
ar
X

iv
:2

20
3.

00
93

7v
1

 [
cs

.L
G

]
 2

 M
ar

 2
02

2

ES-dRNN with Dynamic Attention for Short-Term

Load Forecasting

Slawek Smyl

Meta

1 Hacker Way, Menlo Park, CA 94025, USA

slawek.smyl@gmail.com

Grzegorz Dudek

Department of Electrical Engineering

Czestochowa University of Technology

Czestochowa, Poland

grzegorz.dudek@pcz.pl

Paweł Pełka

Department of Electrical Engineering

Czestochowa University of Technology

Czestochowa, Poland

pawel.pelka@pcz.pl

Abstract—Short-term load forecasting (STLF) is a challenging
problem due to the complex nature of the time series expressing
multiple seasonality and varying variance. This paper proposes
an extension of a hybrid forecasting model combining exponential
smoothing and dilated recurrent neural network (ES-dRNN) with
a mechanism for dynamic attention. We propose a new gated
recurrent cell – attentive dilated recurrent cell, which implements
an attention mechanism for dynamic weighting of input vector
components. The most relevant components are assigned greater
weights, which are subsequently dynamically fine-tuned. This
attention mechanism helps the model to select input information
and, along with other mechanisms implemented in ES-dRNN,
such as adaptive time series processing, cross-learning, and
multiple dilation, leads to a significant improvement in accuracy
when compared to well-established statistical and state-of-the-art
machine learning forecasting models. This was confirmed in the
extensive experimental study concerning STLF for 35 European
countries.

Index Terms—exponential smoothing, hybrid forecasting mod-
els, multiple seasonality, recurrent neural networks, short-term
load forecasting, time series forecasting

I. INTRODUCTION

STLF is a challenging problem due to the complex nature

of the time series. Electricity load or demand time series

exhibit three seasonal components (annual, weekly and daily),

a nonlinear trend, varying variance and random fluctuations.

The daily load pattern differs in shape depending on the day

of the week and season of the year. The load time series

is strongly influenced by climatic, weather and economic

conditions, all of which have a stochastic nature. All these

properties place high demands on forecasting models. STLF

is considered to be a very challenging problem, which is why

it is often used for testing new models.

STLF is also very important in practice as an integral part

of power system control and scheduling. It is needed for the

efficient and safe operation of power systems and supporting

transactions of participants in deregulated electricity markets.

Due to the importance and complexity of the STLF problem, a

large number of different STLF models have been reported in

the literature. They employ conventional statistical methods,

computational intelligence and machine learning methods as

well as hybrid solutions. The most popular new approaches

for STLF are based on neural networks (NNs) [1]. They offer

more possibilities than statistical models and exceed many of

their limitations. These limitations include their linear nature,

limited ability to model complicated seasonal patterns, limited

adaptability, a shortage of expressive power, and problems

with capturing long-term dependencies and introducing ex-

ogenous variables.

Due to their flexibility and universal approximation prop-

erty, NNs can model any nonlinear relationship and reflect

process variability in an uncertain dynamic environment. Thus,

they are often used for complex forecasting problems such as

STLF. The classical NN architectures such as multilayer per-

ceptron (MLP), radial basis function (RBF) NN, generalized

regression neural network (GRNN), fuzzy counterpropagation

NN, and self-organizing maps were compared as STLF models

in [2]. Multiple seasonality, which is a real problem for the

forecasting models that usually requires decomposition or

deseasonalisation, was solved in this study by appropriate

representation of the time series defining patterns of the daily

profiles. Thanks to this, the forecasting problem was simplified

and it was possible to apply less complex neural models with

a smaller number of parameters, which were more resistant to

overfitting. Recently, classical MLP with pattern representation

was replaced by randomized NN [3]. Due to randomized

learning, the training becomes much faster and easier and

the numbers of parameters and hyperparameters to adjust is

significantly reduced. At the same time, the accuracy of STLF

improves in relation to MLP. Many STLF approaches combine

neural models with effective optimization procedure and time

series decomposition or a feature engineering method. For

example, in [4], the time series is decomposed into orthonor-

mal series generated by a wavelet transform, and MLP is

learned using a particle swarm optimization algorithm. In [5],

to control MLP complexity and to select input variables, a

Bayesian approach was used. The Bayesian framework offered

ways to avoid overfitting by regularisation, to decide on the

number of neurons and to deal with the inputs by soft-pruning.

The rapid development of deep and recurrent NNs in recent

years has led to the development of effective STLF methods.

