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Abstract—The development of IoT technology enables a variety
of sensors can be integrated into mobile devices. Human Activity
Recognition (HAR) based on sensor data has become an active
research topic in the field of machine learning and ubiquitous
computing. However, due to the inconsistent frequency of human
activities, the amount of data for each activity in the human
activity dataset is imbalanced. Considering the limited sensor
resources and the high cost of manually labeled sensor data,
human activity recognition is facing the challenge of highly
imbalanced activity datasets.

In this paper, we propose Balancing Sensor Data Generative
Adversarial Networks (BSDGAN) to generate sensor data for
minority human activities. The proposed BSDGAN consists of
a generator model and a discriminator model. Considering the
extreme imbalance of human activity dataset, an autoencoder is
employed to initialize the training process of BSDGAN, ensure
the data features of each activity can be learned. The generated
activity data is combined with the original dataset to balance
the amount of activity data across human activity classes. We
deployed multiple human activity recognition models on two
publicly available imbalanced human activity datasets, WISDM
and UNIMIB. Experimental results show that the proposed
BSDGAN can effectively capture the data features of real human
activity sensor data, and generate realistic synthetic sensor data.
Meanwhile, the balanced activity dataset can effectively help the
activity recognition model to improve the recognition accuracy.

Index Terms—Human activity recognition, generative adver-
sarial networks, data augmentation

I. INTRODUCTION

With the popularization of smart mobile devices, the re-
search on human activity recognition based on sensor data
occupies an increasing proportion in the field of ubiquitous
computing [1]. The miniaturization of sensors enables mobile
devices to embed various sensors and collect various types
of sensor data, including acceleration, gyroscope, magnetic
field strength and pressure. The abundance of sensor data leads
to Human Activity Recognition (HAR) based on sensor data
widely employed in various fields of our daily life, such as
health care [2], sleep quality analysis [3], patient rehabilitation
[4], interactive entertainment [5] and sports fitness [6]. The
successful deployment of human activity recognition shows
great development potential and research significance.

The collection and label of sensor data is the basis of the
entire human activity recognition research. The classification
accuracy of a human activity recognition model depends on
the dataset itself [7]. The performance of human activity
recognition classifier is affected by an extreme imbalance
in the amount of sensor data between activity classes [8].
However, most HAR researchers only focus on the accuracy
of human activity recognition rather than the data quality of
the human activity dataset. The vast majority of sensor data in
human activity datasets come from mobile smartphones and
wearable devices [9]. Considering the purchase cost of smart
devices and the labor cost of collecting and labeling sensor
data, most human activity datasets have a highly imbalanced
data amount between activity classes, the research of human
activity recognition is facing the challenge of data amount
imbalance.

In recent years, many data generation methods based on
deep learning have been proposed. Among them, Generative
Adversarial Networks (GAN) is the most effective and most
interesting data generation method. The original GANs frame-
work was firstly proposed by Ian Goodfellow et al. [10] in
2014 and consisted of a generator and discriminator built by
multilayer perceptron (MLP). GAN learns the data feature
distribution of real data through the adversarial between the
generator and the discriminator, enabling the generator model
can generate fake data to fool the discriminator. In the field
of computer vision, GAN has been proved that it can effec-
tively generate many types of high-quality images, including
human faces, animals and landscapes [11]. Nevertheless, few
researchers have successfully deployed independent GANs on
human activity datasets to generate high-quality sensor data
because of the huge data feature difference between different
activity classes [12].

In this paper, we employed a unified independent generative
adversarial network, BSDGAN, to improve the performance
of human activity recognition models by oversampling human
activity classes with small amounts of sensor data. The main
contributions of this paper are summarized as follows:

(1) We successfully deploy the proposed generative adver-
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sarial networks on imbalanced human activity datasets, and
generate sensor data for specified human activities.

(2) We added conditional constraints to the GAN framework
and improved the loss function with gradient penalty. An
autoencoder is employed to initialize the GAN training, which
gives the BSDGAN data feature distribution knowledge of all
human activities, helps stabilize the training process.

