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Abstract—Federated learning (FL) is an emerging technique
that trains massive and geographically distributed edge data
while maintaining privacy. However, FL has inherent challenges
in terms of fairness and computational efficiency due to the rising
heterogeneity of edges, and thus usually results in sub-optimal
performance in recent state-of-the-art (SOTA) solutions. In this
paper, we propose a Customized Federated Learning (CFL)
system to eliminate FL heterogeneity from multiple dimensions.
Specifically, CFL tailors personalized models from the specially
designed global model for each client jointly guided by an
online trained model-search helper and a novel aggregation
algorithm. Extensive experiments demonstrate that CFL has
full-stack advantages for both FL training and edge reasoning
and significantly improves the SOTA performance w.r.t. model
accuracy (up to 7.2% in the non-heterogeneous environment and
up to 21.8% in the heterogeneous environment), efficiency, and
FL fairness.

Index Terms—Federated Learning, Edge Computing, Neural
Architecture Search, Model Compression, Deep Learning.

I. INTRODUCTION

Machine deep learning has made tremendous success in the
past few years across multiple real-world applications [1]–
[34]. In recent years, with the advances in the computing
capability of edge devices, more and more machine learning
models are usually deployed locally to directly perform train-
ing or inference. At the same time, the explosive growth of
end-user data can have a high potential to bring about tangible
benefits for various applications, i.e., user verification [35],
[36], self-driving [37], human activity recognition [38], med-
ical health monitoring [39], and so on. However, the data re-
sources are usually geographically distributed across different
edge devices, this is then challenging to train a deep model
collaboratively on both privacy preservation and transmission
overhead reduction. Worse still, the “isolated data islands”
could be seriously heterogeneous in terms of data distribution,

quality, and quantity. Therefore, how to efficiently excavate the
rich knowledge hidden behind these distributed data and train
an accurate cooperative model in a privacy-protection way has
become a crucial research topic.

To address the above challenges, federated learning (FL)
has emerged as a promising paradigm of privacy-preserving
distributed machine learning framework [40], [41]. FL enables
edge devices to train a model locally based on its own
dataset and communicates with other models in the server
for aggregating a more generalized global model, without
collecting and sharing any privacy-sensitive information from
users. However, existing FL methods mostly use a unified
global model for all participants and ignore the potential
hardware and data heterogeneities between them, i.e., diverse
hardware specifications, different network conditions, highly
biased data, and inconsistent data qualities.

In recent years, there have been some works focusing on
eliminating the FL heterogeneity and obtained some promis-
ing results [42]–[45]. However, most of them suffer from
sub-optimization in both model performance and training
efficiency, for only addressing the above problems in a
single-dimensional perspective, i.e., data heterogeneity. Such
a scheme may have three limitations: 1) the computation and
transmission stragglers among different clients usually lead
to extremely low training efficiency; 2) the communication
overhead of exchanging the updates of full models may
cause excessive transmission delays, especially for large deep
neural networks; and 3) the heterogeneities can lead to biased
training across clients and introduce significant performance
unfairness. In this paper, we propose a novel Multidimensional
Customized Federated Learning (CFL) system to achieve a
fairer and more efficient FL. The main idea of CFL is
to strengthen the identity between the FL participants by
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minimizing the impact of multi-dimensional heterogeneities on
FL. Specifically, a specially designed data-quality aware model
with a tiny reinforcement learning (RL) module is regarded as
the common model in CFL. Then, CFL tailors a personalized
model from the common one for each client according to
the corresponding device’s hardware specification and data
condition. The model tailoring is achieved by an online trained
model-search helper which can output the submodel, i.e.,
network sub-structure, with the best accuracy and less latency
for the current client. Moreover, to better aggregate infor-
mation from asymmetric personalized models, we propose
a novel parameter aggregation algorithm via module scaling
and alignment in each FL round. Therefore, the personalized
models can be sampled dynamically from the common model
with the data-aware RL module, and be trained further in an FL
paradigm with the new scaling aggregation method. Extensive
experiments on CIFAR-10 and MNIST datasets (processed as
mixed quality) demonstrate that the proposed CFL can achieve
better task accuracy, fairer model performance, and higher
training acceleration against representative FL methods.