The new possibilities they offer, which are very attractive for

forecasting models, include learning of representation, cross-

learning on massive datasets and modeling temporary rela-

tionships in sequential data. Some examples of STLF models

based on deep learning are: [6], where deep residual NNs were

http://arxiv.org/abs/2203.00937v1

proposed and applied to probabilistic load forecasting using

Monte Carlo dropout; [7], where a multivariate fuzzy time

series was converted into multi-channel images and processed

by CNN to produce load forecasts; and [8], where an improved

deep belief network for STLF with demand-side management

was proposed.

Recurrent NNs, which were designed for sequential data

such as time series and text data are extremely useful for

forecasting problems. Modern RNNs such as long-short term

memory (LSTM) and gated recurrent unit (GRU) are distin-

guished by their ability to model both short and long-term

dependencies in time series [9]. Examples of RNN for STLF

can be found in: [10], where a model based on bi-directional

LSTM and attention mechanism was proposed; [11], where a

STLF problem for individual residential households was ad-

dressed using LSTM; and [12], where the load is decomposed

into different frequency components using the empirical-mode

decomposition algorithm and then low-frequency components

are predicted using linear regression while the high-frequency

components are predicted using LSTM.

In our recent work [13], motivated by new achievements

in deep learning and RNNs [14], we proposed a hybrid

hierarchical STLF model combining exponential smoothing

(ES) and dilated RNN (ES-dRNN). Its hybrid architecture

improved ability to learn representation and explore hidden

patterns. To deal with multiple seasonalities and temporal

dependencies in time series, we proposed a new dilated

recurrent cell (dRNNCell) and multiple dilated stacked RNN

architecture. The simultaneous learning of both ES and dRNN

components enables the entire model to be optimized while

learning on multiple time series (cross-learning) enables ES-

dRNN to capture the shared features of individual series. The

model proposed in this work inherits ES-dRNN properties

and extends it with a dynamic attention mechanism [15].

This mechanism allows the model to focus on relevant input

information while the target functions for both point forecasts

and predictive intervals are being modeled.

The contribution of this study includes the following points:

1) We propose a new attentive dilated recurrent cell, adRN-

NCell, which implements an attention mechanism for

weighting the input information. It produces an internal

attention vector which dynamically weights input vec-

tor components. This attention mechanism permits the

recurrent cell to utilize the most relevant components of

the input patterns in a flexible manner to improve the

forecasting performance of the model.

2) We develop a hybrid exponential smoothing and dilated

recurrent NN model with attention based on adRNNCell.

The model produces vectors of point forecasts and also

predictive intervals. Due to its internal mechanisms such

as dynamic attention, adaptive time series processing,

cross-learning, and multiple dilations, the model can

deal with complex time series expressing multiple sea-

sonality and varying variance. Our model is available as

open-source code in the github repository [16].

Fig. 1. Block diagram of the proposed ES-adRNN forecasting model.

3) We empirically demonstrate on real data sets of 35 Eu-

ropean countries that our proposed model significantly

outperforms in terms of STLF accuracy its predeces-

sor [13] and 13 baseline forecasting models, including

well-established statistical approaches and state-of-the-

art machine learning approaches.

The rest of the work is organized as follows. In Section

II, we present the architecture of the hybrid exponential

smoothing and dilated recurrent NN model with dynamic

attention (ES-adRNN). Details of the proposed adRNNCell

are described in Section III. The experimental framework

used to evaluate the performance of the proposed approach

is described in Section IV. Finally, Section V concludes the

work.

II. ES-ADRNN ARCHITECTURE

A hybrid exponential smoothing and dilated recurrent NN

model with an attention mechanism, ES-adRNN, is composed

of four main components as shown in Fig. 1. This architecture

is similar to that of ES-dRNN proposed in [13], except for

the RNN component. In this study, we introduce RNN with a

new gated recurrent cell, which is equipped with an attention

mechanism. This new RNN component, adRNN, is described

in details in Section III.

The proposed model works in a recursive manner, gen-

erating daily pattern forecasts for the following days in the

subsequent recursive steps t. The model input, Z , represents a

set of L time series: {{zlτ}
Ml

τ=1}
L
l=1, where Ml is an l-th time

series length. In our case, the series express hourly electricity

demand for L countries. The model learns simultaneously on

L time series, i.e. in a cross-learning mode [14], which enables

it to capture the shared features of the individual time series.

ES decomposes each series into level and seasonal compo-

nents. The seasonal components, S, are used by a preprocess-

ing component to deseasonalize the original series. The series

are also normalized and squashed to prepare the training set,

Ψ, for adRNN. adRNN learns not only the main mapping

function transforming inputs into electricity demands for the

next day (preprocessed) but also their predictive intervals

(PIs) and the corrections of ES smoothing parameters, ∆α
and ∆β. A postprocessing component transforms forecasts of

the preprocessed demand and PIs, X̂ , into real values, Ẑ. It

uses for this seasonal components, S, and average values of

input sequences, Z̄ , determined by the ES and preprocessing

components.