(3) We oversample the human activity classes with few data
to balance the dataset, prove that the balanced human activity
dataset can improve the performance of HAR models.

The rest of this paper is organized as follows. Section
II reviews the related works regarding HAR and Generative
Adversarial Networks. Section III presents the details of our
proposed BSDGAN. Section IV illustrates the performance of
BSDGAN on imbalanced human activity datasets and presents
the comparison of various HAR models before and after data
balancing. Section V gives the conclusion of this paper and
introduces our future work.

II. RELATED WORK

A. Human Activity Recognition

Human activity recognition is divided into visual image-
based activity recognition [13] and sensor data-based activity
recognition [14]. Compared with human activity recognition
methods based on visual images, sensor-based methods have
the advantages of small data amount, simple reasoning, low
cost and strong embeddability, occupying a major position in
the research and application of human activity recognition.
With the popularity of smartphones, human activity recogni-
tion based on smartphones has been applied in many research
fields. Some researchers employed traditional machine learn-
ing methods to recognize human activities, such as K-Nearest
Neighbors [15], Decision Tree [16] and Random Forest [17].
In recent years, with the rapid development of deep learning,
many researchers employed deep learning methods to perform
human activity recognition.

Traditional machine learning methods always require hand-
crafted data features. In order to achieve desired recognition
results, researchers have devoted a lot of effort to researching
and designing effective features to improve HAR performance
[18], [19]. In contrast, deep learning methods can automati-
cally extract features from sensor data [20]. Song-Mi Lee et
al. [21] used a one-dimensional Convolutional Neural Network
(CNN) to analyze the three-axis data of the accelerometer.
They convert the three-axis data into vector magnitude data
to achieve high classification accuracy. C.A.Ronaoo et al. [22]
used a CNN with two hidden layers to analyze accelerometer
data and gyroscope data, achieved activity classification ac-
curacy of over 90% on the University of California’s Open
Activity Dataset (UCI DATASET) [23]. H. Zhang et al. [24]
used a multi-head CNN combined with attention mechanism
to recognize various activities, including walking, standing,
sitting, jogging, going upstairs and downstairs. Y. Chen et al.
[25] used a Long Short-Term Memory neural network (LSTM)
to analyze the sensor data. R. Mutegeki et al. [26] combined

the CNN with LSTM, and the recognition accuracy on the
UCI dataset reached 92%.

Unfortunately, HAR research is completely dependent on
the data quality of human activity datasets. Due to the inconsis-
tencies in the difficulty of collecting different human activity
data, such as walking data is easier to collect than the data of
going up and downstairs, the data amount of some activities
in the human activity dataset is always small, resulting in the
human activity dataset extremely imbalanced. In this paper, we
adopt GAN framework to generate sensor data and balance the
human activity dataset with the generated activity data.

B. Generative Adversarial Networks

Generative Adversarial Networks (GAN) developed fast
in recent years. Inspired by the original GAN, researchers
have proposed many variants of GAN. WGAN [27] and its
improved version WGAN-GP [28] are proposed to solve the
problem of mode collapse and vanishing gradients of the origi-
nal GAN during training. Mirza M et al. [29] proposed CGAN
to bring label information into the training process of GAN,
so that GAN can generate data for specific classes. Radford
et al. [30] proposed DCGAN, they use deep convolutional
neural networks to replace the MLP in the original GAN and
replace the fully connected layer with a global pooling layer
to reduce the amount of computation. Based on CGAN and
DCGAN, Odena A et al. [31] proposed ACGAN. When the
discriminator of ACGAN discriminates the real data, it also
classifies the real data. The results of the classification are
feedback to the generator to improve the data quality. The
researchers of BAGAN [32] point out that when ACGAN
works on unbalanced and small datasets, it cannot effectively
generate data for the minority classes. BAGAN improves
the loss function of ACGAN to solve the self-contradiction
between the two loss functions of ACGAN. All of the above
GANs are designed to generate high-quality generated data
and stabilize the GAN training process. Meanwhile, GAN has
gradually expanded from the field of image generation to many
other applications, such as natural language processing [33],
speech synthesis [34], super-resolution reconstruction [35],
text generation [36], and image inpainting [37].

