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Abstract—Recently, tile pruning has been widely studied to ac-
celerate the inference of deep neural networks (DNNs). However,
we found that the loss due to tile pruning, which can eliminate
important elements together with unimportant elements, is large
on trained DNNs. In this study, we propose a one-shot repa-
rameterization method, called TileTrans, to reduce the loss of
tile pruning. Specifically, we repermute the rows or columns of
the weight matrix such that the model architecture can be kept
unchanged after reparameterization. This repermutation realizes
the reparameterization of the DNN model without any retraining.
The proposed reparameterization method combines important
elements into the same tile; thus, preserving the important
elements after the tile pruning. Furthermore, TileTrans can be
seamlessly integrated into existing tile pruning methods because
it is a pre-processing method executed before pruning, which is
orthogonal to most existing methods. The experimental results
demonstrate that our method is essential in reducing the loss
of tile pruning on DNNs. Specifically, the accuracy is improved
by up to 17% for AlexNet while 5% for ResNet-34, where both
models are pre-trained on ImageNet.

Index Terms—Deep learning, tile pruning, reparameterization

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated excellent
performance on a wide variety of tasks, such as computer
vision [1]], [2], speech recognition [3]], [4], and robotics [5],
[6]]. One backbone behind the growth in the abilities of DNNs
is an increasing number of trainable parameters. For instance,
a recent state-of-the-art model, CogView [7]], achieved superior
performance on text-to-image generation tasks, thanks to its
almost four billion parameters. However, training a model with
many parameters is time- and resource-intensive. Therefore,
the need for accelerating the computation on DNN is also
increasing. Nowadays, several mainstream acceleration meth-
ods, such as pruning [8]-[10], mixed precision [11]], and par-
allelization [12] have recently attracted significant attention.
Among these methods, mixed precision and parallelization
focus on the acceleration in the training phase of DNNs,
whereas pruning concentrates on the inference time.

This study focuses on pruning for the increasing need to
accelerate the application of DNNs. Pruning accelerates DNNs
by deleting the trivial elements in the weight matrix. The
importance of each element is evaluated by the importance
score [13] so that the elements with small importance scores
will be deleted. Furthermore, to quantify the result of pruning,
we calculate the loss of pruning based on the importance score
of the deleted elements, generally summation. As the goal of

pruning, we hope to get a minor pruning loss, which brings
higher inference accuracy, with a certain sparsity of pruning.

However, there is a tradeoff between pruning loss and
acceleration. On the one hand, pruning loss increases when
pruning sparsity increases. On the other hand, acceleration
from pruning is proportional to the sparsity. Consequently,
various pruning methods [[14]-[17] managed to better balance
the tradeoff between the pruning loss and acceleration.

Among those pruning methods, tile pruning [18]] achieves
a better tradeoff. Tile pruning deletes the elements in the
weight matrix by tiles while other structured pruning methods
eliminate the elements by a larger shape, such as a row.
The advantages of deleting elements by tiles can be reflected
in the following two aspects. First, owing to the smaller
pruning unit of tiles, the pruning loss is relatively smaller than
other structured pruning methods. Second, the computation for
pruned tiles can be skipped with a small overhead, and thus
the pruned DNNs are accelerated. However, we found that
the trained DNNs empirically do not always fit well with tile
pruning. Those important elements are usually eliminated with
unimportant elements, leading to large pruning loss.

To this end, we propose a reparameterization method, called
TileTrans, based on the DNNs model for tile pruning. Instead
of changing the pruning strategy, TileTrans reparameterizes
the DNNs model before the pruning. Specifically, we use
permutation to separate elements by their importance so that
there are either important or unimportant elements in the same
tile. In this way, we preserve more important elements after
tile pruning and achieve minor pruning loss. TileTrans is user-
friendly in the sense that we reparameterize the DNN model by
a trick of matrix multiplication instead of retraining. Besides,
we keep the model architecture unchanged and therefore
introduce no extra computation for inference. Additionally,
our algorithm is a straightforward heuristic algorithm, which
means that the algorithm’s efficiency is guaranteed.

We evaluated TileTrans on two classical DNN models:
AlexNet [19] and ResNet-34 [20]], where both models are first
pretrained on the ImageNet dataset [21]]. We reparameterized
the DNN models by TileTrans before tile pruning on the
models. The experimental results show that TileTrans reduces
the pruning loss and improves accuracy by 17% on AlexNet
and 5% on ResNet-34, respectively.