A. Exponential Smoothing

We use a simplified Holt-Winters multiplicative ES model,

which decomposes the time series into two components: level

component and seasonal component. A unique feature of the

proposed approach is that the smoothing coefficients of the

Holt-Winters model are not fixed, as in the typical case, but

they are adapted in each recursive step t as follows:

αt+1 = σ(Iα +∆αt)

βt+1 = σ(Iβ +∆βt)
(1)

where α, β ∈ [0, 1] are smoothing coefficients, Iα and Iβ are

initial values of the smoothing coefficients, ∆αt and ∆βt are

the corrections, and σ denotes a sigmoid function.

The corrections are learned by adRNN simultaneously with

the main mapping function. Thus, they have a dynamic charac-

ter. They depend on the adRNN input representing the current

time series characteristic and calendar variables. The dynamic

version of the Holt-Winters multiplicative model takes the

form:

lt,τ = αt

zτ
st,τ

+ (1− αt)lt,τ−1

st,τ+168 = βt

zτ
lt,τ

+ (1− βt)st,τ
(2)

where {zτ}
M
τ=1 is a decomposed time series, lt,τ denotes a

level component and st,τ denotes a weekly seasonal compo-

nent.

B. Preprocessing and Postprocessing

The preprocessing component prepares training patterns for

adRNN. An input pattern represents a weekly period covered

by moving window ∆in of size 168 hours. An output pattern

represents the forecasted daily sequence covered by moving

window ∆out of size 24 hours, which follows ∆in. The

windows are shifted by 24 hours to obtain subsequent input

and output patterns:

xin
1 = [x1, ..., x168], xout1 = [x169, ..., x192],

xin
2 = [x25, ..., x192], xout2 = [x193, ..., x216],

...

(3)

The components of the t-th pair of patterns express de-

seasonalized, normalized and squashed time series sequences

covered by the t-th pair of windows. They are determined as

follows:

xτ = log
zτ

z̄tŝt,τ
(4)

where τ ∈ ∆in
t ∪∆out

t , z̄t is the average value in ∆in
t and ŝt,τ

is the seasonal component predicted by ES (2) for recursive

step t.
The log function in (4) squashes the data to prevent outliers

from adversely affecting model performance. Note that the

seasonal component in (4) is adapted in each recursive step t.
This makes the training data dynamic and enables the model

to learn data representation.

Input patterns xint are the main component of the input

vectors for adRNN learning. Additionally, to introduce more

information related to the forecasted period, the input vectors

include: (i) a seasonal vector predicted by ES for the t-th out-

put period reduced by 1, i.e. ŝt = [ŝt,τ − 1]
24(t−1)+192
τ=24(t−1)+169, (ii)

a current level of the time series, log10(z̄t), and (iii) calendar

variables, dw
t ∈ {0, 1}7, dm

t ∈ {0, 1}31 and d
y
t ∈ {0, 1}52,

as binary one-hot vectors encoding day of the week, day

of the month and week of the year for the forecasted day,

respectively. The input vector takes the form:

xin
′

t = [xin
t , ŝt, log10(z̄t), dw

t , dm
t , d

y
t] (5)

The daily patterns forecasted by adRNN, x̂
out
t =

[x̂τ]τ∈∆out
t

, are transformed by the postprocessing component

to obtain real forecasts of the hourly electricity demand. For

this, transformed equation (4) is used:

ẑτ = exp(x̂τ)z̄tŝt,τ (6)

where τ ∈ ∆out
t .

C. Loss Function

The proposed model predicts hourly electricity demands, zτ ,

and their PIs in the form of two quantiles of orders q (lower)

and q (upper). To optimize both point forecasts and PIs, we

use a loss function in the form [13]:

Lτ = ρ(z′τ , ẑ
′

q∗,τ) + γ[ρ(z′τ , ẑ
′

q,τ) + ρ(z′τ , ẑ
′

q,τ)] (7)

where ρ denotes a pinball loss function:

ρ(z, ẑq) =

{

(z − ẑq)q if z ≥ ẑq

(z − ẑq)(q − 1) if z < ẑq
(8)

z is an actual value; ẑq is a forecasted value of q-th quantile;

q ∈ (0, 1) is a quantile order; q∗ = 0.5 corresponds to the

median; z′τ = zτ/z̄t is a normalized actual time series value

from the output window ∆out
t ; ẑ′q∗,τ = exp(x̂τ)ŝt,τ is a fore-

casted value of z′τ ; q and q are the quantile orders for the lower

and upper bounds of PI, respectively; ẑ′q,τ = exp(x̂τ)ŝt,τ is a

forecasted value of q-quantile of z′τ ; ẑ′q,τ = exp(ˆ̄xτ)ŝt,τ is a

forecasted value of q-quantile of z′τ ; and γ ≥ 0 is a controlling

parameter.

