
SGDP: A Stream-Graph Neural Network Based
Data Prefetcher

Yiyuan Yang*
University of Oxford

Huawei Noah’s Ark Lab
Oxford, UK

yiyuan.yang@cs.ox.ac.uk

Gang Hu
Huawei

Chengdu, China
hugang27@huawei.com

Rongshang Li*
University of Sydney

Huawei Noah’s Ark Lab
Sydney, Australia

roli5128@uni.sydney.edu.au

Xing Li
Huawei Noah’s Ark Lab

Hongkong, China
li.xing2@huawei.com

Qiquan Shi
Huawei Noah’s Ark Lab

Huawei
Shenzhen, China

shiqiquan@huawei.com

Mingxuan Yuan
Huawei Noah’s Ark Lab

Hongkong, China
Yuan.Mingxuan@huawei.com

Xijun Li
MIRA Lab, USTC

Huawei Noah’s Ark Lab
Shenzhen, China

xijun.li@huawei.com

Abstract—Data prefetching is important for storage system
optimization and access performance improvement. Traditional
prefetchers work well for mining access patterns of sequential
logical block address (LBA) but cannot handle complex non-
sequential patterns that commonly exist in real-world appli-
cations. The state-of-the-art (SOTA) learning-based prefetchers
cover more LBA accesses. However, they do not adequately
consider the spatial interdependencies between LBA deltas, which
leads to limited performance and robustness. This paper proposes
a novel Stream-Graph neural network-based Data Prefetcher
(SGDP). Specifically, SGDP models LBA delta streams using
a weighted directed graph structure to represent interactive
relations among LBA deltas and further extracts hybrid features
by graph neural networks for data prefetching. We conduct
extensive experiments on eight real-world datasets. Empirical
results verify that SGDP outperforms the SOTA methods in
terms of the hit ratio by 6.21%, the effective prefetching ratio
by 7.00%, and speeds up inference time by 3.13× on average.
Besides, we generalize SGDP to different variants by different
stream constructions, further expanding its application scenarios
and demonstrating its robustness. SGDP offers a novel data
prefetching solution and has been verified in commercial hybrid
storage systems in the experimental phase. Our codes and
appendix are available at https://github.com/yyysjz1997/SGDP/.

Index Terms—data prefetching, graph neural networks, logical
block address, data mining

I. INTRODUCTION

In the big data era, the demand for high-performance storage
systems is increasing rapidly. The Input/Output (I/O) speed
gap between different storage devices in a hybrid storage
system might cause high access latency [16]. To fill this
gap, the cache is designed to temporarily keep data that are
likely to be accessed in the future. The performance of cache,
commonly represented by hit ratio, has a direct impact on the
performance of the whole storage system.

To improve the hit ratio, data prefetching is introduced
as an essential technique in the cache. Prefetchers reduce

*Both authors contributed equally to this research. Work done as interns in
Huawei Noah’s Ark Lab.

access latency by fetching data from their original storage
in slower memory to cache before they are needed [54].
Common block-level cache prefetchers take in logical block
address (LBA) access sequences as input (i.e., some integer
numbers). Prefetchers predict the LBA of the block that might
be accessed in a short time and decide whether to pre-load it or
not. There are two major challenges in the design of effective
prefetchers. First, the LBA access sequences in real-world
applications have complex patterns due to concurrent and
random accesses from different users or applications, which
are common in modern large-scale storage systems [22], [51].
Second, effective prefetchers need to be accurate. Inaccurate
prefetchers waste both I/O bandwidth and cache space [19].
Therefore, designing effective prefetchers is vital for storage
systems.

Traditional prefetchers prefetch the data by matching LBA
access sequences to specific predefined rules. However, they
can hardly adapt to complex real-world scenarios as their
predefined rules are limited to specific simple patterns such
as sequential reading [18]. To learn complex patterns, sev-
eral learning-based methods [1], [3], [4], [7] are applied.
Recently, long short-term memory (LSTM) based methods
like DeepPrefetcher [20] and Delta-LSTM [5] have shown
promising results. They model the LBA delta (i.e., the dif-
ference between successive access requests), which covers
more LBA accesses. However, due to concurrent accesses,
the chronological order of LBA deltas within a short time
period is likely to be disrupted. DeepPrefetcher and Delta-
LSTM disregard the internal temporal correlation and result
in limited performance.

Graph structures can effectively use nodes and edges to
represent LBA (delta) and access sequence, and can mine
intrinsic access patterns beyond chronological order in hy-
brid storage systems like relational databases. Therefore, to
improve the performance of prefetching especially in appli-
cations with complex patterns, this work models the relations
among LBA deltas using graph neural network, and proposes

ar
X

iv
:2

30
4.

03
86

4v
2

 [
cs

.O
S]

 1
1

O
ct

 2
02

3

Storage
system

Step 1 Step 2 Step 3 Step 4

File system

Read Write

LBA sequence
𝑙𝑏𝑎ଵ, 𝑙𝑏𝑎ଶ, 𝑙𝑏𝑎ଷ, …

LBA delta

Split into

streams

Sequential connect
matrix 𝑴𝑺

Full-connect
matrix 𝑴𝑭

Hybrid connection
matrix 𝑴𝒉

Stream embedding 𝑺𝚫

G
ated graph neural netw

ork

𝑙𝑑௖భ

𝑙𝑑௖ఱభ

𝑙𝑑௖మ

𝑙𝑑௖బ

. .

A
ttention netw

ork

𝒗𝒈

L
inear transform

ation

C
an

d
id

ate w
ith

 th
e h

igh
est score

Top-𝐾 LBA
delta classes

 𝑙𝑏𝑎෢
௜ାଵ

Flash memory

Prefetching max
 𝑧̂

Compute

Encoding

Streams

𝑙𝑑ଵ

𝑙𝑑ହଵ

𝑙𝑑଺

…

𝑙𝑑ଶ

𝑙𝑑ଵ଴

𝑙𝑑ସ

𝑙𝑑௖ళ

𝑙𝑑௖భ

𝑙𝑑௖మ

…

𝑙𝑑௖ర

𝑙𝑑௖భ

𝑙𝑑௖ళ

𝑙𝑑ଵ

𝑙𝑑ହଵ

𝑙𝑑଺

…

𝑙𝑑ଶ

𝑙𝑑ଵ଴

𝑙𝑑ସ

𝑙𝑑௖భ

𝑙𝑑௖ఱభ

𝑙𝑑௖ళ

…

𝑙𝑑௖మ

𝑙𝑑௖బ

𝑙𝑑௖ర

Compute

Compute

Embedding

Weighted sum

Weighted sum

𝒔𝚫

𝑙𝑑௖ళ

𝑙𝑑௖ర

𝒗𝒍

𝒗𝒉

Decoding
 𝑙𝑑෡ ௜ାଵ

 𝑙𝑏𝑎෢
௜ାଵ= 𝑙𝑏𝑎௜ + 𝑙𝑑෡ ௜ାଵ

Fig. 1. The workflow of the SGDP framework. In Step 1, we compress the search space and reduce the learning complexity. In Step 2, we compute the
hybrid connection matrix Mh with sequential and global information and embed the LBA delta stream into a matrix S∆. In Step 3, using gated graph neural
networks to update the latent node vectors. Each stream is represented as the combination of the local preference vl and global interaction vg by an attention
network. In Step 4, we predict the candidate with the highest score and decode it to get the next accessed LBA for prefetching. This framework corresponds
to the four steps of Algorithm 1.

a novel method called Stream-Graph Neural Network-Based
Data Prefetcher (SGDP), as shown in Figure 1. Specifically,
we encode LBA deltas and split them into shorter streams.
Then we build weighted directed graphs based on LBA delta
streams and extract relations of sequential connection and
temporal accesses of LBA deltas from each stream, which are
represented as sequential connect matrices and full-connect
matrices, respectively. By fusing those two matrices, we get
hybrid matrices that contain the relations of LBA deltas.
Finally, the hybrid matrix, along with embedding LBA deltas
of each stream is fed into a gated graph neural network to
learn access patterns for prefetching. Extensive experiments
on eight real-world datasets show that SGDP outperforms the
SOTA prefetchers in terms of performance and efficiency.

The contributions of this work are summarized as follows:
1. SGDP can accurately learn complex access patterns by

capturing the relations of LBA deltas in each stream. The
relations are represented by sequential connect matrices and
full-connect matrices using graph structures.

2. To the best of our knowledge, SGDP is the first work that
utilizes the stream-graph structure of the LBA delta in the data
prefetching problem. Using gated graph neural networks and
attention mechanisms, we extract and aggregate sequential and
global information for better prefetching.

3. As a novel solution in the hybrid storage system, SGDP
can be generalized to multiple variants by different stream
construction methods, which further enhances its robustness
and expands its application to various real-world scenarios.

4. SGDP outperforms SOTA prefetchers by 6.21% on hit
ratio, 7.00% on effective prefetching ratio, and speeds up
inference time by 3.13× on average. It has been verified in
commercial hybrid storage systems in the experimental phase

and will be deployed in the future product series.

II. RELATED WORK

Traditional Data Prefetcher The most commonly used
prefetcher is the Stride prefetcher [27] which uses a reference
prediction table to store the last few accessed LBAs and the
stride to obtain the required LBA. Although it can capture
a constant stride in sequential access patterns, it can hardly
detect variable strides in irregular access patterns. Temporal
prefetchers learn irregular access patterns by memorizing pairs
of correlated LBAs [8], [34], [39], [40]. However, due to in-
consistent correlation address pairs, these traditional methods
cannot achieve good performance in practice.

Learning-based Data Prefetcher Prefetching needs to
be accurate, as a small error in the numerical value of a
prefetched LBA leads to useless prefetch and a waste of cache
space and I/O bandwidth. Even though prefetching can be
treated as a prediction problem, regression-based time-series
prediction models like ARIMA are not widely considered by
researchers. Classification-based methods seem more favoured
because they can cover more LBA accesses, but not practical
as it is hard to cover all LBAs. For example, in Microsoft
Research Cambridge traces [2], the top-1000 most frequently
occurring LBAs cover only 2.8% of all the LBA accesses,
whereas the top-1000 most frequently occurring LBA deltas
cover 91.7% of all LBA accesses [5]. To learn more complex
access patterns, many deep learning approaches are proposed
and consider the LBA delta as input directly [19]. Deep-
Prefetcher [20] transforms the LBA sequence into LBA deltas,
then employs the word2vec model and LSTM architecture to
capture the hidden feature in the input sequence. However,
it is inefficient on large-scale trace datasets. Delta-LSTM is

proposed [5] and addresses the large and sparse LBA space by
co-learning top-K LBA delta and I/O size features. Within top-
K (e.g., K = 1000) classes, the searching space is restricted,
which alleviates the class explosion problem. However, both
of them do not consider the relations of LBA deltas to capture
the more complex patterns (e.g., the continuous LBA accesses
across many pages), which results in limited performance.

Prefetching with Graph-based Structure Complex pat-
terns in LBA access streams can be constructed by graphs
[43], [53]. Nexus uses metadata relationship graphs to assist
prefetching decision-making [56]. Ainsworth et al. design a
prefetcher for breadth-first searches on graphs [55]. These
methods transform a sequence of observed LBAs into a
directed graph, in which a node is utilized to represent a block
access event to model block access patterns. However, LBA
accesses are quite sparse, which results in large graphs in these
LBA sequence-based methods and makes these prefetchers
quite ineffective in practice.

