first case.

APPENDIX D: RESULTS AND ALGORITHM REPRODUCING

In data prefetch, researchers rarely open-source their code.
We have contacted most authors for their baseline codes and
benchmarks, but the response is almost non-existent, which
makes it difficult for us to compare baselines. We could not
find the related source code for graph-based methods. How-
ever, we can guarantee that the two learning-based methods we
compared are the best methods available. They achieve better
results than all graph-based ones using the same datasets,
so we choose them as the baselines. Although the authors
of the two methods did not give us the code directly, we
received confirmation and positive feedback from them on our
reproduction. So, we are confident that our results are now
SOTA and definitely better than all the previous graph-based
methods.

As for the discussed time-series-based methods in our
paper, i.e., ARIMA and Informer, they are often discussed
as baselines described in our Related Work section, it is
reasonable to use ARIMA and Informer as baselines. As the
other researchers said in their paper, those time-series-based

methods perform well in datasets which have more sequence
access patterns.

Researchers in this field hardly fully open-source their
code, which not only makes it difficult for us to reproduce
their methods but also hinders the development of the field.
Therefore, we sincerely hope to promote the openness and
development of the storage field and help more developers and
researchers enter the community more efficiently by making
our source code, datasets, and our reproduced and validated
baselines availabld']

$Our codes are available at https:/github.com/yyysjz1997/SGDP/.

srcl_2 HR@100

@100

hw_1 HR

All HR@100

90

95

85

AN
VILLSSSLLSSSLSSSSLSSSSS S s

OSSN NNNNNNANNNNN
VISSSSSSSSSSSS LSS LSS SIS

AN
VSLLLLLLLLL LSS S

85
0
5

70

AN

ANNNNNNNNNNNNNNNNNNNNNNNY
L

ANNNNINNNNNNNNNNNNNNNNNN
SLLSLLLSSLLSSSLLSSSLSSSs

ANANNNNNNNNNNNNNNY
AL SIS A7 7777,

X9 o
@ [=s)

0 o
~ ~

ANNNANNANNNNNNNNNANNNNN
HLLSSSSSSSSSSSS.,

AN
SLLLSSLLSSSS S s

EANANNNNNNNNNNNNNNAN
YSSSSSSSSSSSSSS.,

AN
SLLLSSLLSSSSSSs

ANNNNNNNNAN
SSSSSSSSSSSSS.,

80

Te) o
~ ~

10

10

srcl_2 EPR@100

hw_1 EPR@100

All EPR@100

100

100

o
o
-

SILL

ASNNNNNNN
SIS

ANNNNNNNNNNY
[

ENNANNNNNNNNNNNE
YIS SIS

80

ADUUIIIIIINNININININNNNN
SILLLLLLLSSSSSSSSSS

60

EANNNNNNNAY
(i

AANNNNNNNNNN
L

BSNNNNNNNNNNNN
Y

ANIINNNNNNNNNNNN
SLLLLLLLLLSSSSSS

DESSNNNNANNNNANNNNNNNY
YILLLLL LSS LSS

o
©

40
20

AN
“rs

NNNNNNNNNNN
Yl

ANNNNNNNNNNNN
SSLLLLSL,

INNNNNNNNNNNNNNNAN

Y

o
@

ONNNANNNNNNNNNNNNNNNN
Ll

o
©

o o
< N

10

10

10

= SGDP _p

SGDP_I

B SGDP

2 Delta-LSTM

DeepPrefetcher

AN

Fig. 5. Visualized Results of Multi-step Prefetching

TABLE V

RESULTS OF MULTI-STEP PREFETCHING. THE RESULTS ARE IN PERCENTAGE, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Metrics

HR@100

EPR@100

e Steps
Dataset | rothods

4

5 6

7

8 9

10 1

2 3

4

5 6

7 8

9 10

DeepPrefetcher
Delta-LSTM

82.2
82.3

85.3
85.4

87.4
87.6

88.4 89.1
88.6 89.2

89.7
89.9

90.1 90.2
903 904

90.3 | 75.9
90.5 | 76.0

68.2
68.4

59.2
59.5

558 528
56.1 532

503 48.0
50.6 484

458 439
462 443

hw_1 SGDP
SGDP;