Loss function (7) uses normalized values of the time series,

z′τ , to bring the errors calculated for different time series to

the same level, as this is important in cross-learning.

The first component in (7), ρ(z′τ , ẑ
′

q∗,τ), is almost (see

below) a symmetrical loss for the point forecast (normal-

ized) while the second and third components, ρ(z′τ , ẑ
′

q,τ)

and ρ(z′τ , ẑ
′

q,τ), are asymmetrical losses for the quantiles.

The asymmetry level, which determines PI, results from the

quantile orders. Parameter γ enables us to control the impact

of PI-related components on the loss value. Its typical value

ranges from 0.1 to 0.5.

It is worth noting that the pinball loss gives us the oppor-

tunity to reduce the forecast bias by penalizing positive and

1- 1-

- vector concatenation operator - vector split operator

1- 1-

Fig. 2. Dilated recurrent cell dRNNCell.

negative deviations differently. When the model tends to have a

positive or negative bias, we can reduce the bias by introducing

q∗ smaller or larger than 0.5, respectively (see [14], [17]).

III. DILATED RNN WITH DYNAMIC ATTENTION

The RNN component of ES-adRNN employs a dilated RNN

cell (dRNNCell) introduced in [13]. This cell is shown in Fig.

2. It was designed for STLF to deal with a complex seasonal

pattern expressing three seasonalities. The distinguishing fea-

tures of dRNNCell are:

• dRNNCell is fed by two cell states (c-states) and two

controlling states (h-states). They represent recent states,

ct−1, ht−1, and delayed states, ct−d, ht−d, d > 1.

• The output of dRNNCell is split into ”real output” yt,

which goes to the next layer, and a controlling output

ht, which is an input to the gating mechanism in the

following time steps.

In this study, we combine two dRNNCells to obtain a

more efficient gated recurrent cell, which is able to preprocess

dynamically the input data. A new cell, attentive dilated

RNN cell (adRNNCell), introduces an attention mechanism

for weighting the input information. It is shown in Fig. 3. The

first cell (at the bottom of the figure) produces attention vector

mt of the same length as input vector xt. The components of

mt, after processing by exp function, are treated as weights

for the inputs collected in vector xt. Thus, they strengthen

or weaken the particular inputs to the second cell (at the top

of the figure). Note that mt has a dynamical character - the

weights are adjusted to the current inputs at time t. Both cells

learn simultaneously. Based on preprocessed input vector, x2t ,

the second cell produces vector yt, which feeds the next layer.

dRNNCell as a separate cell and as a component cell of

adRNNCell, uses three gates. Namely, a fusion gate f , update

gate u, and output gate o. The gates transform the input

vectors, xt, ht−1 and ht−d, using sigmoid nonlinearity σ.

A candidate c-state, c̃t, is produced by transforming input

vectors using tanh nonlinearity. The dRNNCell formulation

is as follows:

1- 1-

- vector concatenation operator - vector split operator

1- 1-

1- 1-

- vector concatenation operator - vector split operator

1- 1-

Fig. 3. Attentive dilated recurrent cell adRNNCell.

ft = σ(Wfxt + Vfht−1 + Ufht−d + bf) (9)

ut = σ(Wuxt + Vuht−1 + Uuht−d + bu) (10)

ot = σ(Woxt + Voht−1 + Uoht−d + bo) (11)

c̃t = tanh(Wcxt + Vcht−1 + Ucht−d + bc) (12)

where subscript t denotes a time step; σ denotes a logistic

sigmoid function; xt is an input vector; ht−1 and ht−d are

recent and delayed controlling states; d > 1 is a dilation; W,

V and U are weight matrices; and b are bias vectors.

The c-state is calculated from the recent (ct−1), delayed

(ct−d) and candidate (c̃t) states as follows:

ct = ut ⊗ (ft ⊗ ct−1 + (1− ft)⊗ ct−d) + (1− ut)⊗ c̃t (13)

where ⊗ denotes the Hadamard product (element-wise prod-

uct).

Note that the c-state is a weighted combination of past c-
states and a new candidate state. Fusion vector ft decides in

what proportion the recent and delayed c-states are mixed,

while update vector ut decides about the share of old and

new information in the resulting c-state.

Based on state ct, the output vectors ht and yt (or mt) of

the cells shown in Fig. 3 are determined as follows:

h1′
t = o1

t⊗c1t ,mt = [h1′
t,1, ..., h

1′
t,sm

], h1
t = [h1′

t,sm+1, ..., h
1′
t,sm+sh

]
(14)

...