III. PRELIMINARIES

Consider an LBA access sequence with length n:

⟨lbai⟩ni=1 = ⟨lba1, lba2, . . . , lban⟩, (1)

in which lbai ∈ N represents the address number of the i-th
accessed blocks. The data prefetching problem can be regarded
as given ⟨lbai⟩ni=1, predict lban+1. Following the previous
learning-based prefetchers, we compute LBA deltas (ld):

ldi = lbai+1 − lbai, (2)

⟨ldi⟩n−1
i=1 = ⟨ld1, ld2, . . . , ldn−1⟩. (3)

In order to get the prediction of the next LBA, l̂ban+1, we
predict the delta l̂dn. Note that the variables with the ̂ symbol
denotes the predicted values. In short, the data prefetching
problem is formulated as follows:

l̂ban+1 = lban + l̂dn. (4)

To restrict the model size, the number of classes of LBA
deltas that needs to be predicted is capped to a fixed number of
K+1. Here K is acquired by top-K most frequently occurring
LBA delta in ⟨ldi⟩l−1

i=1, and the extra class is for the other infre-
quent LBA deltas. The prefetcher treats this extra class as no-
prefetch because infrequent LBA delta is hard to predict. We
redefine these K+1 classes as LD = {ldc0 , ldc1 , . . . , ldcK+1

},
ldc0 representing the no-prefetch class and {ldc1 , . . . , ldcK+1

}
representing the top-K ones. The model predicts the ldci of
the next LBA delta, and prefetches it when the predicted class
is in the top-K and does not prefetch if the class is ldc0 . Using
the LBA delta and Top-K mechanism can effectively reduce
the sparse problem and the search space of the model.

IV. METHODOLOGY

A. LBA Delta Streams

It would yield expensive costs if building the directed graph
of the LBA delta sequence generated by the whole LBA
sequence (length ≥ 1 × 107). To alleviate this problem, we

1 32 4

1211 13 14

31 32 3433

user1

user2

user3

31 1 32 2 11 33 3 12 34 4 13 14

-30 31 -30 9 22 -30 9 22 -30 9 1

-30 931

22

1

Requests

LBA sequence

LBA delta sequence

LBA delta graph

Time

combine

compute

construct

Fig. 2. Example of LBA delta and graph.

use the concept of data access stream. We split the whole
LBA delta sequence into shorter streams which represent
the temporal access patterns. Specifically, we consider LBA
accesses with close access times to be in the same stream.
Whenever the time interval between two LBA accesses is
longer than a preset time limit T (e.g. T = 0.1ms), the LBA
sequence will be split to generate a new stream. We then split
the LBA delta sequence correspondingly and use a sliding
window inside each stream to generate equal-length LBA delta
streams. A split LBA delta stream s∆ can be represented by a
vector s∆ = [lds,1, lds,2, ..., lds,n] in the chronological order,
where lds,i denotes the i-th LBA delta in the stream s∆. The
LBA delta stream is not only suitable for building directed
graphs but also implies the temporal locality of LBA accesses.

B. LBA Delta Based Graph Structure

As discussed in Section II, LBA-based graph structure is
ineffective for data prefetching in practice. To solve this prob-
lem, we propose a high-order graph based on the LBA delta.
Here we present a toy example in Figure 2 to show that LBA
deltas can also be represented by a directed graph. Consider
three users sending concurrent sequential read requests. The
concurrent requests are combined into one LBA sequence
before being sent to the storage system. Following the LBA
delta computation progress in Section IV-A, we can simplify
the original LBA sequence that has 12 different LBAs and
represent it with an LBA delta sequence with only 5 different
nodes. We can build a directed graph based on the LBA delta
sequence by using LBA deltas as a node and linking all the
LBA deltas with their successor.

In contrast to previous works on extracting useful features
from access patterns between nearby accessed LBAs only, we
observed if an LBA request sequence is divided into several
streams, different streams are possible to be accessed by a
similar pattern. Non-sequential features can be extracted from
the observed access patterns by monitoring the change (or
difference) between successive LBA requests. This is achieved
by learning the hybrid connection matrix (which contains

31 -30 9 22

-30 931 22

LBA delta stream

LBA delta class nodes construct

9

31 22

9

31 22

-30 -30

Sequential connect Full-connect

LBA delta stream graphs

Fig. 3. Example of two kinds of graphs.

adjacent and interactive relations) along with the embedded
LBA deltas. Also, the number of the graph nodes is constant,
that is K + 1.

C. Weighted Directed Stream-based Graph

Without loss of generality, each LBA delta stream s∆ can
be modeled as a directed graph Gs∆ = (Vs∆ , Es∆). Each node
in the directed graph Gs∆ expresses one of the classes of LBA
deltas lds,a ∈ LD. We build the graph with two kinds of
edges, as shown in Figure 3. The first one (lds,a, lds,a+1) ∈
Es∆ represents the order in an LBA delta stream s∆ by linking
lds,a to its successor lds,a+1. The second one (lds,a, lds,b) ∈
Es∆ is built by fully connecting all nodes in the stream to
capture the global information of each LBA delta stream. We
denote the set of sequential edges as ES

s∆ and full-connected
edges as EF

s∆ . We compute the adjacency matrices MS and
MF of ES

s∆ and EF
s∆ separately. As every LBA delta node

might appear more than once in a stream, we normalize the
weights on each edge in Es∆ . The weight of an edge is set
to be its occurrence counts divided by the out-degree of its
start node. The higher the weight, the stronger the correlation
between the corresponding two nodes. The incoming parts of
MS and MF are computed as Eq. (5) and (6),

Min
S =

K+1∑
i=1

1((lds,a, lds,a+1)ES
s∆
)

1((lds,i, lds,a+1)ES
s∆
)
, (a ≤ n− 1), (5)

Min
F =

K+1∑
i=1

1((lds,a, lds,b)EF
s∆
)

1((lds,i, lds,b)EF
s∆
)× |b− a|

, (a, b ≤ n), (6)

where 1(·) is indicator function and the outgoing parts Mout
F

and Mout
F is computed in the same manner. Then, we ex-

pand MS and MF to the same dimension, MS ,MF ∈
R(K+1)×2∗(K+1). To facilitate the fuse of information in MS

and MF , we conduct a weighted sum of them named as hybrid
connection matrix Mh.

Then, the preprocessed LBA delta stream is embedded with
the hybrid connection matrix Mh and fed into a graph neural
network. Specifically, we obtain each node vector

−→
lds,i ∈ Rd

that indicates the d-dimensional latent vector of the original

lds,i ∈ LD. Each LBA delta stream s∆ can be presented as
an embedding matrix S∆ by DeepWalk [58] where each node
vector

−→
lds,i ∈ Rd denotes a d-dimensional real-valued latent

vector. Note that SGDP can support LBA streams of various
lengths and various graph model constructing strategies.

D. Latent Node Vectors Updating

We apply the vanilla graph neural network (GNN) proposed
by [49] and gated-recurrent-units-based GNN (gated GNN)
[50] to obtain latent features of nodes. Specifically, for each
LBA delta stream vector S∆ = [

−→
ldt−1

1 ,
−→
ldt−1

2 , ...,
−→
ldt−1

n] in the
graph Gs∆ , the update functions can be formalized as,

at = At−1
Mh

(S∆Wa
t + ba

t), (7)

zt = σ(Wz
tat +Uz

t−→ldt−1
n), (8)

rt = σ(Wr
tat +Ur

t−→ldt−1
n), (9)

h̃t = tanh(Wh
tat +Uh

t(rt ⊙
−→
ldt−1

n), (10)

ht = (1− zt)⊙
−→
ldt−1

n + zt ⊙ h̃t, (11)

where At−1
Mh

∈ R1×2n is two rows of blocks (outgoing and
incoming) in Mh corresponding to node ldt−1

n . at extracts
the contextual features of neighborhoods for node ldt−1

n with
weight matrix Wa

t ∈ Rd×2d and bias vector ba
t ∈ R2d.

Then, we take at and previous LBA delta vector
−→
lb t−1

n as input
and feed them into the gated GNN. The updated functions are
shown in Eq. (8)∼(11). zt and rt are the updates and the reset
gate, and control which features to be reserved or discarded.
σ(·) represents the logistic sigmoid function and ⊙ denotes
the element-wise multiplication operator. Wz

t, Wr
t, Wh

t

and Uz
t, Ur

t, Uh
t are the weight matrices to be learned.

The final state ht is the latent node vector, which is the sum
of the candidate states and the previous hidden states. Note
that the model will update all nodes until they converge.

E. Generating Stream Hybrid Embedding Vector

The next accessed LBA is strongly correlated with the
previous ones, and that relationship is inversely proportional
to the interval between the two LBAs. Therefore, we apply
a hybrid embedding vector to extract features, i.e., local
embedding and global embedding. Firstly, the local embedding
vector named vt

l is defined as the last accessed LBA delta−→
ldt−1

n ,
vt
l =

−→
ldt−1

n . (12)

The global embedding vector vt
g aggregates all node vectors in

the LBA delta stream S∆. Specially, we use the soft-attention
approach to more effectively represent the different levels of
priority, as Eq. (13) and (14) show,

αt
i = qt⊤σ(W1

t−→ldt−1
n +W2

t−→ldt−1
i + bt

g), (13)

vt
g =

n∑
i=1

αt
i

−→
ldt−1

i , (14)

where W1
t,W2

t ∈ Rd×d and qt ∈ Rd are weight matrices,
and bt

g ∈ Rd is bias vector.

Finally, the hybrid embedding vector vt
h combines the local

embedding vector vt
l and the global embedding vector vt

g

linearly, as the Eq. (15) shows,

vt
h = Wf

t[vt
l ;v

t
g] + bh

t, (15)

where Wf
t ∈ Rd×2d is weight matrix and bh

t ∈ Rd is bias
vector. The final hybrid embedding vector vt

h of the LBA delta
stream S∆ is in the d dimensions.

F. Forecasting and Prefetching

After extracting the hybrid embedding vector vt
h, we predict

the score of each LBA delta candidate ẑti in stream s∆ by
multiplying vt

h and
−→
ldt−1

i as

ẑti = vt
h
⊤−→
ldt−1

i . (16)

We take the candidate with the highest score as the predicted
LBA delta. Besides, in order to train with labels, we need to
compute the probability of each node ŷt ∈ RK+1 in the next
step using the softmax function, which is

ŷt = Softmax (ẑt). (17)

The loss function is the cross-entropy of prediction ŷt and
ground truth yt with regularization, as shown in Eq. (18).

L(ŷt) = −
m∑
i=1

[yt
i log(ŷ

t
i)+(1−yt

i)log(1−ŷt
i)]+λ∥θ∥22, (18)

where λ is l2 -norm penalty factor, θ is weight vectors.
Finally, we decode the index of max ẑti to l̂ds,n+1, predict

the next accessed LBA by Eq. (4), and prefetch the correspond-
ing block from storage into the cache. Overall, we summarize
the proposed SGDP framework in Algorithm 1.

V. EXPERIMENTAL SETTINGS

A. Datasets

We use representative eight datasets in production servers
from different applications, including six datasets from an
open-source benchmark MSRC and two datasets from a real
enterprise storage system HW:

MSRC* (Microsoft Research Cambridge) [2]: It collects a
1-week LBA sequence of live enterprise servers at Microsoft.
We use its five datasets from different application scenes
named {hm 1, mds 0, proj 0, prxy 0, src1 2}.

HW: It consists of three datasets collected from a real-world
commercial hybrid storage system, which describes storage
traffic characteristics on enterprise virtual desktop infrastruc-
ture and production servers. It intercepts the stream from
an intra-enterprise storage system under different application
scenarios and reads the storage system record logs directly.
We named these three datasets as {hw 1, hw 2, hw 3}.

Table I provides the detail of the eight datasets from two
data sources. Memory means the total amount of storage space
that has been accessed in the trace. Sequential shows the
percentage of sequential accesses in the trace.

*http://iotta.snia.org/traces/388

Algorithm 1 The Workflow of SGDP Framework
Input: An LBA sequence ⟨lbai⟩li=1 = ⟨lba1, lba2, . . . , lbal⟩
, the top number of most frequent LBA delta K, di-
mension of embedding vector of each LBA delta stream
d, cache size N , maximum iteration Q, stop criteria
tol.

1: Step 1: LBA stream preprocessing
2: Compute delta of each adjacent LBA pair in ⟨lbai⟩li=1 and

get LBA delta ⟨ldi⟩l−1
i=1 = ⟨ld1, ld2, . . . , ldn−1⟩.