The main contributions of our study are as follows:

o We proposed a reparameterization method, named Tile-

Trans, to permute the weight matrix such that important



and unimportant elements are permuted in the same tile
before tile pruning, respectively. As a result, we preserve
more important elements after tile pruning, and thus we
reduce the pruning loss.

o We reparameterized DNN models in a novel way based
on a trick of matrix multiplication. Compared with other
reparameterization methods, our method is user-friendly
because TileTrans requires no extra retraining on DNN
models. Furthermore, We kept the architecture of the
model unchanged so that no additional computation oc-
curs after TileTrans.

e We proposed a heuristic method to build an appropri-
ate permutation for TileTrans to avoid time-consuming
searching for the optimal permutation. Besides, we veri-
fied that this heuristic method does reduce the loss of tile
pruning experimentally.

Eventually, we deduce that TileTrans is capable of building
DNN models that are more adaptable to tile pruning.

II. RELATED WORK

Notably, TileTrans can be fused with any tile pruning
method seamlessly. Various pruning strategies [14], [[18], [22]]
have been proposed to reduce the loss of tile pruning. For
example, Guo et al. [18] deleted the tiles by the number of
important elements in the tile. TileTrans reparameterizes DNN
before the procedure of pruning; thus, it can be used together
with these pruning strategies to improve the performance of
tile pruning.

Compared with the major reparameterization methods on
DNNs, TileTrans needs no extra training. Reparameterization
has been used to change the data structure of DNN for many
purposes [23[]-[26]. Specifically, reparameterization is also
used to build a model with structural sparsity. Most reparam-
eterization methods design a particular loss function and train
the model for a large number of iterations. For example, Wen
et al. [27] introduced the Lasso regression to the loss function
and trained a model with structural sparsity; Ding et al. [28]
proposed the ResRep, which punished unimportant channels
in the weight matrices during training. These studies achieved
outstanding performance in building structural sparsity, but
they required extra training on the models. In contrast, our
TileTrans only reparameterizes DNN by matrix multiplication
without any training.

Some previous works also reduced the pruning loss by
transforming the weight matrix. However, these methods
changed the model architectures; thus, increasing the cost of
computation. Liu et al. [29]] added a transformation to each
layer, by which they transformed the format of each weight
matrix into the frequency domain. Guo et al. [18|] duplicated
each weight matrix and saved the important elements in one
of them. These methods improved the accuracy of the pruned
models but called for extra computation compared with the
original architecture. In contrast, TileTrans transforms weight
matrices without modifying the architecture. In other words,
we add no extra computation to the model.

III. PRELIMINARY

Before introducing TileTrans, we have to present the prelim-
inary about tile pruning because we specialize TileTrans for
reducing the loss of tile pruning. Therefore, we will introduce
the optimization objective and algorithm of tile pruning as
follows.

A. Importance Score

The importance score is a criterion used to evaluate the
importance of an element in the weight matrix. Given an
element with weight w, we calculate the importance score as
E(w), where £ : R — R denotes the criterion of importance
score. There are many criteria in previous works, such as
calculating the Hessian matrix [30]] and deriving from Taylor
expansion [[13].

We can quantitatively define the loss of pruning with a
certain importance score. Generally, the pruning loss is an
important score summation of the deleted elements. Given the
weights of the model as W and targeted sparsity s, weights
are pruned by f(W, s; ), where f deletes the elements in W
to the sparsity of s depending on £. Furthermore, pruning can
be described as an optimization problem with the objective as
follows:

wEW wef(W,s;E)

min - L(W,5,€) = Do) = Y Ew) (1)

w w

st. WeW, 0<s<1,

where £ denotes the loss function of pruning and W is the
set of all possible weights. In other words, the loss of pruning
can be minimized by deleting the elements with the smallest
importance scores. In tile pruning, there are certain restrictions
on the shape of the pruning unit. Therefore, we evaluate the
average importance score of the elements in the tiles for tile
pruning and delete the most unimportant tiles.