SGDP,

85.7
84.7
83.8

88.3
87.1
86.0

90.2
88.8
87.4

91.2 919
89.9 90.8
88.3 88.9

92.5
91.3
89.5

929 932
91.8 921
89.9 90.1

93.4 | 83.5
923 | 82.7
90.1 | 80.4

771
76.1
73.6

68.8
67.1
64.0

65.5 62.6
63.7 60.8
60.5 574

60.1 57.8
58.1 558
547 521

55.6 53.6
536 515
496 473

DeepPrefetcher
Delta-LSTM

93.4
93.6

93.7
94.0

93.9
94.3

94.0 94.1
944 945

94.1
94.5

94.1 942
94.6 94.6

942 | 94.0
94.6 | 94.2

89.6
89.9

82.2
83.0

79.0 76.0
80.0 772

733 70.7
747 124

68.3 66.0
702 68.1

SGDP
SGDP,
SGDP,,

94.1
94.1
95.1

94.5
94.6
95.5

94.8
94.8
95.7

949 95.0
95.0 95.1
95.9 96.0

95.1
95.2
96.0

95.1 952
952 953
96.0 96.1

952 | 97.7
953 | 97.2
96.1 | 95.0

96.0
95.2
91.2

93.4
91.7
85.0

923 913
90.1 887
823 79.7

904 894
873 859
774 75.0

88.5 87.7
84.6 834
729 1708

DeepPrefetcher
Delta-LSTM

51.8
60.7

51.8
67.8

51.8
68.3

51.8 51.8
68.4 685

51.8
68.4

51.8 51.8
684 684

51.8 | 50.7
68.4 | 66.8

349
524

21.1
41.1

17.7 152
36.5 328

133 11.8
29.7 27.1

106 9.7
253 235

hw_3 SGDP
SGDP;

SGDP,,

71.7
80.2
48.5

78.0
80.5
48.5

78.0
80.6
48.6

78.0 78.0
80.8 80.8
48.6 48.7

78.0
80.8
48.7

78.0 78.1
80.8 80.9
489 492

78.0 | 89.5
80.8 | 84.2
49.3 | 73.1

81.6
73.8
61.6

68.9
58.9
475

63.8 59.9
535 492
429 392

56.1 53.1
453 422
362 34.1

50.8 48.2
395 37.0
328 315

DeepPrefetcher
Delta-LSTM

60.0
55.5

59.2
56.7

58.2
57.8

57.1 56.1
587 593

55.2
59.9

544 53.6
60.2 604

53.0 | 56.0
60.6 | 72.8

39.6
63.5

235
48.6

19.1 16.0
43.6 39.6

13.7 119
363 335

105 9.4
3.5 295

hm_1 SGDP
SGDP;