3: Encode lds in all LBA streams by top(K) to LD.
4: Generate LBA delta stream s∆ by time limit and slide

window.
5: Step 2: Embed LBA delta stream to a graph
6: Compute MS by Eq. (5) and MF by Eq. (6).
7: Expand MS and MF and conduct weighted sum to get

Mh.
8: Conduct embedding of each s∆ ∈ Rn into S∆ ∈ Rd×n.
9: Step 3: Update hybrid embedding vector and training

10: Initialize the parameters in the gated GNN model.
11: for q = 1, ..., Q do
12: Compute the Eq.(7) ∼ Eq.(18) to fit each stream with

the input Mh and S∆.
13: Update the weight matrices list {Wz, Wr, Wh, Uz,

Ur, Uh, W1, W2, Wf} and vectors list {bg, bh} by
Adam with ground truth y.

14: Convergence checking: if L(ŷ) < tol, break; otherwise,
continue.

15: end for
16: Step 4: Conduct forecasting and data prefetching
17: Conduct Eq.(16) and get max ẑ with the updated model.
18: Decode it to l̂dn and conduct Eq.(4) to get l̂ban+1.
19: Read the corresponding block and prefetch it into the

cache or conduct no prefetching.
Output: l̂ban+1, blocks ∈ RN in cache.

TABLE I
DATASETS DESCRIPTION

Source Dataset Length Memory (GB) Function Sequential (%)

MSRC

hm 1 1.08×106 6.36 Hardware monitoring 39.9
mds 0 4.23×105 8.48 Media server 65.2
proj 0 1.17×106 4.056 Project directories 57.3
prxy 0 4.03×105 5.18 Firewall/web proxy 37.6
src1 2 1.15×106 2.0 Source control 58.5

HW
hw 1 1.39×106 930.29 hybrid storage system 55.8
hw 2 2.58×105 600.46 hybrid storage system 95.1
hw 3 1.73×105 902.22 hybrid storage system 43.7

B. Compared Methods

We compare SGDP with the following methods from three
categories: traditional prefetchers, regression-based prefetch-
ers, and learning-based prefetchers.

No pre means without any prefetching facilities and is used
as a baseline to show the gain by other schemes.

Naı̈ve Prefetcher treats the LBA stream as a whole se-
quence, i.e., l̂dn = ldn−1, and directly uses Eq. (4) to predict

LBA.
Stride Prefetcher [6] simultaneously records 128 LBA

access streams, and each of them tracks the last 3 LBA
accesses. Each access is mapped to a stream based on hashing
the most significant LBA. If the difference between the 3
LBA accesses matches, it will detect a stride and conduct a
prediction.

ARIMA [9] treats the problem as a time-series prediction
problem and applies the ARIMA model built from t− δ to t
to forecast the next LBA.

Informer† [11] is the SOTA for time-series forecasting.
Same as ARIMA, it takes the previous LBA delta sequence
as input and predicts the following LBA.

DeepPrefetcher [20] captures the LBA delta patterns by
employing the word2vec model and LSTM architecture for
prefetching.

Delta-LSTM‡ [5] is another learning-based prefetcher,
which uses an LSTM-based model to predict the LBA delta
for prefetching.

Besides, we set the sequences of LBA delta as the input
for a fair comparison. There is a class explosion problem in
DeepPrefetcher, which makes it unrealistic to train. To solve
the problem, we restrict the top-K class with K = 10000. This
K = 10000 value is to balance the efficiency and accuracy
based on our preliminary study. For Delta-LSTM and SGDP,
we set top-1000 frequently occurring LBA deltas as input.

C. Evaluation Criteria

HR@N (Hit Ratio) is the number of cache hits divided
by the total number of memory requests over a given time
interval. It is an important storage indicator given a fixed cache
size N . That is,

HR =
Cache Hits

CacheHits + Cache Misses
× 100%. (19)

EPR@N (Effective Prefetching Ratio) is the ratio of the
number of correctly prefetched data to all executed prefetches
given a fixed cache size N , which is strongly related to the
prefetcher’s efficiency. That is,

EPR =
Correct Prefetchings

All Prefetchings
× 100%. (20)

Note that HR and EPR describe the prefetching results
more precisely and feasible refer to Accuracy and Recall in
DeepPrefetcher [20] and Delta-LSTM [5], respectively. We use
HR and EPR in our work because they describe the prefetching
results more precisely. Besides, there is a trade-off between
HR and EPR in the subsection VI-B1 and some results are
shown in Figure 4.

Besides, we feed the next step predicted LBA into the cache
simulator based on the Least Recently Used (LRU) strategy for
prefetching. LRU is a classical cache elimination algorithm. It
selects the most recently unused LBA to retire.

†https://github.com/zhouhaoyi/Informer2020/
‡https://github.com/Chandranil2606/Learning-IO-Access-Patterns-to-

improve-prefetching-in-SSDs-/

D. Implementation Details

We implemented SGDP for offline training and online
testing by PyTorch [57]. All experiments are trained and tested
on a computing server equipped with an Intel Xeon Platinum
8180M CPU@2.50GHz and an NVIDIA Tesla V100 GPU.

For a more fair and effective comparison, we normalize all
LBA in increments of 8KB blocks and according to the I/O
size of the 8KB block alignment and increment operations.
We apply the 10-fold cross-validation method for training and
testing, the same as SOTA methods. As for neural networks,
all parameters are initialized with a Gaussian distribution with
a means of 0 and a standard deviation of 0.1 with the latent
vectors d equaling 200 for all 8 datasets. Moreover, we set
the initial learning rate to 1.5×10−3 with decay by 95% after
every 3 epochs, the batch size to 128 with 10 epochs, and
the l2 -norm penalty factor to 10−5. Adam optimizer [12]
with default parameter is applied for optimization. We set the
stream split time interval T as 0.1ms for HW and 0.01ms for
MSRC, and set the top number of most frequent LBA delta
K as 1000 for SGDP. Note that since the preprocessed LBA
stream is shorter, the training epoch can be smaller to prevent
over-fitting, which is also useful to shorten the training time.

VI. EXPERIMENTAL RESULTS

A. Results of Single-Step Prefetching

We analyze the results of data prefetching conducted by
SGDP and the compared methods on different datasets in the
case of single-step Prefetching, as reported in Table II. The
detailed analysis is presented in the following.

ARIMA and Informer Time-series forecasting models
(ARIMA and Informer) perform the worst, excepting the case
of hw 2 trace where ARIMA achieves around 80% HR as this
dataset has a very high degree of sequential access (95.1%).
ARIMA and Informer take LBA delta inputs as scalar variables
and can produce a correct prediction if the input sequences
are steady. As there are frequent large fluctuations in complex
non-sequential access patterns, ARIMA and Informer prompt
incorrect LBA access. The worst results shown in almost all
cases confirm our claims that regression-based approaches are
not feasible for accurate and complex data prefetching.

Naı̈ve and Stride Prefetcher Traditional prefetchers (Naı̈ve
and Stride) have relatively stable performances in sequential
access. However, for the random accesses, those traditional
prefetchers encounter a big gap compared to SGDP. Moreover,
Stride always achieves higher EPR while lower HR as it is
more laziness and only prefetches when detecting an inside-
page stride. As a result, it prefetches less and has higher
accuracy for sequential access. In other words, although Stride
has a high EPR, it prefetches less and gets quite low HR, which
makes it impractical. Overall, the robustness performance
of the Naı̈ve and Stride Prefetcher is poor, especially for
completely random access.

Delta-LSTM, DeepPrefetcher and SGDP Learning-based
prefetchers (Delta-LSTM, DeepPrefetcher and SGDP) cover
all highest HR and almost the highest EPR. SGDP has higher

TABLE II
SINGLE-STEP RESULTS. THE RESULTS ARE IN PERCENTAGE, THE BEST RESULTS ARE IN BOLD, THE SECOND ONES ARE UNDERLINED, N IS THE CACHE

SIZE.

Dataset hw 1 hw 2 hw 3 hm 1

Method
Metric HR@N EPR@N HR@N EPR@N HR@N EPR@N HR@N EPR@N

10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000

No pre 0.0 0.3 54.2 0.0 0.0 0.0 1.0 1.1 1.1 0.0 0.0 0.0 0.0 0.1 1.3 0.0 0.0 0.0 2.7 25.3 98.3 0.0 0.0 0.0
Naı̈ve 57.5 58.0 63.2 63.3 64.5 64.5 92.5 92.6 92.7 93.3 93.7 94.0 47.7 47.9 48.8 48.0 48.3 48.7 31.7 43.8 97.4 30.5 31.2 5.6
Stride 43.7 44.0 65.8 80.5 81.1 80.6 91.0 91.1 91.1 99.1 99.2 99.2 38.4 38.6 39.6 81.6 82.0 82.3 27.1 47.0 99.1 82.3 84.4 88.4

ARIMA 1.9 4.0 8.8 1.9 4.3 6.2 82.8 82.9 83.0 85.9 86.2 86.4 0.3 0.3 1.3 0.2 0.3 0.3 3.5 19.0 95.2 2.7 5.2 2.5
Informer 0.2 0.9 5.8 0.3 0.9 2.9 1.0 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 1.1 14.0 90.4 0.1 0.7 0.7

DeepPrefetcher 74.3 74.6 79.2 75.4 75.9 76.5 92.2 92.5 92.8 93.4 94.0 94.5 50.4 50.7 51.7 50.4 50.7 51.2 38.5 59.1 99.3 38.5 56.0 46.1
Delta-LSTM 74.4 74.8 79.3 75.5 76.0 76.6 92.5 92.8 93.1 93.7 94.2 94.7 56.4 56.8 57.9 66.2 66.8 67.2 30.0 50.6 99.3 57.7 72.8 87.6

SGDP 79.2 79.5 85.8 82.9 83.5 81.6 93.0 93.0 93.1 97.5 97.7 97.8 76.0 76.6 77.5 88.9 89.5 90.1 38.1 55.7 99.4 87.8 90.1 86.2
SGDPl 78.5 78.8 84.9 82.1 82.7 80.6 92.9 93.1 93.2 97.0 97.2 97.4 78.5 79.0 79.8 83.6 84.2 84.7 43.1 61.4 99.1 46.3 60.8 24.4
SGDPp 75.7 78.2 83.6 77.6 80.4 79.6 93.7 94.0 94.2 94.4 95.0 95.4 48.1 48.3 49.6 72.1 73.1 75.1 43.9 62.9 99.4 46.8 63.8 34.8

Dataset mds 0 proj 0 prxy 0 src1 2

Method
Metric HR@N EPR@N HR@N EPR@N HR@N EPR@N HR@N EPR@N

10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000

No pre 13.2 35.0 61.0 0.0 0.0 0.0 6.1 28.7 35.2 0.0 0.0 0.0 20.1 40.7 48.8 0.0 0.0 0.0 3.9 34.8 48.2 0.0 0.0 0.0
Naı̈ve 54.3 68.2 85.2 47.8 51.1 52.2 61.1 70.1 74.3 58.7 59.7 60.8 46.4 64.3 72.7 35.1 38.5 40.9 60.5 73.0 80.8 59.9 63.1 66.3
Stride 47.3 62.2 79.8 82.3 90.6 89.8 51.0 61.1 65.4 82.5 88.1 88.3 40.3 56.5 63.8 69.6 81.1 81.4 48.3 63.8 73.4 81.0 89.6 92.0

ARIMA 16.6 37.4 58.3 8.6 9.2 12.0 12.9 33.5 39.3 12.0 10.1 10.4 19.9 42.2 52.3 6.5 7.2 8.2 14.6 42.0 54.8 19.5 17.7 19.2
Informer 9.6 28.3 54.5 0.3 1.2 5.2 3.9 19.8 34.7 0.1 0.5 2.3 13.7 32.1 46.9 0.0 0.0 0.2 1.7 22.5 45.3 0.0 0.1 0.6

DeepPrefetcher 60.7 73.7 88.5 66.9 77.5 83.3 72.6 79.1 82.8 75.0 78.6 81.5 57.0 70.2 77.4 63.5 70.4 73.9 74.5 82.9 89.0 76.2 80.9 87.0
Delta-LSTM 57.3 69.6 86.2 80.2 87.8 89.8 62.3 69.1 73.3 84.3 86.2 87.4 52.2 64.2 71.3 75.7 79.3 80.9 70.0 79.6 86.2 77.5 81.3 87.2

SGDP 66.0 76.3 91.6 80.2 87.0 88.4 73.4 78.5 82.1 84.0 87.6 88.2 62.2 73.2 79.9 76.3 83.3 84.1 75.4 83.1 88.8 82.5 88.5 90.8
SGDPl 66.1 77.5 92.1 65.4 73.9 79.6 75.5 81.1 84.6 79.8 83.6 85.6 64.1 76.5 83.0 65.7 74.3 78.4 76.3 83.9 89.4 81.5 87.4 89.3
SGDPp 67.4 79.8 92.6 68.7 81.9 87.9 73.7 81.3 85.2 74.5 80.2 83.9 63.9 76.2 83.0 64.9 72.6 76.1 74.9 84.8 89.8 76.1 84.0 87.3

TABLE III
AVERAGE RESULTS OF MULTI-STEP PREFETCHING. THE RESULTS ARE IN PERCENTAGE, THE BEST RESULTS ARE IN BOLD, AND THE CACHE SIZE IS 100.