B. Tile Shape

The shape of tile pruning depends on the devices or libraries.
For example, Chen et al. [[17] pruned the weights in the
shape of the loading unit for the tensor core so that the
computation for pruned elements can be skipped with a small
overhead. Guo et al. [18] used a shape of 128 x 1, because
CUTLASS [31]] loads 128 x 1 elements at once from the global
memory to the shared memory on the GPU system. Given the
tile shape of a x b, tile pruning sometimes is called the “block
pruning” [14] when a = b. Note that we regard the block
pruning as tile pruning in this paper. Especially, tile pruning
in the shape of 1 x 1 is called unstructured pruning [32]. The
pruning loss of unstructured pruning is usually lower than
that of tile pruning, where ¢ > 1 and b > 1. Unstructured
pruning precisely deletes the unimportant elements while tile
pruning eliminates the important elements together with the
unimportant elements in the same tile. Therefore, unstructured
pruning is usually used as the baseline for tile pruning when
evaluating the accuracy of pruned models.
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Figure 1: Examples for pruning the 4 x 4 weight matrix to
the sparsity of 0.5 with the unstructured pruning (a), the 2 x 2
tile pruning before reparameterization (b), and the 2 x 2 tile
pruning after reparameterization (c), respectively. We fill the
background with different colors for the corresponding tiles in
(b) and (c) for easy observation. The numbers in cells are the
importance scores for elements. The values of pruning loss are
shown at the bottom of the figures.

C. Algorithm of Tile Pruning

For tile pruning, we evaluate the importance of every tile
and delete unimportant tiles according to the importance score,
which is calculated from the elements in the tile. We show
details in Algorithm[I] From lines 2 to 6, we traverse all weight
matrices in the model and calculate the importance scores for
every tile. The importance score of a tile is defined as the
average of the importance scores of the elements in that tile.
After evaluating for tiles, we set a threshold according to the
sparsity at line 7. Because the sparsity is the percentage of zero
elements in all matrices, we delete unimportant tiles whose
importance scores are smaller than the threshold. Finally, we
retrain the model to recover the accuracy for inference after
tile pruning.

Algorithm 1 TilePruning(W, &, a, b, s)

Input: Weight matrices of the model W, metrics for impor-
tance score &, height of tile a, width of tile b, and targeted

sparsity s.
QOutput: Pruned weight matrices W.
1 V0
2: foreach W € W do > Traverse the weights in the
layers

: Set threshold ¢ such that [{v | v € V,v < t}|/|[V] =5
. Delete the tile with importance score smaller than .

3: foreach 7' € W do

4 Ve VU{v|v=Y73"E(T )/ ab}
5: end for

6: end for

7

8

IV. WEIGHTS TRANSFORMATION

Naturally, the distribution of the elements in the weight
matrices is usually unfriendly to tile pruning. The important
and unimportant elements are mixed in the same tile. We show
the examples in Figs. [Ta] and [Tb] For unstructured pruning
in Fig. [Ta] unimportant elements are precisely deleted, and
thus the loss for unstructured pruning is the smallest. For tile
pruning in Fig. the elements that are alive in unstructured

Figure 2: Partial architecture of ResNet. A block denotes a
layer with weights. An arrow represents a data dependence
inherent in the data flow.

pruning are deleted. Consequently, the loss for tile pruning
is more significant than for unstructured pruning. To separate
the important and unimportant elements, we propose TileTrans
that reparameterizes DNN before the pruning by matrix trans-
formation.

A. Idea of Permutation

The loss for tile pruning can be reduced by matrix transfor-
mation. We transform the weight matrices to a better format,
where the important elements are combined together in the
same tiles as far as possible. For example, in Fig.|lc| we switch
the first row of the matrix with the third row. Accordingly,
more important elements are permuted in the same tiles than
in Fig. [Ib] Finally, the loss for the 2 x 2 tile pruning on the
reparameterized weight matrix becomes smaller than that on
the original weight matrix.

The critical point is that the transformation must keep the
model’s output unchanged. The output of DNN is changed
if we transform the weight matrix. One option to recover the
output is adding extra calculation after the inference. However,
we should avoid increasing the computational amount for
inference; thus, we keep the model architecture unchanged.
Without modifying the architecture, we managed to recover
the model’s output by a trick of matrix multiplication.