SGDP,

55.8
63.1
65.0

55.5
63.6
65.7

55.3
63.7
65.8

55.1 549
634 63.1
65.8 654

54.6
62.8
65.1

543 54.1
624 62.1
64.8 64.5

54.0 | 90.1
61.8 | 60.8
64.1 | 63.8

80.5
45.1
48.6

64.9
29.7
32.7

59.2 542
252 219
28.0 243

50.0 46.6
193 172
215 192

4.8 423
155 141
174 158

DeepPrefetcher
Delta-LSTM

81.3
75.6

81.7
77.2

81.8
78.2

81.6 812
79.0 797

80.9
80.3

80.6 80.3
809 814

799 | 77.5
81.8 | 87.8

61.3
80.7

42.6
69.4

363 312
652 614

274 244
581 552

21.9 199
527 504

SGDP
SGDP,
SGDP,

mds_0

76.9
78.9
82.0

77.4
79.5
82.9

77.8
79.8
83.6

78.1 785
80.0 80.1
84.0 843

78.9
80.2
84.6

79.1 794
80.3 80.3
84.8 85.0

79.5 | 87.0
80.3 | 73.9
85.0 | 81.9

78.1
59.7
71.3

65.4
43.0
56.9

60.7 56.6
37.8 33.6
51.5 471

532 503
304 278
433 402

4777 453
255 235
37.3 347

DeepPrefetcher
Delta-LSTM

81.3
76.9

81.7
78.4

82.0
79.1

822 822
79.5 799

82.3
80.2

822 823
80.5 80.7

822 | 78.6
80.9 | 86.2

64.6
79.6

479
67.1

424 378
62.3 58.2

342 31.1
546 515

28.5 264
48.8 46.3

SGDP
SGDP,
SGDP,

proj_0

78.9
81.9
82.1

79.1
82.3
82.4

79.3
82.6
82.7

79.5 797
829 831
829 83.1

79.8
83.2
83.1

79.9 80.1
833 835
83.3 835

80.1 | 87.6
83.5 | 83.6
83.5 | 80.2

78.2
72.4
67.7

64.5
57.4
51.9

595 55.1
52.1 478
465 42.1

514 48.1
44.1 41.0
385 355

454 429
383 36.0
329 306

DeepPrefetcher
Delta-LSTM

75.0
71.5

76.2
732

76.8
74.1

7712 715
748 754

77.6
76.1

715 71.6
764 76.7

77.6 | 70.4
77.0 | 79.3

58.4
72.8

42.6
59.9

375 335
554 514

301 273
483 453

25.0 23.1
429 40.7

SGDP
SGDP,
SGDP,

prxy_0

73.9
71.7
712

74.4
78.3
77.8

74.6
78.7
78.2

753 755
794 79.6
79.0 793

75.6
79.8
79.6

757 76.1
799 80.2
79.8 80.1

76.1 | 83.3
80.2 | 743
80.1 | 72.6

72.3
61.4
59.1

58.0
47.0
44.0

532 49.0
425 38.6
395 358

455 425
355 328
327 30.1

40.1 37.6
30.7 28.6
28.0 26.0

DeepPrefetcher
Delta-LSTM

84.1
83.3

84.5
84.0

84.8
84.4

850 852
847 85.1

85.5
85.4

85.6 859
85.7 859

86.0 | 80.9
86.0 | 81.3

68.9
71.3

533
56.4

48.0 43.7
513 472

40.1 37.1
43.7 40.7

345 323
38.1 359

SGDP
SGDP;
SGDP,

srcl_2

83.7
84.8
85.7

84.1
85.3
86.0

84.5
85.7
86.3

84.8 85.0
86.0 863
86.6 86.8

85.4
86.7
87.0

855 858
86.8 87.1
87.3 875

85.9 | 88.5
87.2 | 874
87.5 | 84.0

79.8
78.3
73.4

67.1
65.1
58.7

624 58.3
60.4 56.3
53.6 492

549 517
52.8 497
455 423

49.0 46.5
47.0 445
39.5 37.0

TABLE VI

THE NUMBER OF LBA DELTA PREDICTIONS THAT CAN BE INFERRED PER SECOND BY LEARNING-BASED METHODS.

dataset
Method

hw_1

hw_2

hw_3

hm_1

mds_0

proj_0

prxy_0

srcl_2

avg

Delta-LSTM
DeepPrefetcher

89.4
208.2

87.4
154.5

94.5
194.2

92.4
160.1

90.7
248.4

91.5
178.4

88.4
187.9

95.1
249.6

91.2
197.7

SGDP
SGDP,
SGDP,

644.5
634.7
599.5

692.4
686.9
645.6

606.1
614.7
593.9

5152
500.1
567.0

543.5
651.4
491.7

5533
663.9
529.3

470.0
526.3
574.8

550.7
670.7
558.7

579.5
618.6
570.1

TABLE VII
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET HW_1.

