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Abstract—In the context of semi-supervised learning and
clustering ensemble methods, we introduce a novel strategy to
consider not only pairwise constraints, but also triplet constraints.
As far as we are aware, the latter have not been addressed in the
literature of semi-supervised clustering ensembles. The strategy
consists of a post-processing applied once a consensus partition
has been built. Taking into account the fact that the clusters
of the consensus partition are usually not spherical, in order to
maintain their complex shapes, we first generate anchors, which
are data points judged representative of the clusters, in such a
way that every point in the cluster has an anchor close to it.
These anchors are then used to create a data structure that we
call an allocation matrix, which measures the assignment score
of each point to each cluster in the consensus partition. Such a
matrix is provided to an Integer Linear Programing (ILP) model
to find the partition which is closest to the consensus partition,
while satisfying the constraints. The experimental results show
that our method, given an initial consensus partition and a set of
constraints, allows to satisfy all the given constraints, modifying
the initial partition, but without deteriorating considerably its
quality.

Index Terms—clustering, clustering ensemble, Integer Linear
Programming

I. INTRODUCTION

Clustering is a machine learning task that aims at cat-
egorizing unlabeled instances of a dataset into classes (or
clusters). Elements within one cluster should be similar to each
other while being dissimilar to those of other clusters. The
result of a clustering process can take different forms such
as a hard/soft partition or a hierarchy of partitions. In this
paper we will consider the case where the output is a hard
partition. In Semi-Supervised clustering, prior knowledge in
the form of constraints is added in order to guide the process
towards a partition close to the user expectations. The most
common constraints are pairwise instance-level constraints as,
for example, must-link (ML) and cannot-link (CL). These
types of constraints indicate that two instances must be (re-
spectively cannot be) in the same cluster in the final partition.
Many clustering algorithms, such as K-Means [1] assume
that the clusters are spherical and search for compact and
well separated clusters. Some methods have been designed to
overcome this limitation, such as density-based methods, as for
instance DBScan [2] or clustering ensemble methods that take
as input a set of partitions generated with different techniques
or different parameters and build a consensus partition.

Semi-Supervised Clustering Ensemble (SSCE) is a growing
area of research, which aims at integrating constraints in
clustering ensemble methods [3]. The existing approaches

consider only pairwise constraints at different stages of the
ensemble clustering process. These approaches mainly focus
on pairwise constraints, whereas it has been shown that other
kinds of constraints could be integrated [4], for instance
cardinality constraints on the clusters or even more semantic
constraints on some expected properties of individuals in a
cluster. Moreover, it has also been shown that declarative
frameworks such as Integer Linear Programming (ILP) [5],
SAT [6], Constraint Programming [7] allow to easily model
and integrate such constraints in a clustering process.

Being able to satisfy the constraints given by an expert is a
key point in a exploratory data mining process, all the more
when the expert is integrated in the discovery process (Human
in the Loop). In this paper, we propose a new method to take
into account the constraints in a clustering ensemble method.
Once the consensus partition has been generated, an ILP
model [8] allows to slightly modify it in order to satisfy the
constraints. It requires the building of an allocation matrix that
gives a score for a point to belong to a cluster. This approach
was originally developed with spherical clusters in mind, as the
allocation matrix was built from the centroids of the clusters.
In this work, we aim at using it on arbitrary shaped clusters. To
do so, we introduce the concept on anchors that are instances
that can be seen as representatives of their neighborhoods, and
the allocation matrix is built on the distances of points to their
nearest anchors. Once the matrix is built, the ILP model finds
an assignment of points to clusters maximizing the score of
each instance assignment while satisfying all the constraints.

Our main contributions are:

• a new method for handling constraints in ensemble-
clustering, based on a post-processing of the consensus
partition,

• as it is based on declarative frameworks, it can be ap-
plied to different kinds of constraints, beyond the classic
pairwise constraints,

• it can be combined with other strategy to handle con-
straints (in base partitions or when building a co-
association matrix, . . . ): this is illustrated in the exper-
iments, where base partitions are generated by COP-
Kmeans,

• experiments are performed on pairwise constraints and
triplet constraints, showing that our method allows to
satisfy all the given constraints without deteriorating
significantly the quality of the consensus partition.