Metric HR@100 EPR@100

Method
Step 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

DeepPrefetcher 74.0 76.1 76.7 77.1 77.2 77.1 77.1 77.0 77.0 76.9 73.1 60.7 52.5 46.5 42.0 38.3 35.3 32.8 30.7 28.8
Delta-LSTM 70.2 74.9 77.1 78.0 78.5 78.9 79.3 79.6 79.8 80.0 81.5 72.3 65.9 60.6 56.3 52.6 49.5 46.8 44.5 42.3

SGDP 77.0 78.3 78.9 79.3 79.6 79.8 80.0 80.1 80.3 80.3 88.4 80.5 74.0 68.9 64.6 60.9 57.7 54.9 52.7 50.5
SGDPl 78.9 80.7 81.4 81.8 82.2 82.4 82.5 82.6 82.7 82.7 80.5 70.2 62.9 57.5 53.1 49.6 46.6 44.0 41.8 39.8
SGDPp 75.7 77.4 78.1 78.6 78.9 79.1 79.2 79.3 79.5 79.5 78.9 68.3 60.8 55.1 50.6 46.8 43.7 41.1 38.8 36.7

HR than DeepPrefetcher/Delta-LSTM in 19/24 out of all 24
cases, and 24/19 about EPR. Specifically, Delta-LSTM and
DeepPrefetcher share a similar structure and show a similar
effect. DeepPrefetcher has a larger LBA delta candidates pool
which leads to more prefetching and lowers accuracy, reflected
in lower average EPR (71.6% compared to 80.3%). On the
contrary, Delta-LSTM prefetches more accurately but with
fewer blocks, which leads to lower HR (70.8% compared to
73.5%). To be fair, as SGDP takes the top-1000 LBA delta as
input (same as Delta-LSTM), the comparison to Delta-LSTM
can prove that SGDP has better feature extraction ability.

B. Ablation study and SGDP Variants by Stream Construction

1) Retaining top-K delta value (SGDPl): SGDP considers
the top-1000 most frequently occurring LBA delta in the whole
search space. Considering more LBA delta values further
increases the model coverage, but also increases the search
space and degrades the accuracy of the model. So to explore
it quantitatively and prove the HR-EPR trade-off, we apply
the top-10000 LBA delta for model building and name it
SGDPlarge, or SGDPl for brevity.

The experiment of SGDPl confirms the trade-off of HR-
EPR. As Table II shows, SGDPl achieves 1.5% slightly
higher than SGDP in terms of HR while showing a large
gap with 9.6% loss than SGDP in terms of EPR. Compared

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.4 0.5 0.6 0.7 0.8 0.9

E
P

R

HR

HR-EPR Trade-off

SGDP SGDP_l DeepPrefetcher Delta-LSTM

Fig. 4. HR-EPR trade-off.

to DeepPrefetcher, which also uses top-10000 LBA delta as
input, SGDPl maintains higher HR in 23 cases and higher EPR
in 20 cases. Notice that for dataset hm 1, SGDPl gets a low
EPR@1000 (24.4%). The reason is that with an extremely high
HR@1000 (99.4%, almost all hit), SGDPl prefetches extra
useless blocks without harm to HR, leading to an obvious
decline of EPR.

To further verify the effectiveness of SGDP and the HR-
EPR trade-off, we conduct extra tests on dataset prxy 0 by

TABLE IV
THE NUMBER OF PREDICTIONS INFERRED PER SECOND BY

LEARNING-BASED METHODS.

Method
Dataset hw 1 hw 2 hw 3 hm 1 mds 0 proj 0 prxy 0 src1 2 avg

Delta-LSTM 89.4 87.4 94.5 92.4 90.7 91.5 88.4 95.1 91.2
DeepPrefetcher 208.2 154.5 194.2 160.1 248.4 178.4 187.9 249.6 197.7

SGDP 644.5 692.4 666.1 515.2 543.5 553.3 470.0 550.7 579.5
SGDPl 634.7 686.9 614.7 500.1 651.4 663.9 526.3 670.7 618.6
SGDPp 599.5 645.6 593.9 567.0 491.7 529.3 574.8 558.7 570.1

testing Delta-LSTM, DeepPrefetcher, SGDP and SGDPl on 20
different cache sizes ({5, 10, 20, · · · ,90 and 100, 200, · · · ,
900, 1000}). As shown in Figure 4, the top-10000 methods
(SGDPl and DeepPrefetcher) show higher HR but lower EPR
than their top-1000 counterparts (SGDP and Delta-LSTM).
The two pairs of top-K comparisons confirm that SGDPs
achieve better performance consistently than other methods.

2) Stream partition with page (SGDPp): Considering the
spatially localized relevance of LBA access patterns, we divide
the entire search space by 64MB size page, record the LBA
access streams on each page simultaneously, and perform
parallel prediction in each page stream for prefetching the
next block inside the page stream. We call it SGDPp. SGDPp

models LBA deltas, as 64MB page contains 8192 unique
blocks, the total LBA delta candidate class of SGDPp is 16383
(±8191) instead of top-K classes.

SGDPp keeps the best HR results on half of all cases. Its
average HR is slightly lower than SGDP and SGDPl, but still
higher than other methods. HR of SGDPp on hw 3 encounters
a severe drop. The reason is that hw 3 is the shortest and has
the second-largest storage capacity, which means the LBAs are
much more sparse. SGDPp needs at least an LBA stream with
length 2 to generate an LBA delta stream. But as hw 3 cross
over 1.4×104 pages, the average length of inside-page-stream
is 12.4, which means SGDP could not perform prefetching
on 1/12 of data points. Nevertheless, SGDPp obtains the
highest HR (79.9%) on all datasets except hw 3 on average.
Therefore, it could be concluded that SGDPp performs well
in real-world scenarios with sufficient data.

C. Multi-step Prefetching

We further evaluate the performance of SGDP methods in
multi-step prefetching based on rolling prediction. We feed
the prediction of LBA back to the aforementioned learning-
based prefetchers and get the rolling prediction for the next
LBAs. The experiments are performed on cache size 100 with
a rolling step from 2 to 10. The average results of HR@100
and EPR@100 are reported in Table III. Overall, SGDPl

has the best HR@100 on all steps on average, and SGDP
achieves the best EPR@100. SGDPp shows worse results than
SGDP and SGDPl. SGDPp gets the highest HR@100 (from
79.6% to 83.8%) on average in all steps on all the datasets
except hw 3 as it is too sparse. The second best method is
SGDPl, of which HR@100s range from 78.9% to 83.0%.
These results demonstrate that SGDP methods are able to keep
their superiority and robustness in multi-step prefetching.

D. Offline Training and Online Testing Efficiency

The offline training time in dataset hw 1 for SGDPs is 0.37
hours, and the training time for other learning-based methods
is about 1.1 hours. The GPU utilization is 24%, the parameter
number is 192,500, and the flop number is 48,570,779. For
the online inference test, the GPU utilization is 10%, the
model size is 1.47 MB, and the flop number is 1,884,055.
Furthermore, to verify the practicality of SGDP compared to
the other methods, we collect statistics of inference time as
shown in Table VI. SGDPs process 469 to 670 LBA deltas
per second, while Delta-LSTM and DeepPrefetcher can only
process 91.2 and 197.7 on average. SGDPl speeds up inference
time up to 3.13× than DeepPrefetcher. Overall, SGDPs show
much higher efficiency and practicality for real deployment
applications.

VII. CONCLUSIONS

To improve the performance of the data prefetcher in
practice, this paper proposed SGDP, a novel stream-graph-
based data prefetcher. SGDP takes each LBA delta stream as a
weighted directed graph fusing both sequential and global fea-
tures. By gated GNN and attention mechanism, SGDP extracts
and aggregates the sequential and global information for better
data prefetching. The experiment results from eight different
real-world datasets demonstrate that SGDP outperforms SOTA
methods and high speeds up inference time. The generalized
SGDP variants can further adapt to extensive application
scenarios. This novel data prefetcher has been verified in
commercial hybrid storage systems in the experimental phase
and will be deployed in the future product series.

REFERENCES

[1] N. Wu and Y. Xie, “A survey of machine learning for computer
architecture and systems,” arXiv preprint arXiv:2102.07952, 2021.

[2] C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sug-
awara, “Understanding storage traffic characteristics on enterprise virtual
desktop infrastructure,” in Proceedings of the 10th ACM International
Systems and Storage Conference, 2017, pp. 1–11.

[3] Y. Chen, Y. Zhang, J. Wu, J. Wang, and C. Xing, “Revisiting data
prefetching for database systems with machine learning techniques,” in
2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 2021, pp. 2165–2170.

[4] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Ma-
chine learning-based prefetch optimization for data center applications,”
in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009, pp. 1–10.

[5] C. Chakraborttii and H. Litz, “Learning i/o access patterns to improve
prefetching in ssds,” ICML-PKDD, 2020.

[6] A. Ki and A. E. Knowles, “Stride prefetching for the secondary data
cache,” Journal of Systems Architecture, vol. 46, no. 12, pp. 1093–1102,
2000.

[7] A. Laga, J. Boukhobza, M. Koskas, and F. Singhoff, “Lynx: A learning
linux prefetching mechanism for ssd performance model,” in 2016 5th
Non-Volatile Memory Systems and Applications Symposium (NVMSA).
IEEE, 2016, pp. 1–6.

[8] Z. Li, Z. Chen, S. M. Srinivasan, Y. Zhou et al., “C-miner: Mining block
correlations in storage systems.” in FAST, vol. 4, 2004, pp. 173–186.

[9] N. Tran and D. A. Reed, “Automatic arima time series modeling for
adaptive i/o prefetching,” IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 4, pp. 362–377, 2004.

[10] Q. Shi, J. Yin, J. Cai, A. Cichocki, T. Yokota, L. Chen, M. Yuan,
and J. Zeng, “Block hankel tensor arima for multiple short time
series forecasting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, 2020, pp. 5758–5766.

[11] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of AAAI, 2021.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[13] G. Wu and X. He, “Reducing ssd read latency via nand flash program
and erase suspension.” in FAST, vol. 12, 2012, pp. 10–10.

[14] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasub-
ramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “Ssd failures in
datacenters: What? when? and why?” in Proceedings of the 9th ACM
International on Systems and Storage Conference, 2016, pp. 1–11.

[15] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R. Stan, “How i learned
to stop worrying and love flash endurance.” HotStorage, vol. 10, pp.
3–3, 2010.

[16] H. Kim and U. Ramachandran, “Flashfire: Overcoming the performance
bottleneck of flash storage technology,” Georgia Institute of Technology,
Tech. Rep., 2010.

[17] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching,”
ACM SIGARCH Computer Architecture News, vol. 19, no. 2, pp. 40–
52, 1991.

[18] S. Boboila and P. Desnoyers, “Performance models of flash-based solid-
state drives for real workloads,” in 2011 IEEE 27th Symposium on Mass
Storage Systems and Technologies (MSST). IEEE, 2011, pp. 1–6.

[19] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
in International Conference on Machine Learning. PMLR, 2018, pp.
1919–1928.