B. Algorithm of TileTrans

We designed a reparameterization method based on matrix
multiplication. The main components of the DNN models are
the linear layer [33]] and the convolutional layer [34f], which
can be represented as matrix multiplication. Furthermore, the
DNN model consists of multiple layers, where the calculations
are transitive. For example, Fig. [ shows a partial architecture
of ResNet, where the output of a layer is the input of another
layer. Utilizing this transitivity of the calculations in DNN, we
can reparameterize DNN without any training by the properties
of matrix multiplication.

The reparameterization procedure is a series of operations
that transform two layers. For a single operation, we first build
an invertible transformation R for the previous layer and build
its inverse R~! for the next layer. In this way, the output of
the transformed layer can be recovered by calculating the next
layer. We take Fig. 2| as an example to show how this trick
works. Suppose that the weights of the layer 7 is W, the input
is I;, and the output is O;. The calculations in layer A and B
then can be given as

O =14W], 2)



Op = O, WE. 3)

After that, we transform these weights by a matrix transfor-
mation R as follows

OART = I4(RW)T, “4)
Op = OART (WpR™HT. (5)

In other words, we transform the previous layer and use the
next layer to recover the output. Therefore, the output of
the two layers is unchanged, even though we transform their
weights. Finally, we reparameterize the entire DNN model
based on this trick. However, the restraint for the reparam-
eterization becomes more strict when the model architecture
is more complex.

Some layers in the model have to share the same ma-
trix transformation when there are residuals in the model.
Residual [20] is a calculation that reuses the output of the
previous layer as the input of the deeper layer. For example,
in Fig. [2 the output of layer A is the input of layers B and D.
Before calculating the matrix multiplication of layer D, we
first calculate the sum of O 4 and O¢ as follows:

Oa =14W}, (6)
Op = OAW3, ()
Oc = O0pW¢, (8)
Op = (04 + Oc)WP. ©)

Supposing the transformation for layer ¢ as R;, the calculations
for the transformed layers are given as

OARL = Thn(RAW )T, (10)
OpRE = OARL(RgWARHT, (11)
OcRE = OgRE(ReWeRGHT, (12)

Op = (OARY + OcRE)(WpR:MT, (13)

where Op = (04 + Oc)WJ only if R4 = Rc. Thus, layers
A and C must share the same transformation. The example
of Fig. [2] is simple, but the actual model is usually more
sophisticated.

There may be groups of layers that must share the same
transformation. For simplicity, we define the layers that have
to share the same transformation as the layer group. This layer
group is built according to the relations of parents and children,
which can be defined as follows.

Definition 1 (Parents and Children). Given a layer A, parents
of A are the layers that send their output to A as the inputs
of A. Meanwhile, children of A are the layers that receive the
output of A as their inputs.

Specifically, we present a theorem as follows.

Theorem 1. Given a layer A in the DNN model, the parents
of A must share the same transformation.

Proof. According to Eq. (I3), assuming the weight is W, the
transformation is R, and the output is O, if there are n parents

for a layer, the output of the layer is given by
O = (O1R] + O2R] + ... + O, REYWR™HT,  (14)

where O; denotes the output of the i-th parent, and R; denotes
the transformation of the i-th parent. Then

O=(01+0s+ ...+ 0,)WT, (15)
only if Ry =Ry = ... = R, = R. O

Algorithm 2 TileTrans(M, &)

Input: DNN model M and metrics for importance score &.
Output: Reparameterized DNN model M.
G+ 0 > Initialize the layer group
: foreach L € M do
G < the parents of L
G+~ GuG
end for
G « {G | G « G UGG NGy #
@, and G1,Go € G} > Merge the intersecting groups
7: foreach G € G do
8: R + BuildTrans(G, &)
9: foreach L ¢ L do
10: Transform the weights of L by R
11: end for
12: Transform the weights in the children of the layers in
G by R™!
13: end for

> Build the transformation

According to Theorem [I} we design an algorithm for
TileTrans, which is shown in Algorithm 2 From lines 2 to
4, we first find the sets of weights that must share the same
transformation. Notably, some subsets in G may intersect each
other. For example, given two sets of layers Gy and Gi,
Go = {La,Lp} and Gy = {Lp,L¢c}, all Ly, Lp, and
Lc must share the same transformation for their weights.
Therefore, we merge the subsets intersecting each other at
line 6. According to G € G, we build the appropriate
transformation R, which is introduced later, for the weights at
line 8. To obtain the correct output, we transform the weights
in the children of the layers in G by R~! at line 12.