HR@N
Cache sizes | 10 20 30 40 50 60 70 8 90 100 200 300 400 500 600 700 800 900 1000
Methods
No_pre | 0 0 0 0 0 0 0 03 03 03 03 04 17 26 27 31 176 156 389 542
Naive | 569 575 57.8 579 579 579 579 579 580 580 580 581 582 589 592 595 597 599 66 632
Stride | 43.6 437 438 439 439 439 439 440 440 440 440 440 446 454 457 460 462 502 538 658
ARIMA | 15 19 23 26 30 31 31 34 38 39 40 43 45 50 60 67 76 80 83 88
Informer | 02 02 04 05 05 06 07 07 08 08 09 13 16 20 24 39 44 52 55 58
DeepPrefetcher | 73.9 743 745 746 746 746 746 746 746 146 746 747 748 753 757 157 759 7165 7118 792
Delta-LSTM | 740 744 746 747 747 747 747 747 748 748 748 748 749 754 758 758 160 766 779 793
SGDP | 787 792 1794 794 794 795 1795 795 795 795 795 795 796 799 802 803 804 813 824 858
SGDP; | 779 785 787 788 788 788 788 788 788 788 788 789 790 793 796 79.6 79.8 807 817 849
SGDP, | 749 757 767 711 714 716 717 719 780 781 782 785 786 790 793 794 795 802 S8LI 836
EPR@N
Cache sizes | 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Methods
Naive | 61.1 633 643 644 644 644 645 645 645 645 645 646 648 649 650 651 651 652 647 645
Swide | 80.2 805 810 810 8.0 8.1 8.1 8.1 8L1 8.1 8L1 8L1 812 813 814 84 815 813 8LI 806
ARIMA | 15 19 25 28 32 33 33 36 41 42 43 44 47 51 53 56 57 60 62 62
Informer | 02 03 04 05 06 06 07 07 08 08 09 L1 14 17 21 23 26 28 28 29
DeepPrefetcher | 74.6 754 758 758 758 758 759 759 759 759 759 759 760 762 764 165 765 765 1765 765
Delta-LSTM | 747 755 759 759 759 760 760 760 760 760 760 760 761 763 765 766 766 166 766 766
SGDP | 819 829 834 8§34 834 835 835 835 835 835 835 835 836 836 837 837 837 834 830 S8L6
SGDP, | 80.9 821 826 826 826 827 827 827 827 827 8.7 828 89 89 830 8.0 8.1 8.7 83 806
SGDP, | 764 776 788 792 796 798 800 0.1 802 803 804 808 809 810 S8LI 812 812 809 807 796
TABLE VIII
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET HW_2.
HR@N
Cache sizes | 5 10 20 30 40 50 60 70 8 90 100 200 300 400 500 600 700 800 900 1000
Methods
Nopre | 10 10 10 L1 11 11 N T T B
Naive | 923 925 925 925 926 926 926 926 926 926 926 927 927 927 927 927 927 927 927 927
Stide | 91.0 910 910 91.0 9L.1 911 911 LI 911 LI 9L1 9Ll 9L1 O9LI 911 9LI 911 OLI 911 9Ll
ARIMA | 826 828 828 828 828 829 829 829 829 829 829 829 830 83.0 830 830 830 830 830 83.0
Iformer | 10 10 10 10 10 10 1l LI 11 Ll Ll Ll Ll Ll 11 Ll 11 L1 11 L1
DeepPrefetcher | 922 922 923 924 924 925 925 925 925 925 925 926 927 927 927 927 928 928 928 92.8
Delta-LSTM | 92.4 925 926 926 927 927 927 928 928 928 928 929 929 929 929 930 930 930 930 93.1
SGDP | 929 930 930 930 930 930 930 930 930 930 930 931 931 931 931 931 931 931 931 931
SGDP, | 929 929 930 930 930 930 930 931 931 931 931 931 931 931 931 931 932 932 932 932
SGDP, | 93.6 937 938 939 940 940 940 940 940 940 940 941 941 941 941 942 942 942 942 942
EPR@N
Cache sizes | 5 0 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Methods
Naive | 930 933 934 935 935 936 936 937 937 937 937 939 939 939 939 940 940 940 940 940
Stride | 99.1 991 99.1 991 992 992 992 992 992 992 992 992 992 992 992 992 992 992 992 992
ARIMA | 855 859 860 861 861 861 861 861 861 861 862 862 863 863 863 864 864 864 864 864
Informer | 00
DeepPrefetcher | 933 934 93.6 93.6 937 938 939 940 940 940 940 942 943 943 943 944 945 945 945 945
Delta-LSTM | 93.6 937 938 939 940 941 941 941 942 942 942 944 944 945 945 946 947 947 947 947
SGDP | 975 975 976 976 916 917 917 971 917 977 917 977 978 978 978 978 978 978 978 978
SGDP, | 968 970 970 97.1 971 972 972 972 972 972 972 973 973 973 973 974 974 974 974 974
SGDP, | 942 944 946 947 948 949 949 950 950 950 950 951 952 952 952 953 954 954 954 954

TABLE IX
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET HW_3.