...

Linear layer

Block 3, d = 7

Block 2, d = 4

Linear layer

- dRNNCell

- adRNNCell

...

Block 1, d = 2

Fig. 4. adRNN architecture.

h2′
t = o2

t ⊗c2t , yt = [h2′
t,1, ..., h

2′
t,sy

], h2
t = [h2′

t,sy+1, ..., h
2′
t,sy+sq

]
(15)

where sy, sh, sm and sq denote the lengths of vectors

yt, h1
t ,mt and h2

t , respectively (in our implementation sh and

sq are the same).

Fig. 4 shows the adRNN architecture. It is composed of

three single-layer blocks. Block 1 consists of adRNNCell

dilated 2, while blocks 2 and 3 consist of dRNNCells dilated 4

and 7, respectively. Note that the cells are fed by delayed states

of different dilations in different layers. Delayed connections

enable the direct input to the cell of information from a

few time steps ago. This can be useful in modeling seasonal

dependencies. In our architecture, we use multiple dilated

recurrent layers stacked with hierarchical dilations to model

the temporal dependencies of different scales. To facilitate

the learning process, we use ResNet-style shortcuts between

blocks [18].

The inputs representing the calendar variables, dw
t , dm

t and

d
y
t , are embedded using a linear layer into d-dimensional

continuous vector dt. This reduces input dimensionality and

meaningfully represents sparse binary vectors in the embed-

ding space. The embedding is learned along with the model

itself.

The output layer projects linearly vector y
(3)
t produced by

the third block to output vector x̂
out′

t composed as follows:

x̂
out′

t = [x̂outt , x̂
out
t , ˆ̄xoutt , ∆αt, ∆βt] (16)

where x̂
out
t = [x̂τ]τ∈∆out

t
is a forecasted output pattern;

x̂
out
t = [x̂τ]τ∈∆out

t
is a vector of lower bounds of PI;

ˆ̄xoutt = [ˆ̄xτ]τ∈∆out
t

is a vector of upper bounds of PI; ∆αt

and ∆βt are corrections for smoothing coefficients.

IV. EXPERIMENTAL STUDY

In this section, to evaluate ES-adRNN forecast accuracy,

we consider STLF for 35 European countries. The data set

includes real-world hourly electrical load time series from

the period 2016-2018. The data was collected from ENTSO-

E repository, www.entsoe.eu/data/power-stats/ (we share this

data with the ES-adRNN code in our github repository [16]).

The data provides a variety of time series with different

properties such as different levels, trends, variance and daily

shapes (see Section II in [13] where these time series are

analysed). This great variety of time series makes the results

more reliable.

We consider a one day-ahead forecasting problem: predic-

tion of the load profile (24 hourly values) for each day of 2018

based on historical data. This was performed for each country

with the exception of three countries for which data for the

last month (Estonia and Italy) or the last two months (Latvia)

of 2018 was unavailable. For these three countries, the test

periods were shorter. The ES-adRNN model was optimized

on data from the period 2016-17. We perform STLF in two

variants: using ES-adRNN as an individual model and using

an ensemble of five ES-adRNN base models. We denote the

latter variant by ES-adRNNe. As performance metrics we

use: mean absolute percentage error (MAPE), median of APE

(MdAPE), interquartile range of APE (IqrAPE), root mean

square error (RMSE), mean PE (MPE), and standard deviation

of PE (StdPE).

A. Training and Optimization Setup

Our learning process, schedule of hyper-parameter changes

is organized around a notion of an epoch. This is usually

defined as using all the training data once. Our definition here

is based on the number of updates or processed batches, as

during training we step lo times on a batch (with random

assignment of series) and for each batch execute a single

update based on the average error. Our aim is to define the

epoch as the number of updates which brings in a meaningful

change in the learning process, (we use 2500), and because

the data set contains a small number of series, a single epoch

is actually composed with no number ”sub-epochs”, defined

in the traditional fashion as one scan of all available data. An

additional factor is the batch size: when it grows, the number

of updates per sub-epoch diminishes, so the number of the sub-

epochs needs to grow. However, in our experience the linear

growth is too fast, and we use a sub-linear formula.

During each epoch a number of updates is executed, guided

by the average error accumulated by executing lo (e.g. 50)

forward steps, moving by one day, on a batch. The starting

point is chosen randomly; the batches include random b series.

The model is trained using Adam optimizer.

The d-dilated recurrent cells operate as described above only

after d steps, because only after d steps are the delayed states

available. Additionally, the Holt-Winters formulas require at

least twice the seasonality steps to stabilize, so the system uses

several weeks (wo) at the beginning of each batch as a warm-

up period, during which all the ES and RNN calculations take

place, with the exception of the training errors, which are not

calculated. Similarly, an even longer warm-up period ws is

applied when producing the test results.