[20] G. O. Ganfure, C.-F. Wu, Y.-H. Chang, and W.-K. Shih, “Deep-
prefetcher: A deep learning framework for data prefetching in flash
storage devices,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 11, pp. 3311–3322, 2020.

[21] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 861–873.

[22] J. Basak, K. Wadhwani, and K. Voruganti, “Storage workload identifi-
cation,” ACM Transactions on Storage (TOS), vol. 12, no. 3, pp. 1–30,
2016.

[23] P. G. Harrison, S. Harrison, N. M. Patel, and S. Zertal, “Storage
workload modelling by hidden markov models: Application to flash
memory,” Performance Evaluation, vol. 69, no. 1, pp. 17–40, 2012.

[24] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
2020.

[25] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the
processor-memory performance gap with 3d ic technology,” IEEE De-
sign & Test of Computers, vol. 22, no. 6, pp. 556–564, 2005.

[26] R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen, “Duracache: A durable
ssd cache using mlc nand flash,” in Proceedings of the 50th Annual
Design Automation Conference, 2013, pp. 1–6.

[27] J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” ACM SIGMICRO Newsletter, vol. 23, no. 1-2, pp.
102–110, 1992.

[28] T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetching
for high-performance processors,” IEEE Transactions on Computers,
vol. 44, no. 5, pp. 609–623, 1995.

[29] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in 10th International Symposium on High Performance
Computer Architecture (HPCA’04). IEEE, 2004, pp. 96–96.

[30] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2015, pp. 141–152.

[31] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–12.

[32] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” ACM SIGARCH Computer Architecture
News, vol. 34, no. 2, pp. 252–263, 2006.

[33] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 2019 IEEE International Sym-

posium on High Performance Computer Architecture (HPCA). IEEE,
2019, pp. 399–411.

[34] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal streams in commercial server applications,” in 2008 IEEE
International Symposium on Workload Characterization. IEEE, 2008,
pp. 99–108.

[35] ——, “Practical off-chip meta-data for temporal memory streaming,”
in 2009 IEEE 15th International Symposium on High Performance
Computer Architecture. IEEE, 2009, pp. 79–90.

[36] Z. Hu, M. Martonosi, and S. Kaxiras, “Tcp: Tag correlating prefetchers,”
in The Ninth International Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings. IEEE, 2003, pp. 317–
326.

[37] Y. Chou, “Low-cost epoch-based correlation prefetching for commercial
applications,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). IEEE, 2007, pp. 301–313.

[38] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 247–259.

[39] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin, “Tem-
poral prefetching without the off-chip metadata,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 996–1008.

[40] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient metadata
management for irregular data prefetching,” in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2019, pp. 1–13.

[41] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
131–142.

[42] R. Xu, X. Jin, L. Tao, S. Guo, Z. Xiang, and T. Tian, “An efficient
resource-optimized learning prefetcher for solid state drives,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2018, pp. 273–276.

[43] J. Liao, F. Trahay, B. Gerofi, and Y. Ishikawa, “Prefetching on storage
servers through mining access patterns on blocks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 9, pp. 2698–2710,
2015.

[44] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality
and context-based prefetching using reinforcement learning,” in 2015
ACM/IEEE 42nd Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2015, pp. 285–297.

[45] L. Peled, U. Weiser, and Y. Etsion, “A neural network prefetcher for
arbitrary memory access patterns,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 16, no. 4, pp. 1–27, 2019.

[46] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 793–803.

[47] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2019, pp. 346–353.

[48] G.-S. Xie, J. Liu, H. Xiong, and L. Shao, “Scale-aware graph neural
network for few-shot semantic segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 5475–5484.

[49] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008.

[50] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[51] X. Li, Q. Shi, G. Hu, L. Chen, H. Mao, Y. Yang, M. Yuan, J. Zeng, and
Z. Cheng, “Block access pattern discovery via compressed full tensor
transformer,” in CIKM, 2021.

[52] J. Liao and S. Chen, “Optimization of reading data via classified block
access patterns in file systems,” IEEE Access, vol. 4, pp. 9421–9427,
2016.

[53] D. Zhu, H. Du, Y. Sun, and Z. Tian, “Ctdgm: A data grouping model
based on cache transaction for unstructured data storage systems,” arXiv
preprint arXiv:2009.14414, 2020.

[54] A. J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, no. 3, p.
473–530, sep 1982. [Online]. Available: https://doi.org/10.1145/356887.
356892

https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/356887.356892

[55] S. Ainsworth and T. M. Jones, “Graph prefetching using data
structure knowledge,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2925426.2926254

[56] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: a novel weighted-
graph-based prefetching algorithm for metadata servers in petabyte-
scale storage systems,” in IEEE International Symposium on Cluster
Computing & the Grid, 2006.

[57] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[58] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014.

https://doi.org/10.1145/2925426.2926254

APPENDIX A: ALL RESULTS OF ROLLING PREDICTION
BASED MULTI-STEP PREFETCHING

We summarize the detailed results of multi-step prefetching
in Table V. As reported in the Table V, SGDP and its variants
achieve the best results in 80 cases and 52 cases in terms of
HR@100 and EPR@100, respectively. We also visualize the
results of the averaged results of all datasets and two repre-
sentative datasets as shown in Fig. 5. On hw 1 dataset, SGDP
stably performs the best with both the highest HR@100 and
EPR@100. On src1 2, SGDPp maintains highest HR@100
while SGDP have highest EPR@100.

APPENDIX B: INFERENCE EFFICIENCY

To verify the practicality of SGDP compared to the SOTA
methods, we collect statistics of inference time and report the
detailed results of the number of LBA delta predictions that
can be inferred per second by learning-based methods in Table
VI. SGDP and its variants process 469 to 670 LBA deltas
per second, while Delta-LSTM and DeepPrefetcher are only
able to process 91.2 and 197.7 on average respectively. SGDPl

speed up inference time up to 3.13 times than DeepPrefetcher.
Overall, SGDP and its variants show much higher efficiency
and practicality.

APPENDIX C: ALL RESULTS OF SINGLE-STEP
PREFETCHING BASED ON DIFFERENT CACHE SIZES

We summarize the results of single-step prefetching
about all eight datasets based on 20 different cache sizes
({5, 10, 20, · · · , 90, 100, 200, · · · , 900, 1000}) from Table VII
to TableXIV. As reported in the Tables, SGDP and its variants
(SGDPl and SGDPp) achieve the best results in all 160 cases
and 83 cases in terms of HR and EPR, respectively. As for
EPR, our models are not far from the maximum (mostly within
1%) in the non-first case.

APPENDIX D: RESULTS AND ALGORITHM REPRODUCING

In data prefetch, researchers rarely open-source their code.
We have contacted most authors for their baseline codes and
benchmarks, but the response is almost non-existent, which
makes it difficult for us to compare baselines. We could not
find the related source code for graph-based methods. How-
ever, we can guarantee that the two learning-based methods we
compared are the best methods available. They achieve better
results than all graph-based ones using the same datasets,
so we choose them as the baselines. Although the authors
of the two methods did not give us the code directly, we
received confirmation and positive feedback from them on our
reproduction. So, we are confident that our results are now
SOTA and definitely better than all the previous graph-based
methods.

As for the discussed time-series-based methods in our
paper, i.e., ARIMA and Informer, they are often discussed
as baselines described in our Related Work section, it is
reasonable to use ARIMA and Informer as baselines. As the
other researchers said in their paper, those time-series-based

methods perform well in datasets which have more sequence
access patterns.

Researchers in this field hardly fully open-source their
code, which not only makes it difficult for us to reproduce
their methods but also hinders the development of the field.
Therefore, we sincerely hope to promote the openness and
development of the storage field and help more developers and
researchers enter the community more efficiently by making
our source code, datasets, and our reproduced and validated
baselines available§.

§Our codes are available at https://github.com/yyysjz1997/SGDP/.

70

75

80

85

2 4 6 8 10

All HR@100

20

40

60

80

100

2 4 6 8 10

All EPR@100

70

75

80

85

90

95

2 4 6 8 10

hw_1 HR@100

20

40

60

80

100

2 4 6 8 10

hw_1 EPR@100

70

75

80

85

90

2 4 6 8 10

src1_2 HR@100

20

40

60

80

100

2 4 6 8 10

src1_2 EPR@100

DeepPrefetcher Delta-LSTM SGDP SGDP_l SGDP_p

Fig. 5. Visualized Results of Multi-step Prefetching

TABLE V
RESULTS OF MULTI-STEP PREFETCHING. THE RESULTS ARE IN PERCENTAGE, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Metrics HR@100 EPR@100

Dataset Methods
Steps 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

hw 1

DeepPrefetcher 74.6 82.2 85.3 87.4 88.4 89.1 89.7 90.1 90.2 90.3 75.9 68.2 63.0 59.2 55.8 52.8 50.3 48.0 45.8 43.9
Delta-LSTM 74.8 82.3 85.4 87.6 88.6 89.2 89.9 90.3 90.4 90.5 76.0 68.4 63.2 59.5 56.1 53.2 50.6 48.4 46.2 44.3

SGDP 79.5 85.7 88.3 90.2 91.2 91.9 92.5 92.9 93.2 93.4 83.5 77.1 72.4 68.8 65.5 62.6 60.1 57.8 55.6 53.6
SGDPl 78.8 84.7 87.1 88.8 89.9 90.8 91.3 91.8 92.1 92.3 82.7 76.1 71.0 67.1 63.7 60.8 58.1 55.8 53.6 51.5
SGDPp 78.2 83.8 86.0 87.4 88.3 88.9 89.5 89.9 90.1 90.1 80.4 73.6 68.1 64.0 60.5 57.4 54.7 52.1 49.6 47.3

hw 2

DeepPrefetcher 92.5 93.4 93.7 93.9 94.0 94.1 94.1 94.1 94.2 94.2 94.0 89.6 85.7 82.2 79.0 76.0 73.3 70.7 68.3 66.0
Delta-LSTM 92.8 93.6 94.0 94.3 94.4 94.5 94.5 94.6 94.6 94.6 94.2 89.9 86.2 83.0 80.0 77.2 74.7 72.4 70.2 68.1

SGDP 93.0 94.1 94.5 94.8 94.9 95.0 95.1 95.1 95.2 95.2 97.7 96.0 94.7 93.4 92.3 91.3 90.4 89.4 88.5 87.7
SGDPl 93.1 94.1 94.6 94.8 95.0 95.1 95.2 95.2 95.3 95.3 97.2 95.2 93.3 91.7 90.1 88.7 87.3 85.9 84.6 83.4
SGDPp 94.0 95.1 95.5 95.7 95.9 96.0 96.0 96.0 96.1 96.1 95.0 91.2 88.0 85.0 82.3 79.7 77.4 75.0 72.9 70.8

hw 3

DeepPrefetcher 50.7 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 50.7 34.9 26.3 21.1 17.7 15.2 13.3 11.8 10.6 9.7
Delta-LSTM 56.8 60.7 67.8 68.3 68.4 68.5 68.4 68.4 68.4 68.4 66.8 52.4 46.9 41.1 36.5 32.8 29.7 27.1 25.3 23.5

SGDP 76.6 77.7 78.0 78.0 78.0 78.0 78.0 78.0 78.1 78.0 89.5 81.6 74.4 68.9 63.8 59.9 56.1 53.1 50.8 48.2
SGDPl 79.0 80.2 80.5 80.6 80.8 80.8 80.8 80.8 80.9 80.8 84.2 73.8 65.3 58.9 53.5 49.2 45.3 42.2 39.5 37.0
SGDPp 48.3 48.5 48.5 48.6 48.6 48.7 48.7 48.9 49.2 49.3 73.1 61.6 53.4 47.5 42.9 39.2 36.2 34.1 32.8 31.5

hm 1

DeepPrefetcher 59.1 60.0 59.2 58.2 57.1 56.1 55.2 54.4 53.6 53.0 56.0 39.6 29.8 23.5 19.1 16.0 13.7 11.9 10.5 9.4
Delta-LSTM 50.6 55.5 56.7 57.8 58.7 59.3 59.9 60.2 60.4 60.6 72.8 63.5 54.9 48.6 43.6 39.6 36.3 33.5 31.5 29.5