The paper is organized as follows: Section II presents the



related work; in Section III we introduce our approach while
Section IV presents our experimental protocol and results;
finally, in Section V we highlight our main findings and
discuss future works.

II. STATE OF THE ART

A clustering ensemble method starts by the generation of
base partitions that will be used to build the final partition.
The initial partitions obtained in this step determine the final
result, and the generation process of these partitions is thus
very important. Different clustering algorithms can be used,
or the same algorithm with different parameters, or even
different data representations, different subsets of objects or
even projections of the objects on different subspaces.

The consensus function is the main step in any clustering
ensemble algorithm. In this step, the final data partition or
consensus partition P ∗ is computed. There are two main
methods for computing it, either based on the building of a
median partition or on the object co-occurrences. In this paper,
we only focus on approaches based on co-occurrences.

One of the most classical co-occurrence methods is called
Evidence Accumulation (EAC) [9]. It is based on the con-
struction of a co-association matrix. The idea is to combine
the results of multiple partitions into a single data partition
by viewing each clustering result as an independent evidence
of data organization without any assumptions on the number
of clusters either in the base partitions or in the consensus
partition. More precisely, in a co-association matrix S, Sij

will be the number of base partitions where instances i and j
are clustered together divided by the number of base partitions.
Such a matrix can be seen as a similarity matrix. Finally, to
obtain the consensus partition, any clustering algorithm can be
applied on the co-association matrix.

In recent years, Constrained Clustering that aims at inte-
grating expert knowledge in a clustering process has become
an increasingly active domain of research [10], [11].

Some theoretical studies have shown that very accurate
predictions can be obtained by Semi-Supervised Clustering
Ensemble Methods [12] and a lot of approaches have been
introduced since around 2010. The constraints can be intro-
duced in different steps, which are not mutually exclusive: by
reducing the dimensions [13], during the creation of the base
partitions [14]–[17], through a partition selection process [14],
[18], for the creation of the co-association matrix [13] or in
the consensus function [19]. These approaches integrate only
must-link and cannot-link constraints.

On the other hand, some work on constrained cluster-
ing have shown the interest of declarative frameworks for
modeling a large diversity of constraints, such as cardinality
constraints, geometric constraints (for instance on the diameter
of clusters or on the split between clusters), density constraints,
. . . They are based on SAT [6], ILP [5] or Constraint Pro-
gramming [4], [7]. In our work, we investigate the integration
of must-link, cannot-link and triplet constraints in clustering
ensemble. A triplet constraint (a, p, n) indicates that a is closer
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Fig. 1: General Approach
In blue: inputs. In gray: initialization. In white: elements of our

own method.

to p than to n, that can be interpreted as follows: if a and
n are assigned to the same cluster than p must be also. In
our knowledge, this constraint type has not been integrated in
semi-supervised clustering ensemble.

III. ANCHORED CONSTRAINED CLUSTERING ENSEMBLE
(ACCE)

A. Overview of our approach

We propose a new method called Anchored Constrained
Clustering Ensemble (ACCE) as described in Fig. 1, which
integrates the constraints thanks to a post-processing approach.

Given a dataset, an ensemble of base partitions is generated
and a consensus partition P ∗ is built, by applying the Evi-
dence Accumulation algorithm (EAC) [9] with the Single link
algorithm to generate the consensus partition.

We then build an allocation matrix M between data points
and clusters that gives to each point a score for belonging to
each cluster. Since the shape of the clusters could be non-
spherical, this score cannot be computed from the distance of
a point to the center of its cluster. Therefore for each cluster
of the consensus partition, we generate a set of anchors to
represent the cluster, and the score for any point i to any
cluster c will be computed through the closest anchor of the



(a) 5% of anchors (b) 10% of anchors (c) 25% of anchors

Fig. 2: Anchor positions with different parameters
The anchors are represented by triangles

cluster c to the point i. The choice of the anchors is a key point
in our work since they define the way the allocation matrix is
built.

Finally, we apply an ILP algorithm with the Allocation
Matrix M and the set of given constraints to obtain the
final partition. It relies on an optimization criterion aiming
at maximizing the agreement between the information in M
and the result.