HR@N
Cache sizes | 10 20 30 40 S0 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Methods
Nopre | 00 00 00 00 00 00 00 00 00 01 01 02 03 09 09 10 11 11 12 13
Naive | 47.6 477 478 478 478 478 478 478 479 479 479 482 482 482 482 482 487 488 488 488
Swide | 384 384 385 385 385 385 385 385 386 386 386 388 388 393 394 395 395 395 396 39.6
ARIMA | 01 03 03 03 03 03 03 03 03 03 03 04 05 05 05 06 06 12 12 13
Informer | 00 00 00 00 00 00 00 00 00 00 00 01 02 02 02 03 03 09 09 09
DeepPrefetcher | 504 504 505 505 505 505 505 506 506 50.6 507 508 510 510 5.1 SLI SL1 517 517 517
DeltaLSTM | 563 564 564 564 564 565 565 565 566 566 568 571 571 571 572 573 578 578 578 579
SGDP | 760 760 761 761 761 761 1762 764 765 1765 766 768 168 169 713 713 714 714 7174 715
SGDP, | 785 785 785 786 786 786 786 789 790 790 790 792 793 793 793 797 797 1797 197 7938
SGDP, | 48.0 48.1 481 48.1 48.1 48.1 482 482 482 483 483 486 489 489 490 493 496 496 496 496
EPR@N
Cache sizes
5 10 20 30 40 S0 60 70 8 90 100 200 300 400 500 600 700 800 900 1000
Methods
Naive | 479 480 48.1 481 481 482 482 482 482 482 483 485 485 484 484 484 487 487 487 487
Swide | 81.6 816 817 817 817 818 818 818 819 8.0 820 821 821 822 8§22 82 823 823 823 823
ARIMA | 01 02 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03
Informer | 00
DeepPrefetcher | 504 504 505 505 505 505 505 506 506 507 507 508 510 510 510 510 510 512 512 512
DeltaLSTM | 653 662 663 663 663 664 664 664 665 665 668 67.0 67.0 610 610 671 672 672 672 672
SGDP | 888 889 889 839 890 89.0 89.0 89.3 894 895 895 897 897 898 900 900 90.1 90.1 90.1 90.1
SGDP, | 83.6 836 83.6 83.6 837 837 837 840 841 841 842 844 844 845 845 847 847 847 847 847
SGDP, | 70.6 721 725 726 726 726 727 728 729 730 731 737 744 45 746 747 749 751 51 75.1
TABLE X
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET HM_1.
HR@N
Cache sizes | 5 10 20 30 40 S0 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Methods
Nopre | 10 27 55 85 119 143 166 194 215 235 253 422 687 919 954 962 968 973 979 983
Naive | 308 317 332 346 360 374 388 402 415 427 438 534 605 682 782 880 942 964 971 974
Swide | 257 271 296 321 349 371 393 418 437 453 470 598 756 953 973 980 984 986 989 99.1
ARIMA | 24 35 56 75 94 113 131 147 163 177 190 304 387 485 609 749 863 917 938 952
Informer | 05 1.1 28 41 57 72 85 100 115 127 140 241 314 386 481 593 711 8L1 868 904
DeepPrefetcher | 36.7 385 417 446 471 496 520 541 559 575 5901 712 805 943 972 980 986 99.0 99.1 993
DeltaLSTM | 283 300 329 356 383 409 43.1 450 470 490 506 636 783 959 978 984 988 990 99.1 993
SGDP | 367 381 404 427 450 471 488 509 528 543 557 674 812 968 984 988 99.1 992 993 994
SGDP, | 406 43.1 465 491 514 535 554 571 586 601 614 703 785 902 974 982 986 988 989 99.1
SGDP, | 414 439 475 503 527 549 568 585 599 614 629 718 803 928 975 983 986 989 992 994
EPR@N
Cache sizes
5 10 20 30 40 50 60 70 8 90 100 200 300 400 500 600 700 800 900 1000
Methods
Naive | 305 305 308 309 310 310 311 311 312 312 312 312 300 269 218 166 118 75 62 56
Swide | 820 823 827 830 833 835 838 840 841 842 844 843 790 836 861 877 880 87.8 874 884
ARIMA | 23 27 32 36 40 42 45 46 48 S0 52 63 69 65 56 40 30 25 23 25
Informer | 01 01 02 03 04 04 05 06 06 07 07 11 14 15 14 12 10 09 08 07
DeepPrefetcher | 37.0 385 415 440 462 483 501 519 535 548 560 653 67.0 535 484 415 421 452 474 4611
DeltaLSTM | 559 577 609 634 654 67.1 686 698 708 719 728 790 796 78.1 818 834 857 87.0 866 87.6
SGDP | 865 87.8 887 89.1 892 895 897 898 899 900 901 909 878 867 88.1 89.1 889 887 873 862
SGDP, | 433 463 503 530 548 563 576 587 596 602 608 637 615 490 339 271 263 266 267 244
SGDP, | 43.4 468 512 543 565 583 599 611 621 630 638 677 659 S5l4 416 355 351 355 363 348