SGDP 55.7 55.8 55.5 55.3 55.1 54.9 54.6 54.3 54.1 54.0 90.1 80.5 72.0 64.9 59.2 54.2 50.0 46.6 44.8 42.3
SGDPl 61.4 63.1 63.6 63.7 63.4 63.1 62.8 62.4 62.1 61.8 60.8 45.1 35.8 29.7 25.2 21.9 19.3 17.2 15.5 14.1
SGDPp 62.9 65.0 65.7 65.8 65.8 65.4 65.1 64.8 64.5 64.1 63.8 48.6 39.2 32.7 28.0 24.3 21.5 19.2 17.4 15.8

mds 0

DeepPrefetcher 73.7 81.3 81.7 81.8 81.6 81.2 80.9 80.6 80.3 79.9 77.5 61.3 50.5 42.6 36.3 31.2 27.4 24.4 21.9 19.9
Delta-LSTM 69.6 75.6 77.2 78.2 79.0 79.7 80.3 80.9 81.4 81.8 87.8 80.7 74.6 69.4 65.2 61.4 58.1 55.2 52.7 50.4

SGDP 76.3 76.9 77.4 77.8 78.1 78.5 78.9 79.1 79.4 79.5 87.0 78.1 71.1 65.4 60.7 56.6 53.2 50.3 47.7 45.3
SGDPl 77.5 78.9 79.5 79.8 80.0 80.1 80.2 80.3 80.3 80.3 73.9 59.7 49.8 43.0 37.8 33.6 30.4 27.8 25.5 23.5
SGDPp 79.8 82.0 82.9 83.6 84.0 84.3 84.6 84.8 85.0 85.0 81.9 71.3 63.2 56.9 51.5 47.1 43.3 40.2 37.3 34.7

proj 0

DeepPrefetcher 79.1 81.3 81.7 82.0 82.2 82.2 82.3 82.2 82.3 82.2 78.6 64.6 55.1 47.9 42.4 37.8 34.2 31.1 28.5 26.4
Delta-LSTM 69.1 76.9 78.4 79.1 79.5 79.9 80.2 80.5 80.7 80.9 86.2 79.6 72.7 67.1 62.3 58.2 54.6 51.5 48.8 46.3

SGDP 78.5 78.9 79.1 79.3 79.5 79.7 79.8 79.9 80.1 80.1 87.6 78.2 70.7 64.5 59.5 55.1 51.4 48.1 45.4 42.9
SGDPl 81.1 81.9 82.3 82.6 82.9 83.1 83.2 83.3 83.5 83.5 83.6 72.4 64.0 57.4 52.1 47.8 44.1 41.0 38.3 36.0
SGDPp 81.3 82.1 82.4 82.7 82.9 83.1 83.1 83.3 83.5 83.5 80.2 67.7 58.7 51.9 46.5 42.1 38.5 35.5 32.9 30.6

prxy 0

DeepPrefetcher 70.2 75.0 76.2 76.8 77.2 77.5 77.6 77.5 77.6 77.6 70.4 58.4 49.3 42.6 37.5 33.5 30.1 27.3 25.0 23.1
Delta-LSTM 64.2 71.5 73.2 74.1 74.8 75.4 76.1 76.4 76.7 77.0 79.3 72.8 65.6 59.9 55.4 51.4 48.3 45.3 42.9 40.7

SGDP 73.2 73.9 74.4 74.6 75.3 75.5 75.6 75.7 76.1 76.1 83.3 72.3 64.3 58.0 53.2 49.0 45.5 42.5 40.1 37.6
SGDPl 76.5 77.7 78.3 78.7 79.4 79.6 79.8 79.9 80.2 80.2 74.3 61.4 53.1 47.0 42.5 38.6 35.5 32.8 30.7 28.6
SGDPp 76.2 77.2 77.8 78.2 79.0 79.3 79.6 79.8 80.1 80.1 72.6 59.1 50.4 44.0 39.5 35.8 32.7 30.1 28.0 26.0

src1 2

DeepPrefetcher 82.9 84.1 84.5 84.8 85.0 85.2 85.5 85.6 85.9 86.0 80.9 68.9 60.0 53.3 48.0 43.7 40.1 37.1 34.5 32.3
Delta-LSTM 79.6 83.3 84.0 84.4 84.7 85.1 85.4 85.7 85.9 86.0 81.3 71.3 63.0 56.4 51.3 47.2 43.7 40.7 38.1 35.9

SGDP 83.1 83.7 84.1 84.5 84.8 85.0 85.4 85.5 85.8 85.9 88.5 79.8 72.8 67.1 62.4 58.3 54.9 51.7 49.0 46.5
SGDPl 83.9 84.8 85.3 85.7 86.0 86.3 86.7 86.8 87.1 87.2 87.4 78.3 71.0 65.1 60.4 56.3 52.8 49.7 47.0 44.5
SGDPp 84.8 85.7 86.0 86.3 86.6 86.8 87.0 87.3 87.5 87.5 84.0 73.4 65.2 58.7 53.6 49.2 45.5 42.3 39.5 37.0

TABLE VI
THE NUMBER OF LBA DELTA PREDICTIONS THAT CAN BE INFERRED PER SECOND BY LEARNING-BASED METHODS.

Method
dataset hw 1 hw 2 hw 3 hm 1 mds 0 proj 0 prxy 0 src1 2 avg

Delta-LSTM 89.4 87.4 94.5 92.4 90.7 91.5 88.4 95.1 91.2
DeepPrefetcher 208.2 154.5 194.2 160.1 248.4 178.4 187.9 249.6 197.7

SGDP 644.5 692.4 666.1 515.2 543.5 553.3 470.0 550.7 579.5
SGDPl 634.7 686.9 614.7 500.1 651.4 663.9 526.3 670.7 618.6
SGDPp 599.5 645.6 593.9 567.0 491.7 529.3 574.8 558.7 570.1

TABLE VII
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET HW 1.

HR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

No pre 0 0 0 0 0 0 0 0.3 0.3 0.3 0.3 0.4 1.7 2.6 2.7 3.1 7.6 15.6 38.9 54.2
Naive 56.9 57.5 57.8 57.9 57.9 57.9 57.9 57.9 58.0 58.0 58.0 58.1 58.2 58.9 59.2 59.5 59.7 59.9 61.6 63.2
Stride 43.6 43.7 43.8 43.9 43.9 43.9 43.9 44.0 44.0 44.0 44.0 44.0 44.6 45.4 45.7 46.0 46.2 50.2 53.8 65.8

ARIMA 1.5 1.9 2.3 2.6 3.0 3.1 3.1 3.4 3.8 3.9 4.0 4.3 4.5 5.0 6.0 6.7 7.6 8.0 8.3 8.8
Informer 0.2 0.2 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 1.3 1.6 2.0 2.4 3.9 4.4 5.2 5.5 5.8

DeepPrefetcher 73.9 74.3 74.5 74.6 74.6 74.6 74.6 74.6 74.6 74.6 74.6 74.7 74.8 75.3 75.7 75.7 75.9 76.5 77.8 79.2
Delta-LSTM 74.0 74.4 74.6 74.7 74.7 74.7 74.7 74.7 74.8 74.8 74.8 74.8 74.9 75.4 75.8 75.8 76.0 76.6 77.9 79.3

SGDP 78.7 79.2 79.4 79.4 79.4 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.6 79.9 80.2 80.3 80.4 81.3 82.4 85.8
SGDPl 77.9 78.5 78.7 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.9 79.0 79.3 79.6 79.6 79.8 80.7 81.7 84.9
SGDPp 74.9 75.7 76.7 77.1 77.4 77.6 77.7 77.9 78.0 78.1 78.2 78.5 78.6 79.0 79.3 79.4 79.5 80.2 81.1 83.6

EPR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

Naive 61.1 63.3 64.3 64.4 64.4 64.4 64.5 64.5 64.5 64.5 64.5 64.6 64.8 64.9 65.0 65.1 65.1 65.2 64.7 64.5
Stride 80.2 80.5 81.0 81.0 81.0 81.1 81.1 81.1 81.1 81.1 81.1 81.1 81.2 81.3 81.4 81.4 81.5 81.3 81.1 80.6

ARIMA 1.5 1.9 2.5 2.8 3.2 3.3 3.3 3.6 4.1 4.2 4.3 4.4 4.7 5.1 5.3 5.6 5.7 6.0 6.2 6.2
Informer 0.2 0.3 0.4 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 1.1 1.4 1.7 2.1 2.3 2.6 2.8 2.8 2.9

DeepPrefetcher 74.6 75.4 75.8 75.8 75.8 75.8 75.9 75.9 75.9 75.9 75.9 75.9 76.0 76.2 76.4 76.5 76.5 76.5 76.5 76.5
Delta-LSTM 74.7 75.5 75.9 75.9 75.9 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.1 76.3 76.5 76.6 76.6 76.6 76.6 76.6

SGDP 81.9 82.9 83.4 83.4 83.4 83.5 83.5 83.5 83.5 83.5 83.5 83.5 83.6 83.6 83.7 83.7 83.7 83.4 83.0 81.6
SGDPl 80.9 82.1 82.6 82.6 82.6 82.7 82.7 82.7 82.7 82.7 82.7 82.8 82.9 82.9 83.0 83.0 83.1 82.7 82.3 80.6
SGDPp 76.4 77.6 78.8 79.2 79.6 79.8 80.0 80.1 80.2 80.3 80.4 80.8 80.9 81.0 81.1 81.2 81.2 80.9 80.7 79.6

TABLE VIII
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET HW 2.

HR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

No pre 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Naive 92.3 92.5 92.5 92.5 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7
Stride 91.0 91.0 91.0 91.0 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1

ARIMA 82.6 82.8 82.8 82.8 82.8 82.9 82.9 82.9 82.9 82.9 82.9 82.9 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0
Informer 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

DeepPrefetcher 92.2 92.2 92.3 92.4 92.4 92.5 92.5 92.5 92.5 92.5 92.5 92.6 92.7 92.7 92.7 92.7 92.8 92.8 92.8 92.8
Delta-LSTM 92.4 92.5 92.6 92.6 92.7 92.7 92.7 92.8 92.8 92.8 92.8 92.9 92.9 92.9 92.9 93.0 93.0 93.0 93.0 93.1

SGDP 92.9 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.1 93.1 93.1 93.1 93.1 93.1 93.1 93.1 93.1
SGDPl 92.9 92.9 93.0 93.0 93.0 93.0 93.0 93.1 93.1 93.1 93.1 93.1 93.1 93.1 93.1 93.1 93.2 93.2 93.2 93.2
SGDPp 93.6 93.7 93.8 93.9 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.1 94.1 94.1 94.1 94.2 94.2 94.2 94.2 94.2

EPR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

Naive 93.0 93.3 93.4 93.5 93.5 93.6 93.6 93.7 93.7 93.7 93.7 93.9 93.9 93.9 93.9 94.0 94.0 94.0 94.0 94.0
Stride 99.1 99.1 99.1 99.1 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2

ARIMA 85.5 85.9 86.0 86.1 86.1 86.1 86.1 86.1 86.1 86.1 86.2 86.2 86.3 86.3 86.3 86.4 86.4 86.4 86.4 86.4
Informer 0.0

DeepPrefetcher 93.3 93.4 93.6 93.6 93.7 93.8 93.9 94.0 94.0 94.0 94.0 94.2 94.3 94.3 94.3 94.4 94.5 94.5 94.5 94.5
Delta-LSTM 93.6 93.7 93.8 93.9 94.0 94.1 94.1 94.1 94.2 94.2 94.2 94.4 94.4 94.5 94.5 94.6 94.7 94.7 94.7 94.7

SGDP 97.5 97.5 97.6 97.6 97.6 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.8 97.8 97.8 97.8 97.8 97.8 97.8 97.8
SGDPl 96.8 97.0 97.0 97.1 97.1 97.2 97.2 97.2 97.2 97.2 97.2 97.3 97.3 97.3 97.3 97.4 97.4 97.4 97.4 97.4
SGDPp 94.2 94.4 94.6 94.7 94.8 94.9 94.9 95.0 95.0 95.0 95.0 95.1 95.2 95.2 95.2 95.3 95.4 95.4 95.4 95.4

TABLE IX
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET HW 3.