M.Alzantot et al. [38] proposed SenseGEN to generate
activity data, which is the first application of GAN framework
on human activity datasets. However, the discriminator and
generator model of SenseGEN are trained separately, the
generator model cannot learn from the feedback of the discrim-
inator model, resulting in poor quality of the generated activity
data. Wang J et al. [39] proposed SensoryGANs to oversample
human activity dataset and improve the performance of HAR
models, but the generator model needs to switch different
network structures for different human activities, in order
to adapt to the data distribution features of various human
activities, which makes SensoryGANs need to train multiple
generators on the same activity dataset. Alharbi et al. [40]
employed WGAN to generate activity sensor data. Considering
the activity data is time-sequence data, they adopt RNN based
model to build the generator and discriminator model, which



makes their GAN structure difficult to train. Razvan Pascanu et
al. [41] showed that the neural network architecture based on
the RNN model has unstable convergence during training. The
generator and discriminator model of the proposed BSDGAN
in this paper is built by 1D-transposed CNN and 1D-CNN. In
the following sections, we will demonstrate that GANs built by
pure convolutions can also generate data for different human
activities.

III. BALANCING SENSOR DATA GAN
We dub our generative adversarial networks framework as

Balancing Sensor Data GAN (BSDGAN). BSDGAN is a
complete generative adversarial networks framework, consists
of a generator model and a discriminator model. Human
activity datasets are usually extremely imbalanced, traditional
GANs tend to generate sensor data for activity class with a
large number of data samples, rather than the minority class
data we need. To solve this problem, we adopt an autoencoder
to initialize the training of BSDGAN, so that BSDGAN can
learn the data features of all activity classes. The architecture
of BSDGAN is shown in Fig. 1.

Randomly noise and label information are simultaneously
fed into the generator model to generate fake sensor data.
Subsequently, the fake sensor data with label information
and the real sensor data are both fed into the discriminator,
the discrimination results will be employed to improve the
parameters of the generator model.
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Labeled Real Data

Fig. 1. Architecture of proposed BSDGAN.

A. Autoencoder Initialization

Autoencoders can converge towards good solutions easily
[42]. We apply an autoencoder to initialize the GAN, let it
close to a good solution at the initial stage, away from mode
collapse. Furthermore, the encoder part of the autoencoder is
adopted to infer the distribution of latent vectors for different
human activity classes.

The initialization process of the autoencoder is shown in
Fig. 2. All sensor data in the human activity dataset will be
used to train the autoencoder. Training process is performed
by mean absolute error loss function minimization.

Real Data

En

Latent Vector

De

Reconstructed Data

Fig. 2. Autoencoder Initialization.

B. Design of Generator Model
The goal of the generator model is to learn the data feature

distribution of real sensor data p(x|ci) in specific activity
class ci, then generate high quality synthetic data G(z|ci).
The generator model of BSDGAN consists of an embedding
layer and a pre-trained decoder, as shown in Fig. 3. Random
noise z and a label information ci are fed into the embedding
layer to generate labeled noise. The pre-trained decoder shares
the weight parameters and network architecture with the
generator model. The labeled noise can be converted to the
sensor data G(z|ci) in specific activity class by 1D-transposed
convolutional neural network layer in the decoder. The weight
parameters of decoder in generator can be updated during the
process of adversarial training.

Random Noise

Label Code

Embedding

Labeled Noise
Generated Sensor Data

Fig. 3. Design of generator model.