The modern DNN models improve their performance by
introducing nonlinear layers, such as ReLU [35], pooling [34],
and normalization [36]]. For such nonlinear layers, we restraint
the transformation R to only the permutation of rows in
Algorithm 2] This restraint guarantees the correctness of the
model because permutation is a linear transformation that only
changes the location of the elements. By contrast, a linear
transformation that changes the scale of elements does not
have this guarantee because it fails to recover the output of
the model.

Additionally, the permutation of columns works in the Tile-
Trans, but Algorithm [2| needs to be “reversed.” In Algorithm
we define the permutation of rows R for the parents at line 8



and permute the weight matrices at line 10. After that, we use
the permutation of columns R~ to recover the output for the
children at line 12. Therefore, TileTrans in rows is a procedure
from parents to children. Meanwhile, TileTrans in columns is a
procedure from children to parents. Thus, for the permutation
of columns, we build the transformation for children and then
recover the output by the calculations in parents.

C. Heuristic Permutation

Ideally, if all-important elements were aggregated in the
same tile, all important elements then exist after tile pruning.
That is, the result of tile pruning becomes the same as that of
unstructured pruning. TileTrans aims to make the result of tile
pruning as close as possible to that of unstructured pruning.
Because the loss for unstructured pruning is the smallest, we
assume the loss for unstructured pruning is the baseline. Based
on this baseline, we give the optimization problem for the
TileTrans as follows:
wEf, (W,s;E)

E(w) —
w w

StW eW,0<s<1,

WES(R(W),s:€)
min E(w)|,

(16)

where f, W — W denotes the unstructured pruning
method, f; W — W denotes the tile pruning method,
and R : W — W denotes the reparameterization method.
According to Eq. (I6), given specific sparsity s, we need to
find the permutation that minimizes the difference between tile
pruning and unstructured pruning methods.

However, searching for the optimal solution for Eq. (I6) is
time consuming. The most intuitive method to solve Eq. (I6)
is to try all possible permutations and verify the effect, which
costs too much time. Given a model with & layers and each
layer with weights of n rows, the time complexity to traverse
all possible permutations is O((n!)*). Therefore, we propose a
heuristic method to build a relatively good permutation without
searching.

Algorithm 3 BuildTrans(G, &)

Input: Group of layers G and metrics for importance score
E.
Output: Permutation R.
. W <« all weights of the layers in G
W < concatenate W € W
WR — W
Sort the rows in WR
Build R such that RW = Wg

O I S R

> According to &£

AN

We sort the rows according to their average importance
scores, which are shown in Algorithm [3| In line 1, we con-
catenate the weights that share the same transformation in the
dimension of rows to evaluate them together. These weights
can be concatenated because they have the same number of
rows. After that, we sort the rows of the concatenated weights
according to the average importance score, which is calculated
by the metrics £. Finally, we build the transformation R such

that RW = WR, where W denotes the concatenated weights,
and Wg denotes the sorted concatenated weights.
The sorting procedure is based on two assumptions:

Assumption 1. The averages of the rows follow the normal
distribution.

Assumption 2. The variance of importance scores for ele-
ments in a row is small.

We make the assumptions depending on previous studies and
our experience. Assumption [I] is inspired by previous studies
on channel pruning [37]], which prunes the elements in rows.
In channel pruning, the importance score for a row is evaluated
by the average of the importance scores for the elements in
the row. After channel pruning, rows are deleted without a
few important rows, meaning that a few important rows are in
the matrix, whereas the other rows are unimportant. Similarly,
there are few large values in the normal distribution, while
the others are smaller. We use the normal distribution to
approximate the distribution of the importance scores for the
rows. For Assumption 2] we make it empirically because we
observed that importance scores for the elements in a row are
usually all large when the row is important. The unimportant
and important elements are naturally separated after sorting
rows depending on the assumptions. Finally, the important
elements are preserved after tile pruning because the important
elements are in the same tiles. In other words, we reduce the
loss of tile pruning.