HR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

No pre 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.9 0.9 1.0 1.1 1.1 1.2 1.3
Naive 47.6 47.7 47.8 47.8 47.8 47.8 47.8 47.8 47.9 47.9 47.9 48.2 48.2 48.2 48.2 48.2 48.7 48.8 48.8 48.8
Stride 38.4 38.4 38.5 38.5 38.5 38.5 38.5 38.5 38.6 38.6 38.6 38.8 38.8 39.3 39.4 39.5 39.5 39.5 39.6 39.6

ARIMA 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.5 0.5 0.5 0.6 0.6 1.2 1.2 1.3
Informer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.3 0.9 0.9 0.9

DeepPrefetcher 50.4 50.4 50.5 50.5 50.5 50.5 50.5 50.6 50.6 50.6 50.7 50.8 51.0 51.0 51.1 51.1 51.1 51.7 51.7 51.7
Delta-LSTM 56.3 56.4 56.4 56.4 56.4 56.5 56.5 56.5 56.6 56.6 56.8 57.1 57.1 57.1 57.2 57.3 57.8 57.8 57.8 57.9

SGDP 76.0 76.0 76.1 76.1 76.1 76.1 76.2 76.4 76.5 76.5 76.6 76.8 76.8 76.9 77.3 77.3 77.4 77.4 77.4 77.5
SGDPl 78.5 78.5 78.5 78.6 78.6 78.6 78.6 78.9 79.0 79.0 79.0 79.2 79.3 79.3 79.3 79.7 79.7 79.7 79.7 79.8
SGDPp 48.0 48.1 48.1 48.1 48.1 48.1 48.2 48.2 48.2 48.3 48.3 48.6 48.9 48.9 49.0 49.3 49.6 49.6 49.6 49.6

EPR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

Naive 47.9 48.0 48.1 48.1 48.1 48.2 48.2 48.2 48.2 48.2 48.3 48.5 48.5 48.4 48.4 48.4 48.7 48.7 48.7 48.7
Stride 81.6 81.6 81.7 81.7 81.7 81.8 81.8 81.8 81.9 82.0 82.0 82.1 82.1 82.2 82.2 82.2 82.3 82.3 82.3 82.3

ARIMA 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Informer 0.0

DeepPrefetcher 50.4 50.4 50.5 50.5 50.5 50.5 50.5 50.6 50.6 50.7 50.7 50.8 51.0 51.0 51.0 51.0 51.0 51.2 51.2 51.2
Delta-LSTM 65.3 66.2 66.3 66.3 66.3 66.4 66.4 66.4 66.5 66.5 66.8 67.0 67.0 67.0 67.0 67.1 67.2 67.2 67.2 67.2

SGDP 88.8 88.9 88.9 88.9 89.0 89.0 89.0 89.3 89.4 89.5 89.5 89.7 89.7 89.8 90.0 90.0 90.1 90.1 90.1 90.1
SGDPl 83.6 83.6 83.6 83.6 83.7 83.7 83.7 84.0 84.1 84.1 84.2 84.4 84.4 84.5 84.5 84.7 84.7 84.7 84.7 84.7
SGDPp 70.6 72.1 72.5 72.6 72.6 72.6 72.7 72.8 72.9 73.0 73.1 73.7 74.4 74.5 74.6 74.7 74.9 75.1 75.1 75.1

TABLE X
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET HM 1.

HR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

No pre 1.0 2.7 5.5 8.5 11.9 14.3 16.6 19.4 21.5 23.5 25.3 42.2 68.7 91.9 95.4 96.2 96.8 97.3 97.9 98.3
Naive 30.8 31.7 33.2 34.6 36.0 37.4 38.8 40.2 41.5 42.7 43.8 53.4 60.5 68.2 78.2 88.0 94.2 96.4 97.1 97.4
Stride 25.7 27.1 29.6 32.1 34.9 37.1 39.3 41.8 43.7 45.3 47.0 59.8 75.6 95.3 97.3 98.0 98.4 98.6 98.9 99.1

ARIMA 2.4 3.5 5.6 7.5 9.4 11.3 13.1 14.7 16.3 17.7 19.0 30.4 38.7 48.5 60.9 74.9 86.3 91.7 93.8 95.2
Informer 0.5 1.1 2.8 4.1 5.7 7.2 8.5 10.0 11.5 12.7 14.0 24.1 31.4 38.6 48.1 59.3 71.1 81.1 86.8 90.4

DeepPrefetcher 36.7 38.5 41.7 44.6 47.1 49.6 52.0 54.1 55.9 57.5 59.1 71.2 80.5 94.3 97.2 98.0 98.6 99.0 99.1 99.3
Delta-LSTM 28.3 30.0 32.9 35.6 38.3 40.9 43.1 45.0 47.0 49.0 50.6 63.6 78.3 95.9 97.8 98.4 98.8 99.0 99.1 99.3

SGDP 36.7 38.1 40.4 42.7 45.0 47.1 48.8 50.9 52.8 54.3 55.7 67.4 81.2 96.8 98.4 98.8 99.1 99.2 99.3 99.4
SGDPl 40.6 43.1 46.5 49.1 51.4 53.5 55.4 57.1 58.6 60.1 61.4 70.3 78.5 90.2 97.4 98.2 98.6 98.8 98.9 99.1
SGDPp 41.4 43.9 47.5 50.3 52.7 54.9 56.8 58.5 59.9 61.4 62.9 71.8 80.3 92.8 97.5 98.3 98.6 98.9 99.2 99.4

EPR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

Naive 30.5 30.5 30.8 30.9 31.0 31.0 31.1 31.1 31.2 31.2 31.2 31.2 30.0 26.9 21.8 16.6 11.8 7.5 6.2 5.6
Stride 82.0 82.3 82.7 83.0 83.3 83.5 83.8 84.0 84.1 84.2 84.4 84.3 79.0 83.6 86.1 87.7 88.0 87.8 87.4 88.4

ARIMA 2.3 2.7 3.2 3.6 4.0 4.2 4.5 4.6 4.8 5.0 5.2 6.3 6.9 6.5 5.6 4.0 3.0 2.5 2.3 2.5
Informer 0.1 0.1 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.7 1.1 1.4 1.5 1.4 1.2 1.0 0.9 0.8 0.7

DeepPrefetcher 37.0 38.5 41.5 44.0 46.2 48.3 50.1 51.9 53.5 54.8 56.0 65.3 67.1 53.5 48.4 41.5 42.1 45.2 47.4 46.1
Delta-LSTM 55.9 57.7 60.9 63.4 65.4 67.1 68.6 69.8 70.8 71.9 72.8 79.0 79.6 78.1 81.8 83.4 85.7 87.0 86.6 87.6

SGDP 86.5 87.8 88.7 89.1 89.2 89.5 89.7 89.8 89.9 90.0 90.1 90.9 87.8 86.7 88.1 89.1 88.9 88.7 87.3 86.2
SGDPl 43.3 46.3 50.3 53.0 54.8 56.3 57.6 58.7 59.6 60.2 60.8 63.7 61.5 49.0 33.9 27.1 26.3 26.6 26.7 24.4
SGDPp 43.4 46.8 51.2 54.3 56.5 58.3 59.9 61.1 62.1 63.0 63.8 67.7 65.9 51.4 41.6 35.5 35.1 35.5 36.3 34.8

TABLE XI
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET MDS 0.

HR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

No pre 10.1 13.2 18.1 21.0 24.2 26.7 30.0 32.4 33.4 34.2 35.0 45.8 49.6 51.3 52.6 55.0 57.9 58.5 59.3 61.0
Naive 50.0 54.3 58.4 61.2 63.1 64.6 65.8 66.8 67.5 67.9 68.2 71.1 75.0 78.9 81.1 82.9 83.9 84.5 84.9 85.2
Stride 44.0 47.3 51.8 54.2 55.8 57.5 59.0 60.3 60.9 61.5 62.2 72.0 75.6 76.9 77.4 77.8 78.5 78.9 79.2 79.8

ARIMA 13.2 16.6 20.7 24.0 27.4 30.2 32.6 35.0 36.1 36.9 37.4 41.2 46.1 50.3 52.8 54.3 55.2 56.1 57.6 58.3
Informer 6.2 9.6 13.1 16.0 18.6 20.4 22.1 23.7 25.4 26.9 28.3 35.9 40.2 44.1 47.2 49.0 50.9 52.3 53.5 54.5

DeepPrefetcher 55.7 60.7 65.3 68.1 69.8 71.1 71.9 72.5 73.0 73.4 73.7 78.9 84.4 86.2 87.1 87.4 87.7 87.9 88.1 88.5
Delta-LSTM 53.8 57.3 61.5 63.6 65.0 66.1 67.1 67.9 68.5 69.0 69.6 78.6 82.4 83.9 84.3 84.7 85.0 85.3 85.7 86.2

SGDP 62.5 66.0 69.7 71.7 72.8 73.7 74.4 74.9 75.4 75.8 76.3 84.5 88.4 89.9 90.3 90.5 90.7 91.0 91.3 91.6
SGDPl 62.3 66.1 70.1 72.4 73.9 75.1 76.0 76.5 76.9 77.2 77.5 82.0 87.5 89.7 90.6 91.1 91.4 91.6 91.8 92.1
SGDPp 63.5 67.4 71.8 74.4 76.0 77.2 78.0 78.6 79.1 79.4 79.8 86.1 89.9 91.2 91.6 91.8 92.0 92.2 92.4 92.6

EPR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

Naive 45.8 47.8 50.4 51.8 52.6 52.5 51.9 51.0 50.9 51.0 51.1 52.1 52.8 53.1 52.9 52.8 50.8 51.2 51.8 52.2
Stride 79.2 82.3 86.9 89.1 90.1 90.5 90.5 90.5 90.6 90.6 90.6 90.7 90.8 90.9 90.7 90.6 89.9 89.8 89.8 89.8

ARIMA 8.1 8.6 9.5 9.9 10.0 10.1 9.9 9.3 9.3 9.2 9.2 9.6 9.8 10.2 10.4 10.7 11.0 11.3 11.7 12.0
Informer 0.2 0.3 0.5 0.8 1.0 1.0 1.1 1.1 1.1 1.1 1.2 2.1 3.0 3.7 4.2 4.5 4.7 4.8 5.0 5.2

DeepPrefetcher 63.1 66.9 71.3 73.9 75.4 76.1 76.2 76.3 76.7 77.2 77.5 80.2 82.3 83.1 83.5 83.7 83.2 83.2 83.2 83.3
Delta-LSTM 77.0 80.2 84.2 86.1 87.0 87.3 87.4 87.4 87.6 87.6 87.8 89.1 90.0 90.4 90.4 90.1 89.7 89.6 89.8 89.8

SGDP 77.2 80.2 83.9 85.7 86.5 86.8 86.8 86.6 86.9 87.0 87.0 87.9 88.5 88.8 88.9 88.9 88.4 88.4 88.5 88.4
SGDPl 62.4 65.4 69.2 71.3 72.4 72.7 72.8 72.7 73.2 73.5 73.9 76.5 78.3 79.2 79.8 80.0 79.2 79.4 79.6 79.6
SGDPp 64.9 68.7 73.8 77.0 78.9 79.6 80.0 80.4 81.0 81.4 81.9 85.3 87.5 88.1 88.4 88.4 87.8 87.8 88.0 87.9

TABLE XII
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET PROJ 0.