B. Anchor computation

Given a partition of a dataset, anchors are points judged as
representatives of their neighborhood. A set of anchor points
is computed for each cluster of the partition. Their purpose is
to help the construction of the allocation matrix.

The algorithm computing anchors is given in Algorithm 1.
One of the required parameters is the percentage per of points
that will become anchors in each cluster. For each cluster in the
consensus partition P ∗ we apply the single link hierarchical
algorithm to divide it into h smaller sub-clusters, where h is
the number of anchors to generate according to the parameter
per ∈ {0, ..., 100}. For each of these sub-clusters we define
an anchor as the instance minimizing the sum of its distances
with the other instances of the sub-cluster.

Fig. 2 shows the position of anchors in the dataset
halfmoon. The two clusters have different colors and the
anchors are represented by triangles. We can observe that the
anchor distribution is not homogeneous; this is due to the uti-
lization of the Single-Link algorithm. The heterogeneity varies
according to the datasets and algorithms applied. However, it
still provides a better coverage of the clusters than just using
their centroids as it is the case in [8].

C. Allocation Matrix

Given a partition of N points to K clusters (e.g., the initial
consensus partition), we aim at modifying this partition, so as
to satisfy the constraints. We introduce the allocation matrix
M , a matrix of size N ×K where Mik represents the score
associated if the i-th point were assigned to cluster k.

The algorithm to build this matrix is described in Algo-
rithm 2. The first step computes a matrix D where Dik is the
distance between i and the closest anchor belonging to cluster
k. The farthest the point to its anchor, the smallest its score.

Algorithm 1: AnchorComputation
Data: Euclidean distance matrix distMat, number of

clusters K, percentage per, partition P ∗

Result: ListAnchor a list of anchors
1 begin
2 for each cluster clustK ∈ P ∗ do
3 //Defining h the number of subclusters in

clustK
4 if clustK has more than 1 point then
5 h = |clustK| ∗ per/100
6 else
7 h = 1

8 Ph = result of Single-link with h clusters on
clustK

9 for each cluster C ∈ Ph do
10 anchor =

argminu∈C

∑
v∈C distMat(u, v)

11 Add anchor to ListAnchor

12

13 return ListAnchor

We first introduce a matrix R where Rik is the normalization
of Dik by the sum of the distances in Di. We then transform
distances into scores by taking 1−Rik. Finally, to obtain the
matrix M , we re-normalize the result by dividing the scores
by K − 1, so that each row sums up to one.

D. Integer Linear Programming model

The final step of our approach is the use of an ILP
method first introduced in [8]. This method takes as input an
allocation matrix M on N instances to K clusters, and finds
an assignment of points to clusters that maximizes the sum of
the scores associated to the instances and the final clusters they
belong to, according to the allocation matrix, while satisfying
the partition constraints and the user constraints.

This ILP model defines a Boolean variable matrix Z of size
N ×K such that Zik = 1 when the point i is assigned to the
cluster k. Thus, if a point i is assigned to the cluster k then



Algorithm 2: AllocationMatrixComputation
Data: distance matrix distMat, number of clusters K,

percentage per, number of instances N ,
partition P ∗ with K clusters

Result: M : an allocation matrix
1 begin
2

3 LA = AnchorComputation(distMat,K, per, P ∗)
4 D, R, M : matrices of dimension N ×K
5

6 // computing the minimal distance from each point
to each cluster (represented by the closest anchor)
for i from 1 to N do

7 for k from 1 to K do
8 Dik = mina∈LA,P∗[a]=k distMat[i, a]

9

10 //Normalization
11 for i from 1 to N do
12 for k from 1 to K do
13 Rik = Dik/

∑
k′∈[1,K] Dik′

14

15 //Inversion
16 for i from 1 to N do
17 for k from 1 to K do
18 Mik = (1−Rik)/(K − 1)

19

20 Return M

Zik = 1 and Zik′ = 0 for all the other k′ ̸= k. The partition
constraints enforce that the solution is a partition:

1) ∀k ∈ {1, ..,K},
∑N

i=1 Zik ≥ 1 (all the the clusters
contain at least one element)

2) ∀i ∈ {1, .., N},
∑K

k=1 Zik = 1 (all the elements belong
to one and only one cluster)