TABLE XI
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET MDS_0.

HR@N
Cachesizes | 5 10 20 30 40 50 60 70 8 9 100 200 300 400 500 600 700 800 900 1000
Methods
Nopre | 10.1 132 181 210 242 267 300 324 334 342 350 458 496 513 526 550 579 585 593 610
Naive | 500 543 584 612 631 646 658 668 675 679 682 7TL1 750 789 811 829 839 845 849 852
Swide | 440 473 518 542 558 575 590 603 609 615 622 720 756 769 714 718 785 789 792 798
ARIMA | 132 166 207 240 274 302 326 350 361 369 374 412 461 503 528 543 552 561 576 583
Informer | 62 9.6 131 160 186 204 221 237 254 269 283 359 402 441 472 490 509 523 535 545
DeepPrefetcher | 557 607 653 681 698 711 719 725 730 734 737 789 844 862 87.1 874 877 879 831 885
DeltaLSTM | 538 573 615 636 650 661 671 679 685 690 69.6 786 824 839 843 847 850 853 857 862
SGDP | 62.5 660 697 717 728 737 744 749 754 758 763 845 884 899 903 905 907 910 913 916
SGDP, | 623 661 70. 724 739 751 760 765 769 712 775 820 8.5 897 906 O9L1 914 916 918 921
SGDP, | 63.5 674 718 744 760 772 780 786 791 794 798 861 899 912 916 918 920 922 924 926
EPR@N
Cache sizes | 10 20 30 40 S0 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Methods
Naive | 458 478 504 518 526 525 519 510 509 510 511 521 528 531 529 528 508 512 518 522
Swide | 792 823 869 891 901 905 905 905 90.6 90.6 90.6 907 90.8 909 907 90.6 899 89.8 89.8 89.8
ARIMA | 81 86 95 99 100 100 99 93 93 92 92 96 98 102 104 107 110 113 117 120
Informer | 02 03 05 08 10 10 LI L1 LI L1 12 21 30 37 42 45 47 48 50 52
DeepPrefetcher | 63.1 669 713 739 754 761 762 763 767 712 775 802 823 831 835 837 832 832 832 833
DeltaLSTM | 770 802 842 861 87.0 873 874 874 876 87.6 878 8.1 900 904 904 90.1 897 89.6 89.8 89.8
SGDP | 772 802 839 857 865 868 868 866 869 870 87.0 879 885 838 889 889 834 884 885 88.4
SGDP, | 624 654 692 713 724 727 728 727 732 735 739 765 783 792 798 800 792 794 796 796
SGDP, | 649 687 738 770 789 796 800 804 810 814 819 853 875 881 884 884 878 878 880 879
TABLE XII
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET PROJ_0.
HR@N
Cache sizes
5 10 20 30 40 S0 60 70 8 90 100 200 300 400 500 600 700 800 900 1000
Methods
Nopre | 41 61 89 110 141 174 231 263 273 282 287 308 323 328 332 335 340 348 350 352
Naive | 59.0 611 63.6 651 663 672 682 692 69.6 699 701 711 718 725 730 734 737 739 742 743
Stride | 487 510 531 545 557 570 589 60.0 605 608 6.1 625 638 641 643 647 649 652 653 654
ARIMA | 107 129 156 181 208 236 275 308 321 330 335 352 361 370 377 383 387 389 390 393
Informer | 23 39 60 77 92 106 121 137 154 173 198 296 308 319 326 334 338 342 345 347
DeepPrefetcher | 704 726 747 759 768 774 781 785 787 789 791 802 811 818 819 821 822 825 827 828
DeltaLSTM | 60.5 623 640 650 659 667 617 684 687 689 69.1 705 717 721 723 726 728 731 733 733
SGDP | 715 734 750 759 1765 771 716 780 782 784 785 797 807 811 812 815 817 819 821 821
SGDP, | 735 755 773 783 790 79.6 802 80.6 808 810 8.1 820 829 83.6 838 840 842 843 845 846
SGDP, | 71.5 737 762 715 784 792 800 805 808 8.0 S13 826 836 842 844 8§45 847 849 851 852
EPR@N
Cachesizes | o 10 20 30 40 S0 60 70 8 90 100 200 300 400 500 600 700 800 900 1000
Methods
Naive | 57.6 587 610 623 629 627 619 60.1 598 598 597 602 604 60.6 607 609 609 609 608 608
Swide | 80.3 825 856 873 884 887 884 88.0 881 881 881 883 883 883 883 884 884 883 883 883
ARIMA | 116 120 126 130 131 126 117 108 104 102 100 100 100 100 102 102 103 103 103 104
Informer | 00 01 01 02 03 03 04 04 05 05 05 10 14 18 20 22 22 23 23 23
DeepPrefetcher | 73.0 750 775 789 797 796 789 783 784 785 786 797 803 808 81.0 811 812 813 814 815
DeltaLSTM | 82.8 843 861 87.1 87.5 874 867 862 861 861 862 866 869 87.1 87.2 873 873 874 873 874
SGDP | 822 840 863 87.6 834 884 880 876 87.6 876 87.6 879 830 8.1 8.1 882 882 882 882 882
SGDP, | 778 798 822 835 843 843 838 834 834 835 836 845 849 853 854 855 856 856 856 856
SGDP, | 723 745 775 792 803 805 800 796 798 799 802 816 825 830 833 835 836 837 838 839