C. Architecture of the Discriminator Model
The discriminator model in BSDGAN is an extension of

the pre-trained encoder. The discriminator does not employ
the entire architecture of the encoder, the last layer of the
encoder is removed, and the output of the second-last layer
(feature map) with the label information are fed into the
embedding layer, generate a new dense vector. The last layer
of the discriminator model is a dense layer with softmax
as activation function. This layer is applied to output the
discrimination result of the input data. If the discrimination
result is the generated data, it outputs the label fake, and
if the discrimination result is the real data, it outputs the
corresponding activity label code ci. The architecture of the
discriminator model is shown in the Fig. 4.
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Fig. 4. Architecture of discriminator model.

D. Improved Loss Function

The training process of GAN is the process of the discrim-
inator against the generator. The goal of generator G is to
generate data that fools the discriminator, and the goal of
discriminator D is to distinguish real data from generated data.
Therefore, the loss function of original GAN is defined as:

min
G

max
D

V (D,G) =

Exr∼Xr
[logD(xr)] + Exg∼Xg

[log(1−D(xg))] (1)

where xr is the real sensor data, Xr is the real data distribu-
tion, xg = G(z) is the generated sensor data, and Xg is the
generated data distribution.

The original GAN cannot generate data for specified classes.
Conditional GAN (CGAN) adds constraints on the basis of
the original GAN, enabling it to generate synthetic data of
specified classes. The loss function of CGAN is defined as
follows:

min
G

max
D

V (D,G) = Exr∼Xr [logD(xr|y)]+

Exg∼Xg
[log(1−D(xg|y))] (2)

where y is the conditional constraint. It is combined with
input noise z to form a joint hidden layer representation. The
discriminator discriminates between xg and xr based on the
condition y.

To make the training process of GAN more stable, WGAN
improves the loss function of GAN. The loss function of
GAN is based on Jensen-Shannon divergence, which makes
the training process of GAN difficult. WGAN uses Wasserstein
Distance instead of JS divergence to measure the difference

between generated data and real data. Wasserstein Distance is
defined as:

W (Xr, Xg) = inf
γ∈

∏
(Xr,Xg)

E(xr,xg) ∼ γ[‖xr − xg‖] (3)

where
∏
(Xr, Xg) represents the all joint distributions be-

tween Xr and Xg . However, wasserstein distance is difficult
to deal with in practice, researchers employed Kantorovich-
Rubinstein duality as an alternative:

W (Xr, Xg) = sup
‖D‖L≤1

(Exr∼Xr
[D(xr)]− Exg∼Xg

[D(xg)])

(4)
where ‖D‖L ≤ 1 means discriminator D follows the 1-
Lipschitz function. So the objective of WGAN is obtained
as:

W (Xr, Xg) = Exr∼Xr
[D(xr)]− Exg∼Xg

[D(xg)] (5)

WGAN directly adopts weight clipping when dealing with
1-Lipschitz constraints, which results in the parameters of the
discriminator focusing on the maximum and minimum values,
easily leading to gradient vanishing and gradient explosion.
WGAN-GP employed gradient penalty to improve the loss
function of the discriminator model. The loss function of
WGAN-GP is defined as:
min
G

max
D

V (D,G) = Exg∼Xg [D(xg)]− Exr∼Xr [D(xr)]

− λEx̂∼X̂ [(‖Ox̂D(x̂)‖2 − 1)2]
(6)

where x̂ = αxr + (1− α)xg , α is in the range 0 to 1. λ is a
hyperparameter of the penalty extent.

In this paper, we combine the improvements of WGAN-
GP on the original GAN with the conditional constraints of
CGAN. The loss function of BSDGAN is defined as follows:
min
G

max
D

V (D,G) =

Exr∼Xr,yr∼Yr
[logD(xr|yr)]+

Exg∼Xg,yg∼Yg
[log(1−D(G(xg|yg)|yg))]+

Exr∼Xr,ywrong∼Ywrong
[log(1−D(xr|ywrong))]−

λEx̂∼X̂,yr∼Yr
[(‖Ox̂|yrD(x̂|yr)‖2 − 1)2]

(7)

where yr is the real label and Yr is the set of all real data
labels. In an imbalanced dataset, ground truth labels randomly
sampled from the dataset are still imbalanced. Therefore, we
refer to BAGAN and randomly select a label yg for each
generated data from the balanced label set Yg . To enhance
the learning of class information from the real dataset, we add
an additional cross-entropy loss for misclassified cases, and
the misclassified data label is set to ywrong.