• We propose a new FL paradigm that tailors customized
submodels for heterogeneous edge workers, which ob-
viously reduces the time differences of local training
on different devices and greatly speeds up the federated
training stage.

• We design a novel search helper to select customized
models for different workers and a new model ag-
gregation algorithm to aggregate updates with different
architectures. Both proposals enable the use of FL in
essentially heterogeneous edge computing.

• We improve the parent model to be data quality-aware by
adding an RL module and training it on special process
datasets with different data qualities. It turns out that data
quality-aware FL models perform better on real-world
applications in edge computing scenarios than traditional
FL paradigms.

II. RELATED WORKS

A. Model Compression

Model compression has been extensively studied to reduce
the computation overhead and memory usage, so that neural
models can be better deployed on resource-limited edge de-
vices [46], [47]. It is essential to do a trade-off between the
compressed rate and the accuracy reduction. Current popular
methods include pruning [48] [49] [50], quantization [51], pa-
rameter sharing [52], knowledge distillation, low-rank approx-
imation and direct design of compact models, etc. We compare
our work with several mainstream-related works including
standard FL [40], MT-FL [53], and Model compression. The
details are shown in Table I.

B. Federated Learning

Applying big data analysis and artificial intelligence (AI) in
practical scenarios is not easy since high-quality datasets are
rare or difficult to access. To deal with the data island problem
and utilize the distributed data from different mobile devices,

Google has proposed federated learning (FL) [40], [54] in
2016 to train machine learning models over decentralized
devices. Such a paradigm aims to mine distributed datasets
without sharing privacy-sensitive data, and thus is deemed
to greatly help launch AI in more areas. FL requires a set
of workers to cooperate with the coordinator server, which
assigns the model parameters to each worker to train the local
model and collects the updated parameters to accumulate to
the shared model repeatedly. Current focuses of FL research
include user privacy preservation [55], incentive scheme to
promote collaboration between multiple users [56], communi-
cation overhead [57] and fairness optimization [58].

C. Heterogeneity in Data and Devices

Data heterogeneity here is defined as “the datasets from
different devices are often statistically deficient (non-IID),
e.g., of different label distribution, dataset size and sample
noise level, etc”. Device heterogeneity refers to the fact that
different devices participating in FL tasks are highly likely
to possess quite different levels of hardware specification and
environmental conditions, e.g., different CPU spec, memory
size, and network bandwidth. Heterogeneity in distributed
scenarios leads to inevitable waiting latency for parameter
aggregation as well as the variance of model accuracy among
different devices. Lots of works have been proposed to deal
with such problems. For example, the vertical FL is proposed
to deal with feature heterogeneity [59].

Several approaches to personalized federated learning [60]–
[62] have been proposed to address the heterogeneity prob-
lem in FL. For example, Zhao et al. [63] used the method
of data enhancement to reduce the statistical heterogeneity
between customer data sets and strengthen the training of
the whole play model by sharing some balanced global data
among drifting clients. Li et al. [64] proposed the FedMD
method to train a global model with the assistance of a
public dataset and allow each client to fine-tune with its own
private dataset. However, most of the above methods only
consider the heterogeneity of data distribution between clients
during training for personalized design, ignoring the common
heterogeneous problems such as hardware and data quality.
How to incorporate diverse heterogeneities remains a serious
challenge in FL.

III. METHODOLOGY

A. An Overview of CFL

The pipeline of CFL is illustrated in Figure. 1. Specifically,
CFL can be divided into the interwoven local training and
global updating process that follows a three-part paradigm:
submodels sampling (on the server), local training (on the
client), and model updating (on the server).