HR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

No pre 4.1 6.1 8.9 11.0 14.1 17.4 23.1 26.3 27.3 28.2 28.7 30.8 32.3 32.8 33.2 33.5 34.0 34.8 35.0 35.2
Naive 59.0 61.1 63.6 65.1 66.3 67.2 68.2 69.2 69.6 69.9 70.1 71.1 71.8 72.5 73.0 73.4 73.7 73.9 74.2 74.3
Stride 48.7 51.0 53.1 54.5 55.7 57.0 58.9 60.1 60.5 60.8 61.1 62.5 63.8 64.1 64.3 64.7 64.9 65.2 65.3 65.4

ARIMA 10.7 12.9 15.6 18.1 20.8 23.6 27.5 30.8 32.1 33.0 33.5 35.2 36.1 37.0 37.7 38.3 38.7 38.9 39.0 39.3
Informer 2.3 3.9 6.0 7.7 9.2 10.6 12.1 13.7 15.4 17.3 19.8 29.6 30.8 31.9 32.6 33.4 33.8 34.2 34.5 34.7

DeepPrefetcher 70.4 72.6 74.7 75.9 76.8 77.4 78.1 78.5 78.7 78.9 79.1 80.2 81.1 81.8 81.9 82.1 82.2 82.5 82.7 82.8
Delta-LSTM 60.5 62.3 64.0 65.0 65.9 66.7 67.7 68.4 68.7 68.9 69.1 70.5 71.7 72.1 72.3 72.6 72.8 73.1 73.3 73.3

SGDP 71.5 73.4 75.0 75.9 76.5 77.1 77.6 78.0 78.2 78.4 78.5 79.7 80.7 81.1 81.2 81.5 81.7 81.9 82.1 82.1
SGDPl 73.5 75.5 77.3 78.3 79.0 79.6 80.2 80.6 80.8 81.0 81.1 82.0 82.9 83.6 83.8 84.0 84.2 84.3 84.5 84.6
SGDPp 71.5 73.7 76.2 77.5 78.4 79.2 80.0 80.5 80.8 81.0 81.3 82.6 83.6 84.2 84.4 84.5 84.7 84.9 85.1 85.2

EPR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

Naive 57.6 58.7 61.0 62.3 62.9 62.7 61.9 60.1 59.8 59.8 59.7 60.2 60.4 60.6 60.7 60.9 60.9 60.9 60.8 60.8
Stride 80.3 82.5 85.6 87.3 88.4 88.7 88.4 88.0 88.1 88.1 88.1 88.3 88.3 88.3 88.3 88.4 88.4 88.3 88.3 88.3

ARIMA 11.6 12.0 12.6 13.0 13.1 12.6 11.7 10.8 10.4 10.2 10.1 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.3 10.4
Informer 0.0 0.1 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 1.0 1.4 1.8 2.0 2.2 2.2 2.3 2.3 2.3

DeepPrefetcher 73.0 75.0 77.5 78.9 79.7 79.6 78.9 78.3 78.4 78.5 78.6 79.7 80.3 80.8 81.0 81.1 81.2 81.3 81.4 81.5
Delta-LSTM 82.8 84.3 86.1 87.1 87.5 87.4 86.7 86.2 86.1 86.1 86.2 86.6 86.9 87.1 87.2 87.3 87.3 87.4 87.3 87.4

SGDP 82.2 84.0 86.3 87.6 88.4 88.4 88.0 87.6 87.6 87.6 87.6 87.9 88.0 88.1 88.1 88.2 88.2 88.2 88.2 88.2
SGDPl 77.8 79.8 82.2 83.5 84.3 84.3 83.8 83.4 83.4 83.5 83.6 84.5 84.9 85.3 85.4 85.5 85.6 85.6 85.6 85.6
SGDPp 72.3 74.5 77.5 79.2 80.3 80.5 80.0 79.6 79.8 79.9 80.2 81.6 82.5 83.0 83.3 83.5 83.6 83.7 83.8 83.9

TABLE XIII
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET PRXY 0.

HR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

No pre 14.9 20.1 25.1 27.5 30.0 32.4 35.7 38.0 39.2 40.1 40.7 45.9 47.5 47.8 48.0 48.4 48.5 48.6 48.7 48.8
Naive 40.4 46.4 52.4 56.0 58.2 59.9 61.3 62.5 63.3 63.9 64.3 66.5 67.9 69.5 70.5 71.3 71.9 72.3 72.5 72.7
Stride 34.5 40.3 45.1 47.6 49.4 51.3 53.2 54.6 55.3 55.9 56.5 61.1 62.6 62.9 63.2 63.5 63.6 63.7 63.8 63.8

ARIMA 14.6 19.9 25.7 29.2 32.0 34.7 37.3 39.7 40.8 41.7 42.2 45.5 47.4 49.4 50.4 51.0 51.7 52.0 52.2 52.3
Informer 8.4 13.7 18.6 21.8 24.0 25.7 26.9 28.2 29.7 30.8 32.1 39.8 41.9 43.1 44.0 44.9 45.5 46.1 46.6 46.9

DeepPrefetcher 50.9 57.0 62.3 64.7 66.2 67.4 68.3 69.0 69.4 69.9 70.2 73.6 75.6 76.5 76.7 76.9 77.1 77.2 77.3 77.4
Delta-LSTM 46.8 52.2 56.5 58.5 59.7 60.9 62.0 62.8 63.3 63.7 64.2 68.5 70.1 70.4 70.7 71.0 71.0 71.1 71.2 71.3

SGDP 56.7 62.2 66.4 68.3 69.5 70.6 71.3 71.9 72.4 72.8 73.2 77.2 78.7 79.0 79.3 79.6 79.6 79.7 79.8 79.9
SGDPl 58.7 64.1 68.9 71.2 72.7 73.9 74.7 75.3 75.8 76.2 76.5 79.4 81.4 82.2 82.5 82.7 82.8 82.9 82.9 83.0
SGDPp 58.2 63.9 68.8 71.0 72.5 73.6 74.4 75.0 75.4 75.8 76.2 80.0 81.8 82.2 82.5 82.6 82.8 82.9 83.0 83.0

EPR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

Naive 33.5 35.1 37.6 39.1 40.1 40.4 39.9 39.0 38.6 38.6 38.5 38.8 39.2 39.6 39.8 40.1 40.3 40.5 40.7 40.9
Stride 65.2 69.6 75.3 78.9 81.2 81.9 81.7 81.4 81.3 81.2 81.1 81.1 81.2 81.3 81.3 81.3 81.4 81.4 81.4 81.4

ARIMA 6.1 6.5 7.1 7.4 7.8 7.9 7.7 7.4 7.3 7.2 7.2 7.4 7.5 7.7 7.7 7.8 8.0 8.0 8.1 8.2
Informer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2

DeepPrefetcher 59.6 63.5 67.7 70.0 71.2 71.3 70.9 70.3 70.3 70.3 70.4 71.5 72.5 72.9 73.1 73.3 73.4 73.7 73.8 73.9
Delta-LSTM 72.9 75.7 78.7 80.4 81.1 81.0 80.3 79.7 79.5 79.4 79.3 79.8 80.1 80.3 80.5 80.6 80.7 80.8 80.8 80.9

SGDP 73.0 76.3 80.2 82.4 83.6 84.0 83.7 83.4 83.4 83.4 83.3 83.5 83.6 83.7 83.8 83.9 83.9 84.0 84.0 84.1
SGDPl 62.4 65.7 69.5 71.9 73.3 73.7 73.6 73.5 73.8 74.0 74.3 75.9 77.0 77.5 77.7 77.9 78.1 78.3 78.4 78.4
SGDPp 61.2 64.9 69.1 71.4 72.7 73.0 72.6 72.3 72.3 72.4 72.6 73.5 74.4 74.8 75.1 75.4 75.7 75.8 76.0 76.1

TABLE XIV
RESULTS OF SINGLE-STEP PREFETCHING BASED ON DIFFERENT CACHE SIZES ABOUT DATASET SRC1 2.

HR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

No pre 1.6 3.9 7.6 11.3 15.6 20.5 27.6 31.5 32.8 33.9 34.8 39.5 42.6 44.6 45.7 46.3 47.0 47.4 47.9 48.2
Naive 58.5 60.5 63.1 65.2 66.8 68.3 69.9 71.4 72.1 72.6 73.0 74.7 75.9 77.3 78.5 79.4 79.9 80.3 80.6 80.8
Stride 45.9 48.3 51.0 53.2 55.3 57.6 60.3 62.0 62.7 63.3 63.8 66.2 69.2 70.9 71.7 72.1 72.6 72.9 73.2 73.4

ARIMA 12.5 14.6 18.1 21.6 25.1 29.2 34.5 38.2 39.9 41.1 42.0 45.3 46.2 48.9 50.2 51.9 53.0 53.8 54.4 54.8
Informer 0.7 1.7 4.1 6.2 8.0 10.1 12.3 14.4 16.5 19.3 22.5 34.8 36.7 39.3 40.8 42.4 43.5 44.0 44.7 45.3

DeepPrefetcher 72.5 74.5 76.5 78.0 79.1 80.2 81.3 82.0 82.3 82.6 82.9 84.0 85.3 86.3 87.4 88.0 88.3 88.5 88.8 89.0
Delta-LSTM 66.9 68.7 70.8 72.4 73.7 75.1 76.6 77.5 78.0 78.3 78.7 79.8 81.5 82.6 83.7 84.3 84.6 84.9 85.2 85.4

SGDP 73.5 75.4 77.4 78.7 79.8 80.8 81.7 82.2 82.6 82.8 83.1 84.3 85.9 86.9 87.6 87.9 88.1 88.4 88.6 88.8
SGDPl 74.3 76.3 78.3 79.6 80.7 81.6 82.6 83.1 83.4 83.7 83.9 85.0 86.5 87.4 88.2 88.5 88.7 89.0 89.2 89.4
SGDPp 72.7 74.9 77.3 79.2 80.6 81.9 83.1 83.8 84.2 84.5 84.8 85.9 87.1 87.9 88.6 88.9 89.2 89.3 89.6 89.8

EPR@N

Methods
Cache sizes

5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

Naive 58.3 59.9 63.3 65.2 65.9 65.8 64.9 63.2 63.0 63.0 63.1 63.8 64.3 64.8 65.1 65.3 65.6 65.8 66.1 66.3
Stride 78.0 81.0 86.1 88.6 89.7 90.1 89.8 89.6 89.6 89.6 89.6 90.0 91.1 91.6 91.7 91.8 91.9 91.9 92.0 92.0

ARIMA 18.9 19.5 20.3 20.8 21.0 20.6 19.2 18.2 18.0 17.8 17.7 17.7 18.0 18.4 18.6 18.8 19.0 18.9 19.1 19.2
Informer 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.6

DeepPrefetcher 74.0 76.2 79.8 81.4 82.1 82.1 81.4 80.8 80.9 80.9 80.9 81.4 82.8 83.9 84.9 85.6 86.2 86.5 86.8 87.0
Delta-LSTM 75.9 77.9 81.1 82.5 83.0 82.9 82.1 81.5 81.4 81.4 81.4 81.9 83.1 84.3 85.2 85.9 86.5 86.8 87.1 87.3

SGDP 80.0 82.5 85.9 87.7 88.5 88.8 88.5 88.3 88.4 88.5 88.5 89.0 89.7 90.1 90.3 90.4 90.5 90.6 90.7 90.8
SGDPl 79.0 81.5 84.9 86.7 87.5 87.7 87.4 87.2 87.3 87.4 87.4 87.8 88.3 88.6 88.7 88.9 89.0 89.1 89.3 89.3
SGDPp 73.6 76.1 80.2 82.4 83.7 84.1 83.7 83.5 83.7 83.9 84.0 84.6 85.3 85.7 86.1 86.4 86.8 86.9 87.2 87.3

	Introduction
	Related Work
	Preliminaries
	Methodology
	LBA Delta Streams
	LBA Delta Based Graph Structure
	Weighted Directed Stream-based Graph
	Latent Node Vectors Updating
	Generating Stream Hybrid Embedding Vector
	Forecasting and Prefetching

	Experimental Settings
	Datasets
	Compared Methods
	Evaluation Criteria
	Implementation Details

	Experimental Results
	Results of Single-Step Prefetching
	Ablation study and SGDP Variants by Stream Construction
	Retaining top-K delta value (SGDPl)
	Stream partition with page (SGDPp)

	Multi-step Prefetching
	Offline Training and Online Testing Efficiency

	Conclusions
	References