E. Pseudocode of Algorithm

The pseudocode of the dataset balance using BSDGAN
is shown in Algorithm 1. During the balancing process,
BSDGAN takes the data amount of the largest class as the
balancing criterion and oversamples each human activity class.
When the amount of data for all activity classes is greater than
the balance standard, the balancing process ends, this means
that the dataset reaches a balanced state.



Algorithm 1 The process of human activity dataset balance
Input: random noise z; real dataset xreal;
Output: the balanced dataset xb
1: Split the real dataset xreal into real sensor data xr and

real data label yr;
2: Import the trained generator model G and discriminator

model D;
3: Calculate the amount of data for each class, set the

maximum value to Nmax
c ;

4: for i=1 to len(classes) do
5: Set the data volume of ith class to N i

c ;
6: while N i

c < Nmax
c do

7: Generate the fake data xig for the specified class ci
with G(z, ci);

8: Employ discriminator model D to verify the output
of generator as cg;

9: if ci = cg then
10: Add the generated data xig to the fake dataset xg;
11: N i

c++;
12: end if
13: end while
14: end for
15: Combine the generated dataset xg with the real dataset xr

to get the balanced dataset xb;
16: return xb

IV. EXPERIMENTATION AND EVALUATION

A. Datasets

In this paper, we use two public human activity datasets,
WISDM [43] and Unimib-SHAR [44] to train and evaluate our
BSDGAN. WISDM contains 6 types of human activity classes
with a total of 1,098,207 rows of data (54,901 human activity
instances) collected by 36 users. Each row of data contains
three-axis acceleration values and timestamp information. The
Unimib-SHAR (ADL) dataset contains 9 daily living activities
with a total of 7579 instances of human activity data, each
activity instance contains 151 rows of raw data. Each row of
data contains three-axis acceleration data, timestamp, and raw
signal amplitude, collected by 30 volunteers aged between 18
and 60. These two human activity datasets both suffer from
severe data imbalance, the data distributions of the two datasets
are shown in Fig. 5.

Walking
38.7%

Jogging31.2%

Upstairs

11.2%

Downstairs

9.1%
Sitting

5.4%Standing
4.4%

Running 26.2%

Walking

22.9%

GoingDownS17.5%

GoingUpS
12.2%

Jumping

9.8%
LyingDownFS

3.9%
StandingUpFL

2.8%
SittingDown

2.6%StandingUpFS
2.0%

Fig. 5. Sensor Data Distribution of WISDM (Left) and Unimib-SHAR
(Right).

B. Training Process

In this paper, the framework of all experiments is Tensorflow
2.5.0 based on Python. The proposed BSDGAN is evaluated
on a laptop computer with an NVIDIA RTX2060. We use
Adam algorithm as the optimizer for generator model and
discriminator model. The learning rate is 0.0002, beta1 and
beta2 are set to 0.5 and 0.9. The size of batch is 128, default
latent vector is 100 dimensions. We train 100 epochs on two
human activity datasets, each epoch takes 88s on WISDM and
15s on Unimib-SHAR.

During the training process of BSDGAN on the WISDM
dataset and UNIMIB dataset, the loss values of generator
and discriminator are shown in Fig. 6. Benefit from the pre-
trained encoder and decoder, BSDGAN can quickly achieve
the Nash equilibrium of the generator and discriminator on
both datasets. This result demonstrates that BSDGAN can
learn the data distribution of real sensor data on imbalanced
datasets and generate high-quality synthetic data.