User constraints are formulated on the variables Z. A must-
link constraint on two points i, j is therefore represented by
Zik = Zjk for all k ∈ {1, ..,K}. A cannot-link constraint on
i, j is represented by Zik + Zjk ≤ 1 for all k ∈ {1, ..,K}.
A triplet constraint (a, p, n) means that the point a is closer
to p than to n, therefore if a and n are in the same cluster,
p must be in that cluster also. This constraint on (a, p, n) is
represented by Zpk ≥ Zak + Znk − 1 for all k ∈ {1, ..,K}.
This formulation yields Zpk = 1 as soon as Zak = 1 and
Znk = 1.

The problem is therefore formulated by:

argmaxZ
∑N

i=1

∑K
k=1 MikZik

s.t. partition constraints and user constraints
(1)

The result of the ILP model gives the best partition opti-
mizing Equation (1) while satisfying all the constraints.

TABLE I: Characteristics of the data sets

Name instances dimensions clusters
Halfmoon 200 2 2
ds2c2sc13 566 2 13
complex9 3088 9 2

iris 150 3 3
glass 277 9 7

IV. EXPERIMENTS

We compare our method with four frameworks: when
the base partitions are generated by K-Means (without con-
straints), when the base partitions are built with COP-kmeans
[20] (thus integrating pairwise constraints), with a standard
consensus partition building, by modifying the co-occurrence
matrix for handling pairwise constraints. For all the experi-
ments, the Euclidean distance is used.

In this section we show that:
• our method satisfies all the given constraints, whether it

be pairwise or triplet constraints,
• our method does not reduce meaningfully the quality of

the partition, and
• the ACCE method with a percentage of anchors of 25%

gives the most similar results compared to the uncon-
strained consensus partition.

Our system has been developed in Python3 with the sklearn
and matplotlib libraries. For generating base partitions with
constraints, we use an existing COP-Kmeans code [21]. We
compare our method with the Evidence Accumulation ap-
proach and a constrained version of the Evidence Accumu-
lation [13] where if oi and oj are linked by an ML constraint,
Sij = 1 and if they are linked by a CL constraint Sij = 0. If
they are not linked by constraints then Sij is not modified. The
two methods will be respectively abbreviated by EAC and
ConstrEAC in our results. The used datasets are presented
in Table I. Halfmoon, ds2c2sc13 and complex9 are syn-
thetic datasets specially designed to contain several different
cluster shapes.

A. Base partition generation

We generate a number nBP = 50 of base partitions
with K-Means algorithm (or COP-Kmeans algorithm) with
the number of clusters k selected randomly in the interval
{2,min(50,

√
n)} where n is the number of elements in the

dataset.
To control the randomness effect on our experiments, we

create ten different base partition sets on which we perform
the same type of experiments.

B. Constraints generation

The experiments are conducted with pairwise or triplet
constraints.

To generate pairwise constraints, we randomly select two
points in the dataset and add a ML constraint between them
if they have the same ground-truth label, and a CL if not. We



TABLE II: ARI results with triplet constraints

Dataset K-means EAC ILP25 ILP10 ILP5
halfmoon 0.256 0.998 0.995 0.995 0.907
ds2c2sc13 0.551 0.591 0.587 0.578 0.571
complex9 0.414 0.776 0.775 0.774 0.760
iris 0.730 0.566 0.560 0.570 0.570
glass 0.260 0.268 0.259 0.237 0.251

create 5 constraint sets with 50 constraints each, and each of
them will be used with the 10 base partition sets.

Similarly, to generate triplet constraints we use the ground-
truth labels and the Euclidean distance matrix. We start by
selecting at random 3 different instances a, p and n. If they
are all in the same cluster or all in different clusters, then we
create a constraint (a, p, n) if a is closer to p than to n or
(a, n, p) otherwise. If a and p are in the same cluster but not
n we add the triplet constraint (a, p, n), and if a and n are in
the same cluster but not p then we add the triplet constraint
(a, n, p).

C. Number of anchors

For the number of anchors, we compare the results obtained
with 3 different percentages: 25%, 10% and 5%. In the results
they will be referred to as ILP-Km25, ILP-Km10 and ILP-
Km5 when using the K-Means algorithm to generate the base
partitions, and ILP-COP25, ILP-COP10 and ILP-COP5 with
COP-Kmeans.