We use a schedule of increasing batch sizes and decreasing

learning rates proposed in [19]. We start with a small batch

size of 2, and increase it, although only once, due to the small

number of series, to 5 at epoch 4. We use another schedule of

decreasing learning rates, which has a similar, but not exactly

the same, effect as increasing the batch size: it allows the

validation error to be further reduced. We use the following

schedule: 3·10−3 (epochs 1-4), 10−3 (epoch 5), 3·10−4 (epoch

6), 10−4 (epochs 7-9).

The sizes of c-state and h-state were sc = 100, sh = sq =
40. These values were obtained by experimentation starting

with sc = 50, sh = 20 and doubling it 3 times.

Finally, as described in Section II C, the pinball loss

function was utilized, with three different quantile values q,

to achieve quantile regression for 0.5, 0.05, and 0.95. The

actual values for q∗, q, and q were slightly different: 0.485,

0.035, 0.96. These values were arrived at by experimentation,

reducing the bias of the center value, and fine-tuning the

percentage of exceedance for PIs.

Other hyperparameters were selected as described in [13].

B. Baseline Models

As baseline models we employ:

• Naive – naive model in the form: the forecasted demand

profile for day i is the same as the profile for day i− 7
• ARIMA – autoregressive integrated moving average

model [20],

• ES – exponential smoothing model [20],

• Prophet – modular additive regression model with non-

linear trend and seasonal components [21],

• FNM – fuzzy neighborhood model [20]

• GRNN – general regression NN [2],

• MLP – perceptron with a single hidden layer and sigmoid

nonlinearities [2],

• SVM – linear epsilon insensitive support vector machine

(ǫ-SVM) [22],

• LSTM – long short-term memory [23],

• ANFIS – adaptive neuro-fuzzy inference system [24],

• MTGNN – graph NN for multivariate time series fore-

casting [25],

• ES-dRNN – hybrid exponential smoothing and dilated

recurrent NN model [13],

TABLE I
FORECASTING QUALITY METRICS.

MAPE MdAPE IqrAPE RMSE MPE StdPE

Naive 5.08 4.84 3.32 704.34 -0.26 7.91
ARIMA 3.30 3.01 3.00 475.09 -0.01 5.31
ES 3.11 2.88 2.73 439.26 0.01 5.13
Prophet 4.53 4.32 3.03 619.39 -0.13 6.82
FNM 2.50 2.30 2.29 334.08 -0.11 4.27
GRNN 2.48 2.28 2.27 332.91 -0.11 4.25
MLP 3.05 2.78 2.94 419.01 -0.04 5.07
SVM 2.55 2.29 2.52 357.24 -0.13 4.37
LSTM 2.76 2.57 2.52 381.76 0.02 4.47
ANFIS 3.65 3.17 3.66 507.08 -0.10 6.43
MTGNN 2.99 2.74 2.69 405.18 -0.47 4.85
ES-dRNN 2.33 2.13 2.23 319.04 -0.20 3.90
ES-dRNNe 2.25 2.05 2.17 309.88 -0.20 3.79
ES-adRNN 2.28 2.08 2.19 315.44 -0.16 3.82
ES-adRNNe 2.20 2.01 2.13 303.70 -0.13 3.71

• ES-dRNNe – ensemble of five ES-dRNN base models

[13].

The baseline models include classical statistical models

(ARIMA, ES), new statistical models (Prophet), nonparametric

pattern-based machine learning models (FNM, N-WE), clas-

sical machine learning models (GRNN, MLP, SVM, ANFIS)

and new recurrent and deep NN architectures (LSTM, MT-

GNN). They also include the predecessor of the proposed

model, i.e. ES-dRNN and its ensemble variant ES-dRNNe.

C. Results

Table I summarizes the forecasting quality metrics averaged

over the 35 countries. It is clear from this table that ES-

adRNNe outperforms all other models in terms of accuracy.

It shows the lowest MAPE, MdAPE and RMSE. To confirm

the best performance of ES-adRNNe, we perform a pairwise

one-sided Giacomini-White test (GM test) for conditional

predictive ability [26] (we used the multivariate variant of the

GW test implemented in https://github.com/jeslago/epftoolbox

[27]). Fig. 5 demonstrates results of this test as a heat map

representing the obtained p-values. The closer the p-values are

to zero the significantly more accurate the forecasts produced

by the model on the X-axis are than the forecasts produced by

the model on the Y -axis. The black color is for p-values larger

than 0.10, indicating rejection of the hypothesis that the model

on the X-axis is more accurate than the model on the Y -axis.