The data distribution comparison of WISDM and Unimib
before and after data balance is shown in Table I and Table II.
We adopt Algorithm 1 to automatically balance the two human
activity datasets, and the amount of data for all activities reach
a substantially consistent state after the data balance. In the
following section, we compare the performance of various
human activity classifiers on the above activity datasets before
and after balancing.
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Fig. 6. The generator loss and discriminator loss during training. (a) Loss
Comparison on WISDM; (b) Loss Comparison on Unimib-SHAR.



TABLE I
DATA AMOUNT OF WISDM DATASET.

State Walking Jogging Upstairs Downstairs Sitting Standing
imbalance 21220 17104 6146 5020 2992 2419

balance 21220 21220 21224 21220 21220 21223

TABLE II
DATA AMOUNT OF UNIMIB-SHAR DATASET.

State Running Walking GoingDownS GoingUpS Jumping LyingDownFS StandingUpFL SittingDown StandingUpFS
imbalance 1985 1738 1324 921 746 296 216 200 153

balance 1985 1989 1990 1985 1992 1988 1990 1988 1991

C. Quality Assessment of Generated Data

This paper employed the Frechet Inception Distance [45]
Score (FID) to evaluate the quality of the generated activity
data. The FID score is usually employed to calculate the
distance between the data feature distribution of the generated
data and the data feature distribution of the real data. Frechet
Inception Distance is defined as:

FID(xr, xg) =||µr − µg||2+

Tr(
∑

r
+
∑

g
− 2(

∑
r

∑
g
)

1
2 )

(8)

where µr is the mean of the real data features, µg is the mean
of the generated data features,

∑
r is the covariance matrix

of the real data features,
∑
g is the covariance matrix of the

generated data features.
All FID scores are calculated from the real data of the

validation set and the data generated by the generator model.
The lower the FID score of the generated data, the higher the
data quality. In this paper, we define the FID score between the
real data of the training set and the data of the validation set as
the best score, the FID score between the data reconstructed
by the autoencoder and the data of the validation set as the
worst result. We deployed CGAN, ACGAN, BAGAN, and the
proposed BSDGAN on the above activity datasets, evaluating
the data quality of generated data by these GAN frameworks.
On WISDM, the comparison results of the generated data
quality for each activity class are shown in Table III, and the
comparison results of the generated data quality on Unimib-
SHAR-ADL are shown in Table IV.

This paper visualizes the generated activity data on two
activity datasets, as shown in Fig. 7 and Fig. 8. The data visual-
ization of different human activities is obviously different, the
visual view of sitting and standing is relatively flat, while the
view of other human activities, such as Jogging and Walking,
fluctuates greatly. Besides, there are differences between the
generated data for each human activity, which conforms to the
data features of real human activities.

D. Usability of Synthetic Data

The ultimate goal of BSDGAN is to augment human activity
datasets with generated data and improve the classification
accuracy of human activity recognition models. The generator
model of BSDGAN is adopted to generate 4116 Jogging

Fig. 7. The generated sensor data on WISDM.

Fig. 8. The generated sensor data on Unimib-SHAR.

instances, 15078 UpStairs instances, 16220 DownStairs in-
stances, 18230 Sitting instances, and 18804 Standing instances
on the WISDM dataset. On the Unimib-SHAR dataset, 251
Walking instances, 666 GoingDownS instances, 1064 Goin-
gUpS instances, 1246 Jumping instances, 1692 LyingDownFS
instances, 1774 StandingUpFL instances, 1788 SittingDownS
instances, and 1838 StandingUpFS instances are generated.
The generation of these data is performed automatically by
Algorithm 1 to ensure that the activity dataset is balanced. We
adopted K-Nearest Neighbors (KNN), Random Forest (RF),
Decision Tree (DT), three traditional machine learning meth-
ods and Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), CNN-LSTM three classical deep
learning methods as classifiers for human activity recognition
to evaluate the human activity dataset before and after the data
balance.