First, in the submodels sampling stage, the server samples
a personalized network sub-structure for each FL worker ac-
cording to its hardware specification and data quality, wherein
the hardware specification is defined by the device model,
and the data quality is quantized to five different quality
levels according to the Gaussian Blur. To be specific, the
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Fig. 1. The overview of the CFL. The server part consists of three main components, i.e., the online accuracy predictor, the latency lookup table, and the
expansion module, which work jointly to sample the optimal submodel for each client and update the global model. The blue lines on the parent model
represent additional RL gating modules. Sam., Avg., and Ref. denote submodel sampling, parameter averaging, and the referenced module updating process
respectively.

TABLE I
COMPARISON OF SOME WORKS RELATED TO EDGE COMPUTING

Methods Heterogeneous in training Heterogeneous in inference
Device Data Idea Device Data Idea

Standard FL
[40]

N N All clients train the same model N N All clients use the same
trained model

MT-FL [53] N Y Same structure for collaboration N Y Each client uses its specific modelDifferent parameters for data heterogeneity
Model

compression
[52]

N N Training a large model in cloud Y N Compress the large model into
a small model

CFL (ours) Y Y Different structures for both types of
heterogeneity Y Y Each client uses its specific model

The same parameters for collaboration

submodels are first sampled from the global (parent) model
using “Genetic Algorithm” on both model depth and width
dimensions. After that, the selected submodel will be further
filtered through a search helper composed of an online-trained
accuracy predictor and an offline latency lookup table [65].

Next, the sampled submodels are assigned to different
clients and be trained with heterogeneous local datasets sep-
arately. At the last epoch of local training, the test accuracy
of each submodel is collected as the training profile, which is
then be uploaded along with the model gradients.

Last, there are two model updating processes parallelly
conducted in the server. The first update is about the global
model, which aggregates all the uploaded local updates from
clients by the specially designed aggregation algorithm. The
second update is about the accuracy predictor, which judges
the accuracy that the current submodel can achieve based on
the hardware and data conditions reported by each client.

B. Personalized Models For Device Heterogeneity

In this subsection, we mainly focus on problems introduced
by device heterogeneity in traditional federated learning during
the training stage. Specifically, there are two main problems.

The first comes from the selection of customized submodels,
one of the filters of which needs an accurate and less training
overhead accuracy predictor. And another challenge would be
the above-mentioned submodels aggregation. These two issues
are respectively discussed in the following two subsections
below.

1) submodels Sampling: The submodel sampling process is
based on two sequential steps, including submodel searching
and filtering. To be specific, submodels are firstly randomly
generated using genetic algorithms in a two-dimensional-
limited search space. The details can be found in Algorithm
1. After that, these generating results will be further filtered
through a search helper composed of an online-trained ac-
curacy predictor and an offline latency lookup table [65],
wherein, the accuracy predictor is essentially a four-layer lin-
ear classifier and is dynamically trained in the first several FL
rounds. Its training datasets are the above-mentioned training
profiles, which are formed by using the submodel structure
information and data quality as the data sample, and the test
accuracy as the data label. Since the accuracy predictor is a
simple linear classifier and the number of clients in FL is large,
the data samples and labels collected from one or two CFL



Algorithm 1 submodels Selection
Input: Accuracy predictor ft, computational latency table
g, parent model ωt, search times S, computational latency
bound lk, hardware profile pk, data quality qk, number of
workers K
Output: Customized models ωt

k for each worker k
Initialize acck = 0,∀ k = 1, . . . ,K;
for i = 0, ..., S do

for k = 0, . . . ,K do
Select a submodel ω from ωt with the bounded latency
on worker k as g(ω, pk) < lk;
if ft(ω, qk) > acck then
acck = ft(ω, qk);
ωt
k = ω;

end if
end for

end for

Algorithm 2 Training Accuracy Predictor
Input: The accuracy predictor f
Output: f in each FL round
for t = 1 to T do

for k = 1 to K do
Collect qk, ωt

k, acctk from the worker k;
Construct sample xk = (qk, ω

t
k), yk = acctk;

end for
Use all K samples (x, y) to update the accuracy predictor
ft for one epoch;

end for

rounds would be sufficient enough to let the accuracy predictor
converge or reach a satisfying prediction accuracy. Once the
training of the accuracy predictor starts to converge, or its test
accuracy reaches a predefined threshold, its training can be
stopped to stabilize submodels as well as reduce overhead.