V. EXPERIMENT

In the experiments, we evaluated the proposed TileTrans on
the following metrics:

o Loss. Pruning loss is our direct optimization objective.
Therefore, we first show the pruning loss before and
after the reparameterization of TileTrans. At the same
time, we calculate the difference between tile pruning and
unstructured pruning for the following two reasons. First,
the difference in the pruning loss before and after Tile-
Trans is negligible; therefore, we illustrate the normal-
ized difference in figures for better observation. Second,
we designed an optimization objective for TileTrans as
Eq. (I6), which is the difference between tile pruning and
unstructured pruning; thus, we calculate this difference to
verify the heuristic permutation does reduce the pruning
loss.

o Accuracy. The accuracy of the model is the most intuitive
metric that evaluates the performance of the model. We
are unaware of the performance of the pruned models
only by evaluating pruning loss. Besides, the difference
between the pruning loss with different tile shapes on
the same model is negligible, so we cannot assess how
tile shape affects the performance of TileTrans only by
loss. Therefore, we calculate the accuracy of the pruned
models to evaluate TileTrans further.

We design sets of controlled experiments on AlexNet and
ResNet-34 to evaluate the performance of TileTrans. For one
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Figure 3: Loss of tile pruning on AlexNet (a, b, and c¢) and ResNet-34 (d, e, and f) that are pre-trained on the ImageNet for
different sparsity. The tile shape in Figs. (a) and (d) are 256 x 1, that in Figs. (b) and (e) are 16 x 16, and that in Figs. (c)
and (f) are 32 x 32. Specially, we define the result for unstructured tile pruning, i.e., the 1 x 1 tile pruning, as the baseline
for tile pruning. Besides, the legend with “trans” denotes the result for the model reparameterized by TileTrans. Meanwhile,
“diff” denotes the difference between tile pruning and unstructured pruning, which is defined as Eq. (I6). For simplicity, we

normalize the pruning loss and difference by 0-1 normalization.

set, we first reparameterized the model by TileTrans and then
pruned the model; for another set, we pruned the model
directly. For simplicity, we choose the L1 norm as the criteria
of importance score. Finally, we calculated the pruning loss
and model accuracy of the pruned models.

Besides, we evaluate TileTrans on tile pruning of different
tile shapes to assess how tile shape affects the performance of
TileTrans. Expressly, we set the tile shape as 256 x 1, 16 x 16,
or 32 x 32. For 256 x 1 and 16 x 16, the sizes are the same,
while the aspect ratios are different; for 16 x 16 and 32 x 32,
the aspect ratios are the same, while the sizes are different.
Therefore, we know how the size and aspect ratio of tile affect
the performance of TileTrans by comparing the result of these
tile shapes.

We realized TileTran with PyTorch and retrained the models
on eight GeForce GTX 1080 GPUs. Our code is available on
https://github.com/LoonLi/TileTrans.

A. Loss

The results of pruning loss are shown in Fig. [3] Specially, we
also illustrate the result of unstructured pruning, i.e., the 1 x 1
pruning, in Fig. [3| as the baseline of tile pruning. Accordingly,
with specific sparsity, the difference between tile pruning and
unstructured pruning is the distance between the point of tile
pruning and unstructured pruning.

TileTrans reduced most pruning loss at the sparsity of
about 60; however, it reduced little loss when the sparsity
was sufficiently small or large. This is due to the minority

tiles with all unimportant or important elements, which exist
naturally in weight matrices. These tiles with all unimportant
elements are deleted when the sparsity is small. In contrast,
those with all important elements are still preserved when the
sparsity is large. Consequently, TileTrans avoids degrading
the pruning loss when the sparsity is sufficiently small or
large. Meanwhile, those tiles with important and unimportant
elements are permuted by TileTrans; thus, the pruning loss is
reduced when the sparsity is moderate.

TileTrans reduced less pruning loss on ResNet-34 than on
AlexNet. This is attributed to the following reasons: more
complex architecture and smaller weight matrices. First, the
architecture of ResNet-34 is more complex than that of
AlexNet because there are multiple connections of residual
in ResNet-34. According to Theorem 1, layers with residuals
must share the transformation with other layers that send the
residual to them. In contrast, AlexNet is a simple architecture
in which no layer needs to share the same transformation.
Thus, searching for good transformations for ResNet-34 is
more difficult. Second, the weight matrices of ResNet-34 are
small for the permutation. Specifically, the heights of most
weight matrices in ResNet-34 are less than 512. Meanwhile,
there are large weight matrices with a height of 4096 in
AlexNet. In other words, we have fewer choices to permute
the weight matrices in rows on ResNet-34 than on AlexNet.