D. Evaluation criterion

The results are evaluated based on two criteria: the con-
straint satisfaction and the quality of the final partition. With
respect to partition quality, we use the Adjusted Rand Index
(ARI). Given a partition Pi generated with a clustering algo-
rithm for a dataset and a partition PT representing the true
partition/ground-truth, this measure determines the similarity
between Pi and PT by analyzing the pairwise co-assignment
of points between the two partitions. The upper bound of ARI
is 1, indicating a perfect agreement between the partitions,
and values near 0 or negative correspond to cluster agreement
found by chance [22].

The equation computing the ARI is the following:

ARI(Pi, P
T ) =

2(ab− cd)

(a+ d)(d+ b) + (a+ c)(c+ b)
(2)

with

• a: number of pairs of instances clustered together in Pi

and in PT ,
• b: number of pairs of instances clustered together in Pi

but not in PT ,
• c: number of pairs of instances clustered together in PT

but not in Pi,
• d: number of pairs of instances clustered together neither

in Pi nor in PT .

TABLE III: Percentage of satisfied triplet constraints

Dataset K-means EAC ILP25 ILP10 ILP5
halfmoon 90.00 99.96 100.0 100.0 100.0
ds2c2sc13 99.76 99.82 100.0 100.0 100.0
complex9 99.02 99.34 100.0 100.0 100.0
iris 97.80 98.60 100.0 100.0 100.0
glass 93.84 95.30 100.0 100.0 100.0

E. Results

We present the results in Figs. 3 and 4. Let us recall that we
generate 10 sets of base partitions and 5 sets of constraints,
leading to 50 results. The boxplots give a summary in terms
of quantiles of the 50 results. The figures in cyan are the
results obtained from non-ensemble methods K-Means and
COP-Kmeans. The blue ones are from ensemble methods
(with or without constraints): Base partitions (indicated by
BP.KM), the evidence accumulation (EAC), the Constrained
Evidence Accumulation (Constr EAC) and Evidence Accu-
mulation when the base partitions are generated with COP-
Kmeans (EAC COP). The red ones give the results of our
method: ILP-Km25, ILP-Km10 and ILP-Km5 (base partitions
generated by K-means), ILP-COP25, ILP-COP10 and ILP-
COP5 (base partitions generated using COP-Kmeans); the
number in each case represents the percentage of the points
mapped into anchors. In all ensemble methods, the consensus
partition, at the basis of our work, is generated by the Evidence
Accumulation algorithm.

From these results, we can observe that our ACCE method
with a percentage of anchors of 25% allows to satisfy the
constraints without deteriorating significantly the quality of
the original EAC partition.

With 5% of anchors, the results seem to be more dependent
on the shape of the dataset being sometimes slightly better or
worse in terms of ARI than the initial EAC partition.

Our method was experimented with the base partitions
generated either with K-Mmeans or COP-Kmeans. We can
notice that using COP-Kmeans algorithm the results usually
have a larger variance compared to those obtained using K-
Means.

Concerning the triplet constraints, from Tab. II and Tab.
III we see that ACCE ensures the satisfaction of all the
constraints, in contrast to the unconstrained methods we tested,
which cannot handle this kind of constraints.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

In this work, we present a novel Constrained Clustering
Ensemble approach integrating for the first time the constraints
after the generation of the consensus partition and show that it
can take into account pairwise and triplet constraints. Such a
framework could also be adapted to other types of constraints.

Experiments show that this method allows to satisfy the
constraints without deteriorating significantly the quality of
the unconstrained consensus partition. We draw the attention
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Fig. 3: Adjusted Rank Index for different datasets with pairwise constraints

on the fact that in this work the constraints were generated at
random, and may not be sufficiently informative to improve
the results in terms of ARI.

Unlike other constrained ensemble clustering methods, our
approach ensures the satisfaction of all the given constraints.

B. Future Work

As future work, we intend to explore other ways to compute
the anchors so that it would be adaptive to the size and density
of each cluster. We could also compare our performance
obtained by using a single link algorithm versus other types
of hierarchical clustering.