TABLE XIII

RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET PRXY_0.

HR@N
Cache sizes
5 10 20 30 40 50 60 70 8 90 100 200 300 400 500 600 700 800 900 1000
Methods
No_pre | 149 201 251 275 300 324 357 380 392 40.1 407 459 475 478 480 484 485 486 487 488
Naive | 404 464 524 560 582 599 613 625 633 639 643 665 679 695 705 713 719 723 125 727
Stide | 345 403 451 47.6 494 513 532 546 553 559 565 611 626 629 632 635 636 637 638 638
ARIMA | 146 199 257 292 320 347 373 397 408 417 422 455 474 494 504 510 517 520 522 523
Informer | 84 137 186 218 240 257 269 282 297 308 321 398 419 43.1 440 449 455 461 466 469
DeepPrefetcher | 50.9 570 623 647 662 674 683 690 694 699 702 736 756 765 767 769 7.1 712 7113 714
DeltaLSTM | 468 522 565 585 597 609 620 628 633 637 642 685 701 704 707 710 710 711 712 713
SGDP | 567 622 664 683 695 1706 713 719 724 728 732 772 787 790 1793 796 796 797 798 79.9
SGDP, | 587 641 689 712 727 739 747 753 758 762 765 794 814 822 825 827 828 8§29 829 83.0
SGDP, | 582 639 688 710 725 736 744 750 754 758 762 80.0 SL8 822 825 826 828 829 830 83.0
EPR@N
Cache sizes | 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Methods
Naive | 335 35.1 37.6 39.1 401 404 399 390 386 386 385 388 392 396 398 40.1 403 405 407 409
Swide | 652 69.6 753 789 812 819 817 814 813 812 811 8Ll 812 813 813 813 814 814 84 814
ARIMA | 61 65 71 74 78 79 77 74 73 72 72 74 15 717 17 78 80 80 81 82
Informer | 00 00 00 00 00 00 00 00 00 00 00 00 o0l 01 01 01 01 01 02 02
DeepPrefetcher | 59.6 635 677 700 712 713 709 703 703 703 704 715 725 729 731 733 734 737 738 739
DeltaLSTM | 729 757 787 804 811 810 803 797 795 794 793 798 80. 803 805 806 807 80.8 80.8 80.9
SGDP | 730 763 802 824 836 840 837 834 834 834 833 835 836 837 838 839 839 840 840 841
SGDP, | 624 657 695 719 733 737 73.6 735 738 740 743 759 770 775 777 719 781 783 784 784
SGDP, | 612 649 9.1 714 727 730 726 7123 723 724 726 735 744 748 751 154 757 758 760 76.1
TABLE XIV
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET SRC1_2.
HR@N
Cachesizes | 5 10 20 30 40 50 60 70 8 9 100 200 300 400 500 600 700 800 900 1000
Methods
Nopre | 1.6 39 76 113 156 205 276 315 328 339 2348 395 426 446 457 463 470 474 479 482
Naive | 585 605 63.1 652 668 683 699 714 721 726 730 747 759 773 785 794 799 803 806 8038