In subsequent rounds, the predicted accuracy, together with
the latency table, are used for the selection process. A com-
plete training process in one CFL round of the accuracy
predictor is shown in Algorithm 3.

2) submodels Aggregation: To solve the challenges of the
aggregation of structurally misaligned personalized submod-
els, we proposed a novel aggregation algorithm that expands
and aligns all submodels before the actual aggregation. Same
with model sampling, the expansion of submodels is also
limited in depth and width dimension. The details are as
follows.

• Layer group: Since a residual model architecture is used
in the parent model, different parameter settings and
activation functions are used in different residual blocks.
Before the actual model depth and layer width alignment,
a layer grouping process is necessary to maintain the
same parameter distribution as the parent model before
and after expanding operation. Specifically, all the con-
volution layers except the first one of the submodels are
divided into different groups according to the residual

Fig. 2. Depth expansion of submodel.

Fig. 3. Width expansion of customized models. The left rectangle represents
the width of layers in the global model. The right rectangle represents the
width of the layers in the submodels.

settings of the server model to achieve a group-level
alignment.

• Width expansion: Since the channels of each layer of the
submodels are randomly selected from the parent model
according to the limitations of the accuracy predictor and
latency lookup table. In the vanilla FL aggregation stage,
it is the parameters of the channels at the same location in
different submodels participate in one operation. To face
the challenge of the disordered channels of various sub-
models that are scrambled during the sampling process,
as shown in Fig. 3, all channels in the submodels are
first sorted in the original order to keep the consistency
of the parent model structure. And then, after the sorting
process, an expansion operation is performed for each
layer of the submodels, if its current layer width is smaller
than the width of the large model, all 0 channels will be
added to fill the current layer to its original width in
the parent model. Thus far, all submodels have achieved
width alignment.

• Depth expansion: Depth alignment is performed group-
wise and can be done only after the group alignment. As
shown in Fig. 2, for those groups with fewer layers in
submodels than the parent model, they are padded with all
0 layers to reach the layer number of the parent standard.
Furthermore, the width and kernel size in these all-zero
layers are the same as the width of the corresponding
layer of the parent model.

After the model alignment, the federated average algorithm
could be performed to aggregate all of the uploaded local grads
and update the global model. The detailed working flow of



the whole alignment and aggregation operation is given in
Algorithm 3.

Algorithm 3 submodel Alignment and Aggregation
Input: The number of workers K, submodel update ∆t

k and
data size nk for each worker k, and total data size n;
Output: Global model ωt;
for k = 1 to K in parallel do

Group the layers of the update ∆t
k by block;

Expand the width of the layers of ∆t
k;

Extend the depth of ∆t
k;

end for
Aggregate all updates ∆t =

∑K
k=1

nk

n ∆t
k;

C. RL-Based parent model For Data Heterogeneity

After the training stage of FL, the optimized models (or sub-
models) would be deployed on edge devices in the real world.
And a machine learning model in the wild (e.g., a self-driving
car) must be prepared to make sense of its surroundings in
rare conditions that may not have been well-represented in
its training set. However, the previous personalized FL only
focuses on the heterogeneity of data distribution and ignores
the changes in data quality in practice.

Previous work [66] has proved that to achieve the same
prediction accuracy, heterogeneous data quality requires dif-
ferent network complexity. For example, a clear image may
only require a smaller neural network to achieve the same
accuracy as a blurred image.

Thus, to achieve fairer task performance across heteroge-
neous datasets, we enable the global model to be data-aware
by an RL gating module to assign personalized submod-
els according to different data conditions. The RL function
could dynamically select which layers of a convolutional
neural network should be skipped during submodel sampling.
Specifically, we first introduce layer-wise RL agents which
are coded as a function from the feature activations to the
probability distribution over the skipping action. Note that
to cope with non-differentiable data-aware model sampling
decisions, we first warm up the global model and train it using
a hybrid learning algorithm combining supervised learning and
reinforcement learning [66]. It turns out that the RL modules
in CFL not only speed up the FL edge training but also could
accelerate the following inference stage by assigning more
lightweight models to edge devices. In a word, CFL is a great
full-stack FL system that could greatly reduce the computing
overhead in both the training and inference stages.