Pruning loss is the most direct metric to evaluate TileTrans,
but it is not intuitive enough for understanding the performance
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Figure 4: Accuracy of the pruned AlexNet (a, b, and c) and ResNet-34 (d, e, and f) that are pre-trained on the ImageNet for
different sparsity. The tile shape in Figs. (a) and (d) are 256 x 1, that in Figs. (b) and (e) are 16 x 16, and that in Figs. (c)
and (f) are 32 x 32. Specially, we define the result for unstructured tile pruning, i.e., the 1 x 1 tile pruning, as the baseline for
tile pruning. Besides, the legend with “trans” denotes the result for the model reparameterized by TileTrans.

of the models. Specifically, we are unaware of the difference
between different tile shapes since their results are very similar
in the same model. Therefore, we also evaluate TileTrans on
the metric of the model accuracy.

B. Accuracy

We define accuracy as the probability that models correctly
infer the types of images in the test data. The accuracy P, is
calculated as P, = N./N;, where N; is the amount of test
data Ny and N, is the amount of correctly inferred images.

TileTrans improved the accuracies of both AlexNet and
ResNet-34 after tile pruning, which is a natural result because
TileTrans reduced the pruning loss. We show results of model
accuracy in Fig. ] Specifically, the accuracies of both AlexNet
and ResNet-34 were improved most under the tile shape of
32 x 32. In detail, the pruned AlexNet was improved by up
to 17% at the sparsity of 60%; the pruned ResNet-34 was
improved by up to 5% at the sparsity of 70%. Specially,
the accuracy of the pruned AlexNet decreased after TileTrans
at the sparsity of 80% under the tile shape of 16 x 16.
However, in this case, the pruning loss was reduced according
to Fig. Bb] Consequently, this decrease is not caused by
increased pruning loss and may be improved by changing the
criteria of importance score.

Between the tile shapes of 256 x 1 and 16 x 16, TileTrans
improved the accuracy more for 256 x 1 on AlexNet while for
16 x 16 on ResNet-34. According to this result, we draw two
conclusions about the performance of TileTrans. On the one

hand, TileTrans improve more accuracy for strip-shaped tile
when the weight matrix is large enough. On the other hand,
TileTrans improves more accuracy for square-shaped tiles
when the weight matrix is too small. ResNet-34 consists of
multiple convolutional layers with heights smaller than 512. As
a result, TileTrans reduced little pruning loss on ResNet-34 for
256 x 1 because the permutation cannot exchange the elements
among tiles. Meanwhile, AlexNet contains two large linear
layers whose weight matrices are 4096 x 4096. Therefore,
the important and unimportant elements were combined in
different tiles on AlexNet for 256 x 1. In this case, the
unimportant elements are deleted more precisely for 256 x 1
than 16 x 16.

Between the tile shapes of 16 x 16 and 32 x 32, TileTrans
improved the accuracy more for 32 x 32 on both models.
Consequently, we conclude that TileTrans improves accuracy
more for larger tile sizes. The probability of a tile in the weight
matrix filled with important elements is low when the tile size
is large. Meanwhile, TileTrans builds weight matrices with
more tiles that are filled with important elements. In other
words, TileTrans reduces pruning loss more when the tile size
is large.

In summary, we conclude three rules for TileTrans as
follows:

1) TileTrans reduces more loss for strip-shaped than
square-shaped tiles when the sizes of tiles are the same,
and the weight matrix is large enough for permutation.



2) TileTrans reduces more loss for square-shaped than

strip-shaped tiles when the sizes of tiles are the same,
and the weight matrix is small.

3) TileTrans reduces more loss for the tiles with large size.

VI. CONCLUSION

In this study, we proposed a one-shot reparameterization
method, called TileTrans, to reduce the loss of tile pruning
on DNNs by permuting the weight elements. We heuristically
build an appropriate permutation to avoid time-consuming
searching for the optimal permutation. Besides, TileTrans
requires no retraining and keeps the model architecture un-
changed. The experiments demonstrated that TileTrans re-
duced the loss of tile pruning on AlexNet and ResNet-34.
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