The parameters of the above three human activity recogni-
tion classifiers based on machine learning methods are selected
by grid search. The classifier based on CNN consists of a



TABLE III
COMPARISON OF FID FOR GENERATED DATA BY DIFFERENT GANS ON WISDM.

Activity Autoencoder CGAN ACGAN BAGAN BSDGAN Real Data
Jogging 298.11 240.21 197.66 165.35 119.62119.62119.62 87.23
Walking 129.28 103.89 85.45 73.28 68.1468.1468.14 60.15
UpStairs 150.82 138.77 90.98 96.19 72.8972.8972.89 42.31

DownStairs 97.37 93.75 86.69 78.01 60.7260.7260.72 51.28
Sitting 247.50 214.87 152.97 103.29 96.1896.1896.18 66.34

Standing 151.06 134.94 88.56 83.64 54.5854.5854.58 28.84

TABLE IV
COMPARISON OF FID FOR GENERATED DATA BY DIFFERENT GANS ON UNIMIB-SHAR.

Activity Autoencoder CGAN ACGAN BAGAN BSDGAN Real Data
StandingUpFs 148.65 105.68 75.65 63.81 48.2748.2748.27 28.81
StandingUpFs 87.92 79.93 56.54 53.31 43.9043.9043.90 31.02

Walking 154.09 127.37 82.03 78.34 69.7369.7369.73 52.81
Running 147.92 132.59 103.45 83.32 78.1678.1678.16 52.75

GoingUpS 131.51 106.39 83.21 74.98 64.8264.8264.82 48.32
Jumping 91.43 84.87 73.18 68.40 63.8563.8563.85 52.53

GoingDownS 113.51 96.23 89.05 85.21 61.1461.1461.14 57.31
LingDownFS 130.16 76.76 62.34 56.36 46.2846.2846.28 31.76
SittingDown 92.61 85.64 76.35 68.52 41.7341.7341.73 38.74

TABLE V
CLASSIFICATION ACCURACY ON WISDM BEFORE BALANCE.

Activity KNN RF DT CNN LSTM CNN-LSTM
Jogging 0.9208 0.9756 0.8378 0.9936 0.9777 0.9988
Walking 0.9669 0.9906 0.7819 0.9826 0.9885 0.9932
UpStairs 0.1899 0.3922 0.3270 0.7589 0.9345 0.9777

DownStairs 0.0960 0.1269 0.3182 0.7566 0.9216 0.9489
Sitting 0.9861 0.9653 0.9722 0.9844 0.9723 0.9896

Standing 0.9885 0.9358 0.9128 0.9702 0.9771 0.9702
Accuracy 0.7849 0.8333 0.7199 0.9393 0.9714 0.9878

TABLE VI
CLASSIFICATION ACCURACY ON WISDM AFTER BALANCE.

Activity KNN RF DT CNN LSTM CNN-LSTM
Jogging 0.9310 0.9714 0.9924 0.9927 0.9959 0.9994
Walking 0.9687 0.9899 0.9866 0.9817 0.9951 0.9969
UpStairs 0.7739 0.7835 0.7828 0.9315 0.9678 0.9637

DownStairs 0.7736 0.7527 0.7897 0.9138 0.9669 0.9782
Sitting 0.9979 0.9931 0.9953 0.9653 0.9826 0.9340

Standing 0.9783 0.9909 0.9976 0.9748 0.9885 1.0
Accuracy 0.9039 0.9138 0.9241 0.9600 0.9887 0.9891

1D-Convolutional Layer with 64 filters, kernel size is set to
1×3, a 1D-MaxPooling layer and a dense layer with softmax
function as output layer. The LSTM based classifier contains
a LSTM layer with 100 units, and the CNN-LSTM based
classifier is the combination of the previous two models. The
convolutional layers transmit the calculated data features to
LSTM layers, achieve the best classification accuracy.