Last, the overall process of our method is summarized in
Algorithm 4.

IV. EXPERIMENT

A. Benchmark

Dataset: We use CIFAR-10 and MNIST datasets as the
baseline, and a set of related datasets are extended from these
raw datasets to emulate two different data heterogeneities,
such as data quality heterogeneity and data distribution

Algorithm 4 CFL: Customized Architecture Search based
Federated Learning

Input: Number of workers K, learning rate η
Output: local updates ∆t

k and test accuracy of worker k in
communication round t
Initialize: parent model ω1;
for t = 1 to T do

On server:
Select the submodel ωt

k from ωt for each worker k by
using the search helper;
Send submodels ωt

k to all workers ;
Receive and aggregate ∆t

k of all workers to get ∆t;
Update the global model ωt+1 = ωt −∆t;
Receive data and hardware profile and use them to update
the search helper;
On worker k=1,. . . ,K:
Receive submodel ωt

k from server;
for epoch e ranges from 1 to E do

Compute the stochastic gradient ∇l(ωt
k,e−1) from a

random mini-batch;
Update submodel ωt

k,e = ωt
k,e−1 − η∇l(ωt

k,e−1);
end for
Compute local update ∆t

k = ωt
k,E − ωt

k,0

Send ∆t
k to server;

Send test accuracy and hardware specification profile to
server;

end for

heterogeneity. For quality heterogeneity, the raw dataset is in-
dependently and identically (IID) divided into several batches
and processed by Gaussian blurring and image sharpening
with different levels. These batches are re-mixed to form new
mixed-quality datasets. For distribution heterogeneity, each
dataset is randomly divided into 32 Non-IID subsets. The data
class imbalance degree is set to 0.8 in this work, i.e., 80%
of each worker’s local data belongs to the same class, and
the remaining 20% are evenly selected from the remaining
categories. CIFAR-10 dataset is processed to simulate the data
quality heterogeneity. It consists of 60000 32x32 color images
in 10 classes, with 6000 images per class and 10000 images
per batch. There are five batches of images for training and
one batch of images for the test. To simulate data quality
heterogeneity during practical inference, we use three different
degrees of Gaussian blur and image sharpening on the CIFAR-
10 dataset, one per batch, to produce datasets of different
quality but the same distribution. To be specific, we divided the
training set of CIFAR-10 into five groups: unprocessed, three
degrees of Gaussian blur, and sharpening images respectively.
Instead of using complex data quality metrics, we apply
different variances of the added noise to represent the het-
erogeneity in data quality. MNIST dataset is used to generate
data heterogeneity in both distribution and quality. As for
the data quality heterogeneity, we divide the MNIST training
set uniformly into five IID subsets and conduct the above-
mentioned Gaussian blur or image sharpening per group, to



produce datasets of different quality but the same distribution.
As for the data distribution heterogeneity, we divide the whole
MNIST dataset randomly into 32 Non-IID subsets to simulate
the different data distribution between federated workers. The
data class imbalance degree is set to 0.8 in this work, i.e.,
80% of each worker’s local data belongs to the same class,
and the remaining 20% are evenly selected from the remaining
categories. For the parent model, it is pre-trained on quality
heterogeneous IID datasets, and then federally trained on
quality heterogeneous and Non-IID datasets.

Model: We use a once-for-all network [65] with layer-wise
RL gate as the parent model, which is built on MobileNetV3
with elastic depth, width, and input size. All of the customized
submodels in our experiments will be selected from the parent
model.

B. The Comparison of CFL with FL SOTA

In this section, we compare the performance of CFL using
personalized models and FL SOTAs using one global model
(abbreviated as FL in the following) on two different data
heterogeneity settings with respect to data quality and distri-
bution. The results are shown in Figure. 4 (a) and Figure.4
(b), respectively. It is obvious that CFL performs significantly
better than FL under both heterogeneous settings, especially
when the data quality is heterogeneous. Figure. 5 shows the
time required for the first 200 iterations over 32 clients of CFL
and FL, respectively.