Fig. 5 clearly show the state-of-the-art performance of ES-

adRNNe and ES-adRNN. ES-adRNNe performed significantly

better in terms of accuracy than all the other comparative

models. ES-adRNN is second only to the ES-dRNNe.

IqrAPE and StdPE shown in Table I measure the dispersion

of APE and PE, respectively. Note that ES-adRNNe produced

the least dispersed forecasts. The individual version, ES-

adRNN, is close behind it. MPE is a measure of the forecast

bias. Note that most of the models including ES-adRNN

and ES-adRNNe produced negatively biased forecasts, which

means overprediction. The proposed model is equipped with

a mechanism for controlling the bias included in the loss

function (7), so the bias can be reduced. But reduction in bias

Fig. 5. Results of the Giacomini-White test.

can lead to a decrease in forecast accuracy due to overfitting,

so we purposely avoided it.

Fig. 6 shows several examples of forecasted daily patterns.

PIs are also shown for ES-adRNNe. To evaluate the accuracy

of the PIs predicted by this model, we calculate the number

of forecasts lying inside, above and below of their PIs. We

achieved: 90.18%± 2.86% forecasts are inside PIs, 4.74%±
1.47% are below PIs and 5.08%±1.61% are above PIs. These

values correspond to the assumed PIs of 90% with lower and

upper bounds q = 0.05 and q = 0.95, respectively.

V. CONCLUSION

STLF is challenging due to multiple seasonality, nonlin-

ear trend and variable variance. To deal with this problem

our model combines ES for time series preprocessing and

RNN for capturing both short and long-term dependencies

in time series. It is equipped with many useful mechanisms

and procedures such as cross-learning on many time series,

common learning procedure for ES and RNN, adjusting of

ES parameters by RNN, on-the-fly deseasonalization, dilated

recurrent cells, ResNet-style shortcuts, and extended input

vectors.

In this work, we extend further the model by adding

dynamic attention. We introduce a new type of the gated

recurrent cell, adRNNCell, which implements an attention

mechanism for weighting the input information. This mecha-

nism permits the cell to utilize the most relevant components

of the input patterns in a flexible manner to improve the

forecasting performance of the model.

As the experimental study showed, dynamic attention sig-

nificantly improves the accuracy of forecasting. The proposed

ES-adRNNe outperformed statistical and machine learning

models including its predecessor ES-dRNNe. Note that en-

sembling in our approach does not require additional effort

related to the selection of additional hyperparameters such as

a parameter for controlling learners’ diversity. The diversity

is provided by the random initialization of the models. The

great advantages of ES-adRNNe are its ability to deal with

raw time series, without requiring their decomposition, and

its ability to produce both point forecasts and PIs. PIs with a

NAIVE ARIMA ES Prophet FNM GRNN MLP SVM

LSTM ANFIS MTGNN ES-dRNN ES-dRNNe ES-adRNN ES-adRNNe Real

Fig. 6. Examples of the forecasted daily profiles. 90% PIs for ES-adRNNe
are shown as gray-shaded areas.

specified probability coverage give very valuable information

about the uncertainty of the prediction.

In further research, we plan to enrich the input information

with a learned context vector. This represents information

extracted from other time series, which can help predict a

given time series.

REFERENCES

[1] K. Benidis, S.S. Rangapuram, V. Flunkert, B. Wang, D. Maddix, C.
Turkmen, J. Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella, L.
Callot, T. Januschowski, ”Neural forecasting: Introduction and literature
overview,” arXiv:2004.10240, 2020.

[2] G. Dudek, ”Neural Networks for Pattern-based short-term load fore-
casting: A comparative study,” Neurocomputing, vol. 2015, pp. 64-74,
2016.

[3] G. Dudek, ”Randomized neural networks for forecasting time series with
multiple seasonality,” in Proc.16th International Work-Conference on

Artificial Neural Networks, IWANN 2021, Springer LNCS 12862, pp.
196-207, 2021.

[4] Z.A. Bashir and M.E. El-Hawary, ”Applying wavelets to short-term load
forecasting using PSO-based neural networks,” IEEE Transactions on

Power Systems, vol. 24, no. 1, pp. 20-27, 2009.

[5] H.S. Hippert, J.W. Taylor, ”An evaluation of Bayesian techniques for
controlling model complexity and selecting inputs in a neural network
for short-term load forecasting,” Neural Networks, vol. 23, pp. 386-395,
2010.

[6] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu and J. He, ”Short-term load
forecasting with deep residual networks,” IEEE Transactions on Smart

Grid, vol. 10, no. 4, pp. 3943-3952, 2019.