The performance of the above six human activity recog-
nition classifiers before and after the balance on the WISDM
dataset is shown in Table V and Table VI, and the performance
on the Unimib-SHAR dataset before and after the balance

is shown in Table VII and Table VIII. The classification
accuracy of traditional machine learning methods has been
greatly improved after the dataset is balanced. For example,
the accuracy of Decision Tree on WISDM has increased from
71.99% to 92.41%, and the accuracy of Random Forest on
Unimib-SHAR has increased from 59.70% to 85.00%.

The deep learning methods also solved the problem of
poor recognition accuracy for minority activity classes. For
example, the accuracy of CNN for upstairs in WISDM has
increased from 75.89% to 93.15%, and the accuracy of LSTM
for LyingDownfFS on Unimib-SHAR has increased from



TABLE VII
CLASSIFICATION ACCURACY ON UNIMIB-SHAR BEFORE BALANCE.

Activity KNN RF DT CNN LSTM CNN-LSTM
StandingUpFs 0.9091 1.0 0.8788 0.9394 0.6970 0.9697
StandingUpFL 0.5600 0.3800 0.4800 0.6200 0.5600 0.7800

Walking 0.9809 0.7350 0.7814 0.9481 0.9891 0.9836
Running 0.9262 0.8626 0.8295 0.9873 0.9924 1.0

GoingUpS 0.7486 0.2131 0.5573 0.6503 0.8798 0.9016
Jumping 0.7600 0.5667 0.7333 0.9533 0.9600 0.9933

GoingDownS 0.7303 0.3942 0.6349 0.8174 0.9544 0.9627
LyingDownFS 0.7018 0.1930 0.5439 0.7193 0.5965 0.8245
SittingDown 0.8140 0.3488 0.6512 0.6511 0.8605 0.7906

Accuracy 0.8463 0.5970 0.7183 0.8740 0.9294 0.9571

TABLE VIII
CLASSIFICATION ACCURACY ON UNIMIB-SHAR AFTER BALANCE.

Activity KNN RF DT CNN LSTM CNN-LSTM
StandingUpFs 0.9831 0.9177 0.9564 0.9758 0.9758 0.9903
StandingUpFL 0.9689 0.9019 0.9426 0.9833 0.9498 0.9904

Walking 0.9923 0.9872 0.8619 0.9284 0.9821 0.9974
Running 0.9340 0.9902 0.8973 0.9829 0.9756 0.9976

GoingUpS 0.8862 0.5932 0.7530 0.8838 0.9540 0.9515
Jumping 0.9147 0.7360 0.8640 0.9760 0.9840 0.9893

GoingDownS 0.8392 0.7139 0.7163 0.9125 0.9622 0.9835
LyingDownFS 0.9457 0.8829 0.9229 0.9486 0.9514 0.9829
SittingDown 0.9794 0.9383 0.9537 0.9820 0.9589 0.9769

Accuracy 0.9374 0.8500 0.8727 0.9522 0.9659 0.9844

59.65% to 95.14%. The above experimental results show that
our BSDGAN can effectively generate high-quality human
activity data, and the human activity dataset balanced with the
generated data can obviously improve the accuracy of human
activity recognition classifiers.

V. CONCLUSION AND FUTURE WORK

In this paper, we use generative adversarial network frame-
work to generate human activity sensor data, and the generated
sensor data are adopted to balance the human activity dataset.
We employ an autoencoder to give the GAN framework prior
knowledge for all activity classes and help stabilize the GAN
training process. Besides, we add conditional constraints that
enable the GAN framework to generate activity data for target
human activity classes. Our experiments on two public human
activity datasets show that the performance of HAR classifiers
all significantly improved after the dataset is balanced, and
solves the problem that the recognition accuracy of deep
learning method-based HAR classifiers is poor for the minority
activity classes.

In the future, we will conduct experiments on more public
human activity datasets and investigate the possibility of our
BSDGAN in generating human activity data for designated
persons. Besides, We will work on using the proposed BS-
DGAN to generate enough samples of human fall data and
actually deploy it in healthcare.
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