Concerning the constraints, we can integrate other types of
constraints in the ILP model. Considering multiple constraint

types at the same time can easily be achieved in our model.
One of the main difficulties is to find relevant (informative)
constraints that have a true impact on the clustering. Another
direction would be to study the generation of informative
constraints, as done for instance in active learning for pairwise
constraints.
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NOTES

The code associated to this article is available at
https://github.com/MathieuGuilbert/ACCE .

REFERENCES

[1] J. MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA, 1967.

[2] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise.
In kdd, volume 96, pages 226–231, 1996.

[3] A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse frame-
work for combining multiple partitions. Journal of machine learning
research, 3(Dec):583–617, 2002.

[4] T.-B.-H. Dao, C. Vrain, K.-C. Duong, and I. Davidson. A framework
for actionable clustering using constraint programming. In Proceedings
of the Twenty-second European Conference on Artificial Intelligence,
pages 453–461, 2016.

[5] B. Babaki, T. Guns, and S. Nijssen. Constrained clustering using column
generation. In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages
438–454. Springer, 2014.

[6] I. Davidson, SS. Ravi, and L. Shamis. A sat-based framework for
efficient constrained clustering. In Proceedings of the 2010 SIAM
international conference on data mining, pages 94–105. SIAM, 2010.

[7] K.-C. Duong T.-B.-H. Dao and C. Vrain. Constrained clustering by
constraint programming. Artificial Intelligence, 244:70–94, 2017.

[8] N.-V.-D. Nghiem, C. Vrain, T.-B.-H. Dao, and I. Davidson. Constrained
clustering via post-processing. In International Conference on Discovery
Science, pages 53–67. Springer, 2020.

[9] A. LN Fred and A. K. Jain. Combining multiple clusterings using
evidence accumulation. IEEE transactions on pattern analysis and



machine intelligence, 27(6):835–850, 2005.
[10] S. Basu, I. Davidson, and K. Wagstaff. Constrained clustering: Advances

in algorithms, theory, and applications. CRC Press, 2008.
[11] Yue Qin, Shifei Ding, Lijuan Wang, and Yanru Wang. Research progress

on semi-supervised clustering. Cognitive Computation, 11(5):599–612,
2019.

[12] D. Chen, Y. Yang, H. Wang, and A. Mahmood. Convergence analysis of
semi-supervised clustering ensemble. In 2013 IEEE Third International
Conference on Information Science and Technology (ICIST), pages 783–
788. IEEE, 2013.

[13] L. Sun J. Yang and Q. Wu. Constraint projections for semi-supervised
spectral clustering ensemble. Concurrency and Computation: Practice
and Experience, 31(20):e5359, 2019.

[14] Z. Yu, H. Chen, J. You, H.-S. Wong, J. Liu, L. Li, and G. Han.
Double selection based semi-supervised clustering ensemble for tumor
clustering from gene expression profiles. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 11(4):727–740, 2014.

[15] Z. Yu, Z. Kuang, J. Liu, H. Chen, J. Zhang, J. You, H.-S. Wong, and
G. Han. Adaptive ensembling of semi-supervised clustering solutions.
IEEE Transactions on Knowledge and Data Engineering, 29(8):1577–
1590, 2017.

[16] Z. Yu, P. Luo, J. Liu, H.-S. Wong, J. You, G. Han, and J. Zhang. Semi-
supervised ensemble clustering based on selected constraint projection.
IEEE Transactions on Knowledge and Data Engineering, 30(12):2394–
2407, 2018.

[17] S. Wei, Z. Li, and C. Zhang. Combined constraint-based with metric-
based in semi-supervised clustering ensemble. International Journal of
Machine Learning and Cybernetics, 9(7):1085–1100, 2018.

[18] F. Yang, T. Li, Q. Zhou, and H. Xiao. Cluster ensemble selection with
constraints. Neurocomputing, 235:59–70, 2017.

[19] Y. Yang, H. Wang, C. Lin, and J. Zhang. Semi-supervised clustering
ensemble based on multi-ant colonies algorithm. In International
Conference on Rough Sets and Knowledge Technology, pages 302–309.
Springer, 2012.

[20] Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Con-
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