[7] H.J. Sadaei, P.C. de Lima e Silva, F.G. Guimarães, M.H. Lee, ”Short-
term load forecasting by using a combined method of convolutional
neural networks and fuzzy time series,” Energy, vol. 175, pp. 365-377,
2019.

[8] X. Kong, C. Li, F. Zheng and C. Wang, ”Improved deep belief network
for short-term load forecasting considering demand-side management,”
IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 1531-1538,
2020.

[9] H. Hewamalage, C. Bergmeir and K. Bandara, ”Recurrent neural net-
works for time series forecasting: Current status and future directions,”
International Journal of Forecasting, vol. 37, no. 1 pp. 388-427, 2021.

[10] S. Wang, X. Wang, S. Wang and D. Wang, ”Bi-directional long short-
term memory method based on attention mechanism and rolling update
for short-term load forecasting,” International Journal of Electrical

Power & Energy Systems, vol. 109, pp. 470-479, 2019.

[11] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu and Y. Zhang, ”Short-term
residential load forecasting based on LSTM recurrent neural network,”
IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841-851, 2019.

[12] J. Li et al., ”A Novel Hybrid Short-Term Load Forecasting Method of
Smart Grid Using MLR and LSTM Neural Network,” IEEE Transactions

on Industrial Informatics, vol. 17, no. 4, pp. 2443-2452, 2021.

[13] S. Smyl, G. Dudek, P. Pełka, ”ES-dRNN: A Hybrid Exponential
Smoothing and Dilated Recurrent Neural Network Model for Short-Term
Load Forecasting,” arXiv preprint arXiv:2112.02663, 2021.

[14] S. Smyl, ”A hybrid method of exponential smoothing and recurrent
neural networks for time series forecasting,” International Journal of

Forecasting, vol. 36, no. 1, pp. 75–85, 2020.

[15] A. Vaswani, N Shazeer, N Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, I. Polosukhin, ”Attention is all you need,” Advances in neural

information processing systems, 2017.

[16] ES-adRNN code and data: https://github.com/slaweks17/ES-adRNN.

[17] G. Dudek, P. Pełka and S. Smyl, ”A hybrid residual dilated LSTM
and exponential smoothing model for midterm electric load forecast-
ing,” IEEE Transactions on Neural Networks and Learning Systems,
doi:10.1109/TNNLS.2020.3046629.

[18] K. He, X. Zhang, S. Ren and J. Sun, ”Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

[19] S.L. Smith, P.J. Kindermans, C. Ying, Q.V. Le, ”Don’t decay the
learning rate, increase the batch size,” in Proc. ICLR, 2018. Available
at https://openreview.net/pdf?id=B1Yy1BxCZ

[20] G. Dudek, ”Pattern similarity-based methods for short-term load fore-
casting – part 2: Models,” Applied Soft Computing, vol. 36, pp. 422-441,
2015.

[21] S.J. Taylor, B. Letham, ”Forecasting at scale,” The American Statistician,
vol. 72, no. 1, pp. 37-45, 2018.

[22] P. Pełka, ”Pattern-based forecasting of monthly electricity demand
using support vector machine,” in Proc. 2021 International Joint

Conference on Neural Networks (IJCNN), pp. 1-8, 2021, doi:
10.1109/IJCNN52387.2021.9534134.

[23] P. Pełka, G. Dudek, ”Pattern-based long short-term memory for
mid-term electrical load forecasting,” in Proc. 2020 International

Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2020, doi:
10.1109/IJCNN48605.2020.9206895.

[24] P. Pełka, G. Dudek, ”Neuro-fuzzy system for medium-term electric
energy demand forecasting,” in Proc. 38th International Conference on

Information Systems Architecture and Technology (ISAT), Springer AISC
655, pp. 38-47, 2018.

[25] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang and C. Zhang, ”Con-
necting the dots: Multivariate time series forecasting with graph neural
networks,” in Proc. 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2020.

[26] R. Giacomini, H. White, ”Tests of conditional predictive ability,” Econo-

metrica, vol. 74(6), pp. 1545-1578, 2006.

[27] J. Lago, G. Marcjasz, B. De Schutter, R. Weron, ”Forecasting day-ahead
electricity prices: A review of state-of-the-art algorithms, best practices

and an open-access benchmark,” Applied Energy, vol. 293, pp. 116983,
2021.

http://arxiv.org/abs/2112.02663
https://github.com/slaweks17/ES-adRNN

	I Introduction
	II ES-adRNN Architecture
	II-A Exponential Smoothing
	II-B Preprocessing and Postprocessing
	II-C Loss Function

	III Dilated RNN with Dynamic Attention
	IV Experimental Study
	IV-A Training and Optimization Setup
	IV-B Baseline Models
	IV-C Results

	V Conclusion
	References