The results demonstrate that CFL not only significantly
improves training efficiency but also improves FL fairness
because the training time difference between clients is sig-
nificantly reduced.
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Fig. 4. (a) Quality heterogeneity. (b) Distribution heterogeneity.

C. Federated Learning vs. Independent Learning

The performance gain from CFL to local independent
learning (IL) using customized models is demonstrated. The
training experiments are conducted over two categories of
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Fig. 5. Time required for 200 iterations on 32 workers.
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Fig. 6. Comparison between CFL and independent learning with customized
submodels. (a) Quality Heterogeneity: MNIST and 32 workers. (b) Distribu-
tion Heterogeneity: MNIST and 32 workers.

datasets, i.e., MNIST with both heterogeneous quality and
heterogeneous distribution, which are split into 32 subsets for
each worker respectively. The result of the accuracy compari-
son between CFL and independent local training is shown in
Table II, it is obvious that using CFL in model training for edge
computing consistently outperforms independent training in
both heterogeneous and non-heterogeneous data distributions.
And, in the case of data heterogeneity, the advantages of CFL
are further amplified.

TABLE II
COMPARISON OF TEST ACCURACY UNDER TWO EDGE COMPUTING

SETTINGS: CFL AND INDEPENDENT LOCAL TRAINING.

Non-heterogeneous Data Heterogeneous Data
scenario CFL (%) IL (%) CFL (%) IL (%)
worker 0 82 74.8 80.5 68.7
worker 1 73.6 73.4 72.6 50.8
worker 2 86.1 82.3 85.6 69

(i) Heterogeneous Data Quality: We generate Gaussian
fuzzy data with three fuzzy degrees, unprocessed data, and
sharpening data for all workers (randomly assigned), and then
conduct the CFL and independent learning respectively. The



(a) Worker 0 with gaussian fuzzy data

(b) Worker 1 with unprocessed standard data

(c) Worker 2 with sharpening data

(d) Computation Percentage

Fig. 7. Comparison of accuracy and computational cost between the FL model
using data quality-aware (with RL gate) and the common FL model without
awareness under different data quality.

results are shown in Fig 6(a). It is verified that the final test
accuracy of the customized models in CFL is obviously higher
than that of the independent learning method. This is because
in CFL workers can learn from the experiences of others,
which is absent in independent training. In reality, different
edge devices often have heterogeneous data.

(ii) Heterogeneous Data Distribution: Fig 6 (b) shows
that the final test accuracy of CFL is higher than that of
independent learning. Because in CFL, workers can learn
and improve the local model from the parameter aggregation
operation, while it is not possible for independent training.

D. Data quality-aware Parent Model

In this section, we show how the RL gates can benefit
the parent model. We set different data qualities for different
workers. After deploying RL gates on each layer of the original
parent model, we first train it in advance on the server using
a small public dataset with uniformly distributed categories

and the worst data quality. This pre-trained model can then
be used for submodel selection initially. The test accuracy
of customized models is shown in Fig. 7(a-c). The results
show that the RL gate-enabled submodel selection not only
consumes less time to converge but also reduces both the train-
ing and inference time since the computation of some layers
of customized models is waived. To better demonstrate the
computation overhead reduction, the computational percentage
curves in the training phase of the customized models for three
workers are given in Fig. 7(d). This percentage is defined as
the ratio of the number of layers that are actually calculated
to the number of all layers of the model.

V. CONCLUSION

In this paper, we introduce a novel customized federated
learning framework, which first takes the multi-dimensional
heterogeneity in federated learning. Specifically, we design a
novel aggregation algorithm to reduce the calculation delay
and accuracy difference between the cooperative FL devices.
What’s more, CFL uses a specially designed data quality-
aware central model via RL gate to accelerate reasoning
and improve robustness in the face of data quality changes.
Extensive experiments have proved the effectiveness of CFL.
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