Swide | 459 483 510 532 553 576 603 620 627 633 638 662 692 709 717 721 726 729 732 734
ARIMA | 125 146 181 216 251 292 345 382 399 411 420 453 462 489 502 519 530 538 544 548
Informer | 0.7 17 41 62 80 101 123 144 165 193 225 348 367 393 408 424 43.5 440 447 453
DeepPrefetcher | 72.5 745 765 780 79.1 802 813 820 823 826 829 840 853 863 874 880 883 885 888 890
DeltaLSTM | 669 687 708 724 737 751 766 715 780 783 787 798 815 826 837 843 846 849 852 854
SGDP | 73.5 754 774 787 1798 808 817 822 826 828 83.1 843 859 869 8.6 879 88.1 884 886 888
SGDP, | 743 763 783 796 807 816 826 83.1 834 837 839 850 865 874 882 885 887 89.0 892 89.4
SGDP, | 727 749 773 792 806 819 83.1 §38 842 845 848 859 8§71 879 886 889 892 893 896 89.8
EPR@N
Cache sizes | 10 20 30 40 S0 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Methods
Naive | 583 599 633 652 659 658 649 632 630 630 631 638 643 648 651 653 656 658 661 663
Swide | 780 810 861 88.6 897 90.1 89.8 89.6 89.6 89.6 89.6 90.0 911 916 917 91§ 919 919 920 920
ARIMA | 189 195 203 208 210 206 192 182 180 178 177 177 180 184 186 188 190 189 191 192
Informer | 00 00 00 00 00 00 01 0l o0l 01 0l 0l 02 02 03 04 05 05 05 06
DeepPrefetcher | 740 762 798 814 821 821 814 808 809 809 809 814 828 839 849 856 862 865 868 87.0
DeltaLSTM | 759 779 811 825 830 829 821 815 814 814 814 819 831 843 852 859 865 868 87.1 873
SGDP | 80.0 825 859 877 835 888 885 883 884 885 885 890 897 90.1 903 904 905 906 907 908
SGDP, | 790 815 849 867 87.5 877 874 872 873 874 874 878 883 886 887 839 89.0 89.1 893 893
SGDP, | 73.6 761 802 824 837 841 837 835 837 839 840 846 853 857 861 864 868 869 872 873

	Introduction
	Related Work
	Preliminaries
	Methodology
	LBA Delta Streams
	LBA Delta Based Graph Structure
	Weighted Directed Stream-based Graph
	Latent Node Vectors Updating
	Generating Stream Hybrid Embedding Vector
	Forecasting and Prefetching

	Experimental Settings
	Datasets
	Compared Methods
	Evaluation Criteria
	Implementation Details

	Experimental Results
	Results of Single-Step Prefetching
	Ablation study and SGDP Variants by Stream Construction
	Retaining top-K delta value (SGDPl)
	Stream partition with page (SGDPp)

	Multi-step Prefetching
	Offline Training and Online Testing Efficiency

	Conclusions
	References

